
 

Grade’s final project 

Ex vivo study of the effect of an 

anti-proliferative drug in Chronic 

Lymphocytic Leukemia cells 

mimicking proliferative niches 

microenvironment 

 
Meritxell Aguiló García 

 

 

 

 

  

 

Biotechnology grade 

Tutor: Joan Bertran Comulada 

Vic, setembre de 2013 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RIUVic

https://core.ac.uk/display/50524864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 
 

INDEX 

1. Introduction 

1.1 Definition and prognostic markers   2 

1.2 BCR and signal transduction    3 

1.3 Changing overview, CLL as an active proliferative 5 

 leukemia 

1.4 1.4 CLL cells microenvironment    6 

1.5 Conventional treatment and new approaches  7 

 

2. Objectives 

2.1 main objective      9 

2.2 specific objectives      9 

3. Materials and methods 

3.1 CLL samples       9 

3.2 Reagents       10 

3.3 Experimental design     10 

3.4 Statistical analysis      12 

 

4. Results         12 

5. Discussion         19 

6. Conclusion         21 

7. Bibliography         21 

 

 

 

 

 



2 
 

1. INTRODUCTION 

1.1 Definition and prognostic markers 

 Chronic lymphocytic leukemia (CLL), the most common sort of adult leukemia in 

western countries, is a neoplastic disease characterized by the accumulation and 

clonal proliferation of immunoincompetent, mature-appearing B lymphocytes in 

peripheral blood (PB), bone marrow (BM) and secondary lymphoid tissues such as 

lymph nodes (LN) and spleen.1 The monoclonal population of CLL cells 

immunophenotype is unique and clearly characterized by the expression of low levels 

of surface immunoglobulins IgM/IgD, surface markers CD19 and CD20 (particular B 

cell linage biomarkers) and the concomitant expression of CD5, and CD23 (crucial for 

not confusing CLL with other B cell chronic lymphoproliferative disorder).2 

Nevertheless, they do not express CD79b (or it is only expressed by less than 5% of 

the CLL cases).3,4,5 

The course of the disease is variable, some patients diagnosed with CLL can 

hold a normal life span whereas others develop early symptoms of BM failure, repeated 

infections, and transformation into more aggressive forms of the disease. This last 

group tend to die within five years after diagnosis.6 Identification of clinical and 

laboratory features associated with disease progression and the likelihood for a 

favourable response to therapy could allow for risk-adapted management of patients 

with CLL that ultimately could improve outcome.  

The mutational status of immunoglobulin heavy variable (IGHV) genes became 

the first biological marker with clinical prognosis value at the moment of diagnosis. The 

expression of mutated IGHV genes is correlated with a longer time to clinical 

progression, longer time to treatment and a prolonged median survival.7,8  The 

explanation why CLL cells carrying V-gene mutations have more favourable prognostic 

markers than unmutated CLL cells rest, on one hand, on the fact that mutated CLL 

cells own an inability to bind antigens due to changes in the conformation of B-cell 

receptor (BCR) caused by IGHV mutations (antigen does not fit BCR, driving to a 

“clonal ignorance”). On the other hand, these mutations are also able to damage the 

BCR signalling despite an adequate fit of the antigen, fact which will also entail a CLL 

cell less capable of survive, proliferate and prevent apoptosis. 

CLL cells expressing unmutated IGHV genes can be differentiated from those 

that use  mutated IGHV genes through the discordant  expression of a  small subset of 

genes.9 One of these genes encodes the cytoplasmatic tyrosine kinase Zeta-chain-
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associated protein of 70 kDa (ZAP-70). ZAP 70 is a major component of the signalling 

cascade downstream of the T cell receptor (TCR), and the Fc receptor (FcR) in
10

 

 NK cells. Nonetheless, subsequent investigations  found that unmutated CLL cells 

regularly expressed levels of ZAP-70 protein that were comparable to those present in 

normal blood T cells.10,11 In contrast, mutated CLL cells generally do not express 

detectable levels of ZAP-70 protein. Therefore, ZAP-70 expression found in  leukemia 

cells can be used as a surrogate marker for IGHV mutational status12 which can 

segregate patients that have significantly different tendencies for disease progression. 

Although ZAP-70 expression in CLL has an adverse prognostic influence, its 

role in the biology of the tumoral B cell is not fully defined. In this regard, the 

expression of ZAP-70 protein in CLL cells has been related to an enhanced BCR 

signaling.13,14  

1.2 BCR and signal transduction  

Signal transduction in cells of the immune system by BCRs, TCRs and FcRs is 

accomplished by a conceptually similar mechanism. Currently, it is postulated that, in 

an appropriate microenvironment, the BCRs of CLL  lymphocytes become engaged by 

foreign microbial or autoantigens15,16 which, in association with other co-stimulatory 

signals, trigger specific signalling cascades to the nucleus of the cells supporting CLL 

clone expansion.  Interestingly, there are evidences submitting that a certain type or a 

similar group of antigens are relevant to CLL pathogenesis, since BCR’s IGHV gene 

sequences against concrete antigens have been found in a percentage of the patients 

much higher than that which could be randomly expected in subsets of patients.  

BCR is constituted by an antigen-specific membrane immunoglobulin and the 

non- covalently bound, disulfide-linked heterodimers Ig-α/Ig-β (CD79α/CD79β). Upon 

antigen recognition, BCR induces phosphorylation of the immunoreceptor tyrosine 

activating motifs (ITAMs), present in the cytoplasmatic tails of CD79α/CD79β, through 

Src family kinases such as Lyn.17 Consecutively, spleen tyrosine kinase (Syk) is 

recruited and bound to the ITAMs via ITAMs’ phosphotyrosine and Syk’s Src homology 

2 (SH2) domain, where is phosphorylated (necessary step since neither the TCR nor 

the BCR complex have intrinsic protein tyrosine kinase (PTK) activity). After activation, 

Syk phosphorylates multiple signal intermediates including Bruton’s tyrosine kinase 

(Btk, member of the Tec Kinases family) in association with the B cell linker protein 

(BLNK), which is responsible for downstream signalling molecules  activation such as 

Raf, mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase 

(ERK) and nuclear factor-kB (Figure 1). Phosphoinositide 3-kinase (PI3K) is activated 
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by the coordinated action of Syk and Btk, stimulating its downstream pathway, which 

includes AKT kinase phosphorylation18,19, activation that allows NFAT functionality.  

 

 

 Figure 1. Schematic representation of B lymphocyte signalling pathways involved in cell 

survival, development and proliferation. Syk is an essential trigger for B lymphocyte downstream 

signalling implicated in several downstream kinases activation such as BTK, BLNK, PI3K and ERK. These 

kinases contribute to avoid cell death through apoptotic proteins inhibition and to cell proliferation 

stimulating certain transcription factors like NF-κB.  

 

The crucial role of ZAP-70 in proximal signalling after TCR engagement and its 

high homology with Syk, prompted the idea that ZAP-70 may augment signalling 

through BCR, thus, providing a biological explanation for the more aggressive clinical 
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outcome of the ZAP-70 positive subgroup of patients. As mentioned above, the specific 

molecular mechanisms underlying the role of ZAP-70 in BCR signalling remain largely 

unknown. In several reports it was shown that the requirement for ZAP-70 expression 

was not absolute in BCR activation pathway, as some CLL cases not expressing ZAP-

70 were able to respond to BCR stimulation equally well as ZAP-70 positive ones.20,11.  

 

1.3 Changing overview, CLL as an active proliferative leukemia 

CLL has historically been attributed to a process of deficient apoptosis rather 

than a B lymphocyte increased proliferation, since CLL cells show high levels of 

expression of anti-apoptotic proteins such as Bcl-2,21 Bcl-xL, Mcl-1 and Bag-1 and low 

levels of the pro-apoptotic  proteins Bax or Bcl-xS.22 However, recent clinical and 

biological observations are questioning this concept. Clinically, the different prognostic 

between patients23 (a third of the CLL patients suffer an aggressive disease and 

present a fatal course) and the divergences in lymphocyte counts between patients (in 

some of them shorter lymphocyte duplication time is exhibited), among others, suggest 

the existence of cellular proliferation phenomena, which could be crucial in the CLL 

activity and clinical progression. From the biological standpoint, several studies have 

shown the importance of proliferation; Messmer and cols. performed the first study of in 

vivo CLL cell kinetics [Messmer BT, J Clin Invest, 2005] suggesting that not only 

leukemic cells are dividing, but also that they do it in a higher rate than normal B 

lymphocytes. Recent studies proved that the size of the proliferative compartment is 

associated with several adverse prognostic factors, both clinical and biological (ZAP-

70, CD38 and CD49d expression). This had an important impact on the time to require 

treatment and overall survival [Giné E, Haematologica, 2010]. Besides, by histological 

studies, a group of patients with a higher active proliferation centers in LN (expanded 

pseudofollicles with a higher number of mitosis or Ki-67 expression) was identified; the 

presence of these expanded and/or highly active proliferation centers was associated 

with an aggressive clinical behaviour. Finally, recent data about gene expression 

profiling has evidenced a higher expression of genes related to proliferation in LN and 

BM than in PB [Herishanu Y, ASH annual meeting abstracts, 2009], which corroborates 

the important role of microenvironment in proliferation and disease maintenance. 
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1.4 CLL cells microenvironment 

The relevance of microenvironment signals is shown by the incapacity of CLL 

cells to avoid spontaneous apoptosis in vitro in the absence of certain stimuli (eg. 

CD40 ligand or IL-4) despite CLL cells are able to have a long half-life in vivo,24,25 

which suggests that such co-stimulatory signals and contact with non-leukemic cells 

(CD4+ T cells, stromal cells (BMSCs), follicular dendritic cells (FDC) or “nurse-like” 

cells (NLC)) play a role in CLL cells survival in vivo and even in the response to 

treatment (Figure 2).26 Mentioned stimuli are mediated by soluble cytokines which 

interact either with BCR or other receptors such as CD40 or Toll-like receptors (TLRs). 

TLRs  seem to play an important role in CLL disease, since they are capable of 

recognizing different molecular patterns from antigens and, therefore, promote B 

lymphocytes maturation and proliferation. CLL cells express larger amount of TLR9 in 

particular, which can be stimulated by oligodeoxinucleotides-CpG inducing cellular 

proliferation, cytokine production and an immunogenic phenotype in a variable range.27 

Signals triggered by CD40L have been shown to be critical for the function of B 

lymphocytes at multiple steps of the T cell–dependent immune response. 

 

 Figure 2. Molecular interactions between CLL cells and microenvironment. 

Molecular interactions between CLL and BMSCs cells in the BM and lymphoid tissue 
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microenvironments that are considered important for CLL-cell survival and proliferation, 

CLL-cell homing, and tissue retention.  

 

There is growing in vitro [Burger JA, Blood, 1999; Burkle A, Blood, 2007] and in 

vivo [Sipkins DA, Nature, 2005; calissano C, Blood, 2008] evidence suggesting that 

chemokine receptors and adhesion molecules expressed on CLL cells are responsible 

for their trafficking between the blood and the tissues, and their homing and/or 

retention within these tissue microenvironments, guided by accessory cells that 

establish gradients of the respective ligands. Stromal cell-derived factor 1 (SDF-1, a 

CXC chemokine also called CXCL12) becomes a potent chemokine able to bind the 

plasma membrane and form a concentration gradient embracing BMSCs, which 

secrete high levels of this factor. Having settled that CLL cells express functional 

receptors for CXCL12 (CXCR4), among other chemokine receptors as CXCR3 or 

CXCR5,  some investigations have proved the existence of CLL cells mobilization in 

vitro linked to CXCL12 exposure, which triggers endocytosis of CXCR4, mobilization of 

calcium, actin polymerization and chemotaxis under physiological flow conditions. 

Furthermore, there are other important chemoretractants such as Chemokine (C-C 

motif) ligand 21 (CCL21) and (CCL19) which also play an important role in B  and T cell 

migration to secondary lymphoid organs by binding to its chemokine receptor CCR728 

and C-X-C motif chemokine 13 (CXCL13) also known as B lymphocyte 

chemoattractant (BLC), secreted by NLCs and stromal cells, regulates lymphocytes 

homing and positioning within lymph follicles interacting with its receptor CXCR5.29 

1.5 Conventional treatment and new approaches 

What has been said above, and unlike the ancient hypothesis, highlights the 

importance of cellular proliferation in CLL, fact that propose that new assays testing 

drugs that inhibit the proliferative component of CLL cells should be performed. The 

majority of tested drugs, until recent years, have been investigated using CLL cells 

cultured in suspension or using apoptosis-protecting models. On the other hand, 

xenograft models lack of interactions with T and NK lymphocytes, since they are 

immunodepresive animals.30 Moreover, transgenic animals ( transgenic of TCL-1 or 

deleted of Leu2/mir15a/16-1)31 do not reflect the molecular pathogenesis of the 

disease. 

At present, there is no curative therapy for CLL. Due to the extremely variable 

clinical course of CLL patients, finding a cure for this type of leukemia is a remarkable 
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challenge. Nowadays, the major operative therapeutic regimens in use for CLL 

treatment consist of conventional chemotherapy combinations with rituximab, the 

monoclonal antibody against CD20. Nonetheless, these treatments are compromised 

in a subset of patients with certain genetic aberrations.32 Furthermore, these regimens 

have been registered as provoking significant toxicity. 

Alternatives to conventional treatments are purine analogs such as Fludarabine 

(Fludara) (Sigma), which are defined as the most efficient active group of drugs against 

CLL until present. These drugs own a complex mechanism of action including induction 

of apoptosis.  

Notwithstanding the molecular mechanisms responsible for BCR signalling 

regulatation are not entirely defined. Several inhibitors which have their target in 

enzymes involved in BCR signaling have been developed in recent years and most of 

them are in clinical trials today. Some examples are GS-1101 (formerly CAL-101 

(Calistoga Pharmaceuticals )) (small molecule that selectively can inhibit the delta 

isoform PI3K),33 Ibrutinib ( also called PCI-32765 (FiercePharma )34,35 and AVL292 

(Avila Therapeutics)36 (Btk inhibitors) and Sorafenib (Bayer) (acts blocking ERK 

pathway).37,38,39 

Novel studies using Syk deficient mice highlight the central role of Syk for B cell 

malignancies survival and development,40,41,42 proposing that the Syk kinase could be a 

potential rational target for therapeutic intervention. Selective Syk inhibitors already 

exists. The most popular is Fostamatinib (also called R406, FosD or R788 in its oral 

formulation) (Rigel Pharmaceuticals)43,44 which is in clinical trials at present. FosD is 

launching objective responses rates of 55% for CLL patients.45,46 

In this study, a possible alternative syk-inhibitor drug (TAK659) is tested in 

preclinical trials.  TAK659 mechanism of action consist of blocking Syk kinase activity 

by coupling it’s active ingredient to Syk’s tyrosine kinase domain, expecting, hence, a 

decrease in CLL B cells proliferation and survival, as well as less chemotaxis toward 

tissue homing chemokines. 

 

 

 

 

 

http://www.businesswire.com/news/home/20100606005103/en/Calistoga-Pharmaceuticals%E2%80%99-CAL-101-Oral-Delta-Isoform-Selective-PI3K
http://www.fiercepharma.com/special-reports/ibrutinib/top-20-orphan-drugs-2018
http://en.wikipedia.org/w/index.php?title=Rigel_Pharmaceuticals&action=edit&redlink=1
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2. OBJECTIVES 

 

2.1 General objective 

Evaluation of the action of an anti-proliferative drug against CLL cells in an ex vivo 

system which reproduces the cellular microenvironment in proliferative niches. 

2.2 Specific objectives: 

1. Ex vivo reproduction of antiapoptotic and proliferative stimuli coming from CLL 

cells microenvironment. 

2. Proliferative and apoptotic rates analysis of drug treated CLL cells. 

3. Correlation of the response grade with the observed effect of the anti 

proliferative drugs in their therapeutic targets.  

 

3. MATHERIALS AND METHODS 

3.1. CLL samples 

3.1.1. Isolation and culture of primary CLL cells. 

27 patients diagnosed with CLL were included in this study,  which was 

approved by the ethic committee for clinical experimentation  (CEIC) from the institution 

where the project was executed (VHIR). A written informed consent was obtained from 

all patients in accordance with the Declaration of Helsinki. 

Peripheral blood mononuclear cells (PBMC) were obtained by Ficoll-Paque Plus 

(GE Healthcare) density gradient, washed twice with PBS, resuspended in FBS with 

20% DMSO and stored in liquid nitrogen until analysis. Only samples with >85% of CLL 

cells (CD19+/CD5+ cells, as assessed by flow cytometry (FC)) were incorporated in the 

study. 

3.1.2.Clinical and biological data gathering from patients.  

Clinical and biological data from all patients diagnosed in CLL have been 

collected from standard diagnostic checking. Registered parameters are the following: 
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sex, age, symptoms, ganglionar damaged areas, lymphocytary duplication time, 

morphology and immunophenotype, marrow infiltration grade, Rai/Binet state, LDH, 

ß2microglobuline, sCD23, sTK, ZAP-70, CD38, conventional cytogenetics and 

chromosomical alterations studies(del13q, +12, del11q y del17p). 

3.1.3.Cell lines.  

UE6E7T-2 cell line, derived from mesenchimal human cells (BMSC) from bone 

marrow was obtained through RIKEN cell bank. Cells were cultured at 37º in 5% CO2 

atmosphere in Dulbecco’s Modified Eagle Medium (DMEM; Gibco) supplemented with 

2mM L-glutamine, 10% heat-inactivated fetal bovine serum (FBS) and 50 µg/mL 

penicillin/streptomycin. The T-cell acute lymphoblastic leukemia cell line Jurkat and 

Burkitt’s lymphoma cell line Ramos were obtained from ATCC and cultured in RPMI 

1640 medium supplemented with 2mM L-glutamine, 10% heat-inactivated fetal bovine 

serum (FBS) and 50 µg/mL penicillin/streptomycin. Both cell lines were used as 

positive controls. 

3.1.4. Co-culture conditions. 

BMSCs were seeded at a concentration of 1,5x104 cells/mL in 24-well plates 

and incubated for 24hours to allow cells adherence. CLL cells were cultured at a ratio 

of 100:1 (1,5x106 cells/mL) on confluent layers of BMSCs in supplemented RPMI with 

1µg/mL CD40-L (P eprotech) and 1,5 µg/mL CpG ODN (ODN2006; invitrogen). 

10µg/mL of anti-Human IgM (Gt F (ab’) 2 fraction)(invitrogen) was also added in 

determined wells. At the indicated time points, CLL cells were harvested by gently 

washing off, leaving the adherent stromal cell layer intact. 

3.2. Reagents. 

TAK659 (kindly provided by Millenium), Fludarabine (Sigma) and 

R406((Fostamatinib o R788 y R406, Selleckchem) were dissolved in DMSO (Dimethyl 

sulfoxide)  and stored at -80ºC. 

 

3.3 Experimental design  

3.3.1. Western blotting assays.  

Whole cell protein extracts were prepared from 3x106 cells using 50µL lysis 

buffer containing 20 mM Tris (hydroxymethyl) aminomethane (Tris) pH 7.4, 1 mM 

EDTA, 140 mM NaCl, 1% NP-40 supplemented with 2mM sodium vanadate and 

http://en.wikipedia.org/wiki/Dimethyl_sulfoxide
http://en.wikipedia.org/wiki/Dimethyl_sulfoxide
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protease inhibitor cocktail (Sigma-Aldrich) for 1 hour at 4ºC. Protein concentration was 

determined using the Bio-Rad protein assay (Bio-Rad). 25 µg of denatured protein 

were resolved by 10% SDS-PAGE and transferred to Immobilon-P membranes 

(Millipore). Membranes were blocked for 1 hour at room temperature (RT) in 5% non-

fat milk (BD) dissolved in TBS-T( containing 1M Tris pH 7.5, 5M NaCl and 10% Tween 

20) or 5% phosphoblocker (Cell Biolabs)/TBS-T. Membranes where incubated 

overnight at 4ºC with primary antibodies against phosphorylated-Syk/phosphorylated-

Zap (Cell Signaling Technology), GAPDH and alpha-actin (Abcam), total Syk and Zap 

proteins (Upstate and Zymed respectively), phosphorylated ERK and total ERK protein 

(Cell Signaling Technology), phosphorylated AKT  and total AKT protein (Cell Signaling 

Technology). Immunodetection was done with the corresponding IgG HRP-linked 

secondary antibodies (Dako North America), and the detection systems ECL 

chemiluminescence detection system (GE Healthcare) (for total specific proteins 

detection), and SuperSignal West Pico Chemiluminescent Substrate detection system 

(for phosphorylated proteins) (Thermoscientific, Pierce). Chemiluminescent images 

were acquired with the LAS-4000 system (GE). 

3.3.2. Assessment of apoptosis. 

 Apoptosis was assessed analyzing the binding of annexin V-FITC (fluorescein 

isothiocyanate ) and the incorporation of Propidium iodide (PI) by FC. Staining was 

performed according to the manufacturer’s instructions using the annexin V-FITC 

apoptosis detection kit (Bender Medsystems). Results were analyzed using the FCS 

Express 4 software (De Novo Software). 

3.3.3. Proliferation assays. 

 The rate of proliferation was analyzed by determining the expression of Ki-67 

by FC. Intracellular staining was performed using a FITC-labelled antibody against Ki-

67 (Becton Dickinson) after fixation and permeabilization using the BD Intrasure kit 

(Becton Dickinson) following the manufacturer’s instructions. Results were analyzed 

using the FCS Express 4 software (De Novo Software). 

3.3.4. Chemotaxis assays.  

Migration to the chemokine CXCL12 and to CCL19 was determined in primary 

CLL cells from 5 patients by using a transwell migration assay across bare 

polycarbonate membranes (Corning, New York, NY, USA). A total of 100 µL of RPMI-

10% FBS containing 1 x 106 cells was added to the top chamber of a 24-mm-diameter 

transwell culture insert with a pore size of 5 µm. For migration toward CXCL12, 600 µL 
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of RPMI-10% FBS alone or with 200 ng/mL of CXCL12 were added to the lower 

chamber. For migration to CCL19, 600 µL of RPMI-10% FBS alone or with 0.1 µg/mL 

of CCL19 were added to the lower chamber.  Chambers were incubated for 6 hours at 

37ºC in 5% CO2 and cells in the lower chamber were counted with a Navios cytometer 

under a defined flow rate for 5 minutes. The migration index was calculated as the 

number of cells transmigrating with chemokine divided by the number of transmigrating 

cells with control medium only.  

3.4. Statistical analysis 

Results are expressed as the mean +/- standard error of the mean (SEM) of at 

least three independent experiments. The statistically significant difference between 

groups was analyzed using the Mann-Whitney test or one or two-way ANOVA (t test), 

and pvalue<0.05 was considered significant. Lethal dose 50 (LD50) values were 

calculated with GraphPad Prism software version 5.0(San Diego, CA, USA). Analyses 

were performed using the biostatistics software package SPSS version 17 (IBM, 

Chicago,IL, USA). Results were graphed with GraphPad Prism software. 

 

4. RESULTS 

The co-culture of primary CLL cells with BMSCs, CD40-L, CpG ODN and anti-IgM  

induces active proliferation and survival of CLL cells 

CLL cells placed in BM and secondary lymphoid tissues can receive diverse 

survival and proliferative signals from the microenvironment, thanks to which, they 

become more resistant to external apoptotic signals. With the aim of partially ex vivo 

mimic the microenvironment found in the proliferative niches, primary CLL cells were 

co-cultured with the mesenchimal cell line UE6E7T-2 and stimulated them with soluble 

CD40-L, CpG ODN and anti-IgM. Proliferative responses assessed by Ki-67 

expression were already observed after 24 hours and further notably increased after 48 

hours of co-culture (Figure 3A). A decreased percentage of Ki-67 positive cells was 

observed when adding anti-IgM in the co-culture system. A possible biological 

explanation is that BCR stimulation triggers cell survival rather than cell renewal. This 

hypothesis is supported by the apoptosis assay, CLL cell survival is increased when 

anti-IgM is added when compared with CLL cells in co-culture without BCR stimulation 

(Figure 3B). 
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 Figure 3. The co-culture of primary CLL cells with BMSCs, CD40L and CpG ODN induces 

active proliferation and survival of CLL cells. CLL cells from 10 patients were cultured in suspension or 

in co-culture with or without anti-IgM for 24 and 48 hours. Fig.3A) Analysis of Ki-67 expression by FC. 

Fig.3) Analysis of apoptosis in 10 patients assessed by annexin V-FITC binding and the incorporation of 

propidium iodide by FC. Annexin V/PI double negative cells were considered viable cells. Graphs show 

mean ± SEM (*P<0.05, **P<0.01, two-way ANOVA, Bonferroni post-test). 

 

SYK inhibition with TAK659 abrogates BCR-signaling in primary CLL cells  

To determine the efficacy of TAK659 in blocking BCR downstream signaling, 

was analyzed phosphorylation of Syk and other downstream kinases of the BCR 

pathway (ERK1/2 and Akt) by western blotting after stimulate co-cultured CLL cells with 

anti-IgM prior one hour of incubation with increasing doses of TAK659.  

As depicted in figure 2, CLL cells did not display baseline activation of Syk, Akt 

and ERK1/2. The co-culture of CLL cells with the addition of anti-IgM induced Syk and 
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downstream kinases phosphorylation, supporting the microenvironment relevance for 

CLL survival and proliferation. Interestingly, short treatment of CLL cells with increasing 

concentrations of TAK659 resulted in a dose-dependent reduction in Akt and ERK1/2 

phosphorylation. In contrast, an increase in the amount of Syk phosphorylated at Y352 

was observed in these experiments at higher TAK659 concentrations. Since this site in 

Syk is phosphorylated by Lyn, the most likely explanation for this finding is that Syk is 

involved in a negative regulatory circuit that inactivates Lyn after BCR engagement. 

On the other hand,  ZAP-70 expression in both patients was analyzed and  a 

differential expression of this protein between these patients was observed. Patient 

number 09 displayed an evident higher expression of ZAP-70 protein than patient 

number 30, in agreement with previous unreported FC analysis. As mentioned above, 

ZAP-70 has been related with an enhancement of BCR signaling which may explain 

the need for higher TAK659 doses for decrease Akt phosphorylation or even the 

incapability of decrease ERK1/2 phosphorylation in patient number 09. 

 Figure 4. TAK659 inhibits BCR signaling in primary CLL cells. Stimulation of primary co-

cultured CLL cells (n=10) for 15 minutes with anti-IgM prior to 1 hour of incubation with increasing doses of 

TAK659. Displayed are immunoblots from primary CLL cells from 2 representative patients. Ramos and 

Jurkat pervanadate (PV) cells lines were used as positive controls for phosphorylated kinases. “P” 

indicates immunoblotting for the active, phosphorylated form. 
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TAK659 induces apoptosis in primary CLL cells in a dose dependent manner.  

In order to asses the role of Syk in the cytotoxicity induced by TAK659 

treatment, primary CLL cells cultured for 24 and 48 hours in suspension or in co-culture 

± stimulation with anti-IgM were treated with different concentrations of TAK659 (Figure 

5A). The analysis of annexin V-PI cells showed that TAK659 induced apoptosis in a 

dose dependent manner in co-culture conditions already after 24 hours, especially with 

previous BCR-stimulation, though it was more evident after 48 hours. Letal dose 50 

(LD50) was not achieved. No statistical significant differences in TAK659 sensitivity 

among patients were found according to ZAP-70 expression (Figure 5B), suggesting 

that TAK659 induces apoptosis in primary CLL cells regardless ZAP-70 expression. 

A wide variability is noticed among patients, as is represented in figure 5C. This 

event is attributable to a kind of compensation between sensitive and resistant patients 

to TAK659 treatment. Resistant cases should be studied individually, such patient 

number 33, whose viability was partially enhanced after TAK659 treatment. A possible 

explanation could be acquired polymorphisms that led CLL cells to this resistant 

behavior. 

 

 

 

 

 

A) 
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Figure 5. The Syk inhibitor TAK659 induces CLL cell apoptosis. Viability was determined 24 

and 48 hours after incubation of primary CLL cells from 10 patients in suspension or in co-culture 

supplemented with CD40L and TLR9L with or without 10ug/ml of anti-IgM prior treatment with increasing 

doses of TAK659 for one hour. A, B and C, viability related to controls is displayed. Annexin V/PI double 

negative cells were considered viable cells. Graphs show mean ± SEM. 

 

Active proliferation of co-cultured CLL cells is partially abrogated by TAK659 

treatment 

The ability of TAK659 to decrease proliferation in active proliferative co-cultured 

CLL cells was determined by measuring Ki-67 expression. No differences were 

observed between drug concentrations in suspension condition, where proliferation is 

already very low in conventional conditions.  However, TAK659 significally decreased 

proliferation cells’ rate from dosis 0.5 µM in a dose-dependent manner, arriving to a 

rate of proliferation less than 50 per cent compared to control with TAK659 10 µM 

(Figure 6). 
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 Figure 6. Analysis of Ki-67 expression after TAK659 treatment. Primary CLL cells from 6 

patients were treated with increasing doses of TAK659 for one hour. Subsequently, CLL cells were 

cultured in suspension or in co-culture for 48 hours and harvested for FC analysis of Ki-67 expression. The 

graph represents the mean relative Ki-67 expression of CLL cells± SEM. 

 

Syk inhibition with TAK659 abrogates CXCL12-induced chemotaxis of primary 

CLL cells  

CLL cells are known to migrate to BM and LN toward the chemokine CXCL12 

after the activation of its receptor CXCR4. Since Syk seems to be involved in migration 

of normal and tumoral cells, cytotoxicity of TAK659 was evaluated in a chemotaxis 

assay. Migration to CXCL12 was significally lower after TAK659 treatment, not only in 

each case analyzed, but also when comparing all patients together, despite the wide 

variable responses among patients (Figure 7). 

 Figure 7. Syk inhibition with TAK659 decreases chemotaxis of CLL cells toward CXCL12. 

Primary CLL cells from 3 patients were cultured in suspension and with or without TAK659 0.1 µM for one 

hour. Afterwards, primary CLL cells were allowed to migrate to a medium containing 200 ng/mL of 
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CXCL12 for 6 hours. Simultaneously, primary CLL cells were placed in a non-containing CXCL12 medium 

as control. Displayed are the mean ± SEM supernatant concentrations of triplicates from 3 patients. 

(*P<0.05, two-way ANOVA, Bonferroni post-test). 

 

Enhanced cytotoxic effect of fludarabine regims when combined with TAK659 in 

primary CLL cells.  

Fludarabine is a highly effective chemotherapeutic drug that produces higher 

response rates than conventional treatments. Toxicity rate produced by the adding of 

fludarabine to our tested drug TAK659 in primary CLL cells was evaluated (Figure 8). 

Despite a notably dose dependent decrease of cell survival in suspended CLL cells, no 

divergences between fludarabine alone and fludarabine in  combination with TAK659 

were appreciated in suspended CLL cells. However, looking at co-culture with anti-IgM 

condition CLL cells apoptosis was significally magnified when using the combination 

regim of fludarabine and TAK659 compared to fludarabine treatment alone from the 10 

µM dose (Figure 8A). The cytotoxic augmented effect of fludarabine in combination 

with TAK659 was evident when seeing LD50. LD50 of fludarabine alone in CLL cells 

co-cultured was 332 µM (95% CI 37.35-2944), while LD50 for those treated with 

combined regims of TAK659 and fludarabine was 11.031 µM (95% CI 4.05-

30.03)(Figure 8B). 

 

 

 

 

 

A) 
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Figure 8. TAK659 combined with fludarabine produces a synergic cytotoxical effect on 

primary CLL cells. Primary CLL cells from 6 patients were treated with increasing doses of fludarabine 

alone or fludarabine in combination with TAK659 (0.1 µM) for one hour. Afterwards, CLL cells were 

cultured in suspension or in co-culture with anti-IgM for 48 hours and harvested for FC analysis of Annexin 

V/PI. LD50 of fludarabine alone and combined with TAK659 is compared in Figure 8B both for suspension 

and co-culture conditions. Synergy rate is calculated in order to asses whether the effect of the 

combination of the drugs is attributed to the addition of the individual drug actions or a synergic 

phenomenon. Graphs represents the mean ± SEM. 

  

5. DISCUSSION 

Growing evidences reinforces the crucial role that microenvironment found in 

BM and secondary lymphoid tissues plays in the maintenance and expansion of CLL 

cells.47,48,49 Leukemic cells are supported by accessory cells in these niches, which 

supply them with anti-apoptotic and proliferative signals. Importantly, these interactions 

also confer resistance against drugs50,51 making CLL cells located in these proliferative 

centers difficult to completely eradicate. For this reason, there is an increased 

emphasis placed on therapeutically targeting CLL cells from these proliferative niches. 

The hypothesis which supports the project is that ex vivo mimicking of the 

microenvironment found in proliferative centers would partially reproduce in vivo CLL 

B) 



20 
 

situation and, therefore, premature CLL cells death could be avoided when cultured in 

vitro. Moreover, these proliferative and anti-apoptotic conditions would allow testing 

anti-proliferative drugs ex vivo in a model close to in vivo conditions. The co-culture of 

primary CLL cells and BMSCs along with soluble CD40L, CpG ODN and antibodies 

against IgM induced  marked proliferative and survival responses. 

Advances in the knowledge of the pathogenesis of CLL and recent 

preclinical52,53,54 and first clinical trials44,55 sustain the necessity of locate BCR signaling 

involved proteins as the next generation  targets for treatment of patients with CLL and 

other non-hodgkin malignancies. Over the past few years, more competent therapies  

involving target-specific drugs have emerged. BCR-associated kinases Syk44, Btk55 and 

Pi3K33 inhibitors have been the most preferently studied, obtaining promising results. 

The tyrosine kinase Syk was as an essential trigger for BCR signaling due to its 

involvement in various signal transduction pathways, leading to cell survival by anti-

apoptotic signals inhibition, cell proliferation and mobilization to proliferative 

centers.56,57,58 

Several studies have already evidenced modulatory effects of Syk activity: 

R406 (the active metabolite of the prodrug fostamatinib (R788; Rigel/Astra Zeneca),  was shown 

to effectively antagonize CLL cell survival after BCR stimulation and inhibit chemokine 

secretion from BMSCs in co-culture conditions. R406 is nowadays in clinical trials. 

However a complicating issue for R406 is the fact that is that has rather limited 

specificity towards SYK due to its activity of ATP-competitive kinase inhibition. Indeed, 

R406 has been shown to inhibit several other kinases and non-kinase targets.46 

In this project, toxicity of TAK659, another anti-proliferative drug which has its 

target in Syk, is studied and analyzed in preclinical trials under conditions which 

recreate the proliferative niches, expecting better results than reached with the actual 

anti-Syk inhibitors, since TAK659 is theoretically characterized by an special specificity 

to Syk. Remarkably, TAK659 exhibited significant ex vivo anti-tumoral activity in CLL 

cases irrespective of prognosis markers such as ZAP-70. Therefore, these results 

demonstrates the ability of TAK659 to promote apoptosis under condition mimicking 

tumor microenvironment. 

The proliferative compartment in CLL represents only a small percentage of the 

analyzed malignant cells, however, increasing  evidence suggest that such actively 

proliferating cells are responsible for disease persistence after treatment and the 

eventual relapse observed almost in all patients. Targeting this small but crucial 
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compartment with TAK659 successfully reduced Ki-67+ CLL cells, building promising 

efficacy against relapse and disease expansion. 

One of the most relevant effects of Syk inhibitors and other inhibitors of BCR-

associated downstream kinases is their capacity to cause lymph nodes size reduction, 

which is usually accompanied by lymphocytosis.44 These clinical indications points that 

kinase inhibitors motive CLL cells mobilization from tissues to PB and moderates 

chemotaxis to BM and LN. If CLL cells remain in the blood, are more susceptible to 

apoptotic signals because of the absence of microenvironment support. The finding 

that TAK659 effectively avoided chemotaxis of primary CLL cells toward CXCL12 

confirm earlier findings with R406 and reiteratively indicate that these effects are 

attributed to Syk inhibition. 

6. CONCLUSIONS 

These results demonstrate that the co-culture system herein employed 

promoted proliferation, induces Syk expression and protects primary CLL cells from 

apoptosis induced by cytotoxic agents. In this setting, targeting protein kinase Syk by 

treatment with TAK659 is able to efficiently overcome microenvironment-mediated cell 

protection, proliferation and migration and has specific effect on actively proliferating 

CLL cells. Therefore, TAK659 might be a potent therapeutic drug complementing our 

growing armamentarium against CLL. 

 

7. BIBLIOGRAPHY 

 

1. Rozman, C. & Montserrat, E. Chronic lymphocytic leukemia. N. Engl. J. Med. 333, 1052–1057 
(1995). 

2. Matutes, E., Attygalle, A., Wotherspoon, A. & Catovsky, D. Diagnostic issues in chronic 
lymphocytic leukaemia (CLL). Best Pract. Res. Clin. Haematol. 23, 3–20 (2010). 

3. Matutes, E. et al. The immunological profile of B-cell disorders and proposal of a scoring 
system for the diagnosis of CLL. Leukemia 8, 1640–1645 (1994). 

4. Moreau, E. J. et al. Improvement of the chronic lymphocytic leukemia scoring system with 
the monoclonal antibody SN8 (CD79b). Am. J. Clin. Pathol. 108, 378–382 (1997). 

5. Ternynck, T., Dighiero, G., Follezou, J. & Binet, J. L. Comparison of normal and CLL 
lymphocyte surface Ig determinants using peroxidase-labeled antibodies. I. Detection and 
quantitation of light chain determinants. Blood 43, 789–795 (1974). 

6. Schroeder, H. W., Jr & Dighiero, G. The pathogenesis of chronic lymphocytic leukemia: 
analysis of the antibody repertoire. Immunol. Today 15, 288–294 (1994). 



22 
 

7. Hashimoto, S. et al. Somatic diversification and selection of immunoglobulin heavy and light 
chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J. Exp. Med. 
181, 1507–1517 (1995). 

8. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig V(H) 
genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 
94, 1848–1854 (1999). 

9. Rosenwald, A. et al. Relation of Gene Expression Phenotype to Immunoglobulin Mutation 
Genotype in B Cell Chronic Lymphocytic Leukemia. J. Exp. Med. 194, 1639–1648 (2001). 

10. Šoljić, V. et al. ZAP-70 expression and proliferative activity in chronic lymphocytic 
leukemia. Leuk. Lymphoma 54, 1171–1176 (2013). 

11. Chen, L. et al. Expression of ZAP-70 is associated with increased B-cell receptor 
signaling in chronic lymphocytic leukemia. Blood 100, 4609–4614 (2002). 

12. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region 
mutations in chronic lymphocytic leukemia. N. Engl. J. Med. 348, 1764–1775 (2003). 

13. Zum Büschenfelde, C. M. et al. Recruitment of PKC-betaII to lipid rafts mediates 
apoptosis-resistance in chronic lymphocytic leukemia expressing ZAP-70. Leukemia 24, 141–
152 (2010). 

14. Gobessi, S. et al. ZAP-70 enhances B-cell-receptor signaling despite absent or 
inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. 
Blood 109, 2032–2039 (2007). 

15. Zhang, W. et al. B-cell activating factor and v-Myc myelocytomatosis viral oncogene 
homolog (c-Myc) influence progression of chronic lymphocytic leukemia. Proc. Natl. Acad. 
Sci. U. S. A. 107, 18956–18960 (2010). 

16. Catera, R. et al. Chronic lymphocytic leukemia cells recognize conserved epitopes 
associated with apoptosis and oxidation. Mol. Med. Camb. Mass 14, 665–674 (2008). 

17. Stevenson, F. K. & Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from 
the B-cell receptor. Blood 103, 4389–4395 (2004). 

18. Bernal, A. et al. Survival of leukemic B cells promoted by engagement of the antigen 
receptor. Blood 98, 3050–3057 (2001). 

19. Longo, P. G. et al. The Akt/Mcl-1 pathway plays a prominent role in mediating 
antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B 
cells. Blood 111, 846–855 (2008). 

20. Chen, L. et al. ZAP-70 enhances IgM signaling independent of its kinase activity in 
chronic lymphocytic leukemia. Blood 111, 2685–2692 (2008). 

21. Schimmer, A. D., Munk-Pedersen, I., Minden, M. D. & Reed, J. C. Bcl-2 and apoptosis in 
chronic lymphocytic leukemia. Curr. Treat. Options Oncol. 4, 211–218 (2003). 

22. Gottardi, D. et al. In leukaemic CD5+ B cells the expression of BCL-2 gene family is 
shifted toward protection from apoptosis. Br. J. Haematol. 94, 612–618 (1996). 

23. Stamatopoulos, K. et al. Over 20% of patients with chronic lymphocytic leukemia carry 
stereotyped receptors: Pathogenetic implications and clinical correlations. Blood 109, 259–
270 (2007). 

24. Collins, R. J. et al. Spontaneous programmed death (apoptosis) of B-chronic 
lymphocytic leukaemia cells following their culture in vitro. Br. J. Haematol. 71, 343–350 
(1989). 

25. McConkey, D. J. et al. Induction of DNA fragmentation in chronic B-lymphocytic 
leukemia cells. J. Immunol. Baltim. Md 1950 146, 1072–1076 (1991). 

26. Burger, J. A. Targeting the microenvironment in chronic lymphocytic leukemia is 
changing the therapeutic landscape. Curr. Opin. Oncol. 24, 643–649 (2012). 

27. Decker, T. et al. Immunostimulatory CpG-oligonucleotides induce functional high 
affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic 
phenotype. Exp. Hematol. 28, 558–568 (2000). 



23 
 

28. Zlotnik, A., Morales, J. & Hedrick, J. A. Recent advances in chemokines and chemokine 
receptors. Crit. Rev. Immunol. 19, 1–47 (1999). 

29. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and 
functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009). 

30. Enjuanes, A. et al. Genetic variants in apoptosis and immunoregulation-related genes 
are associated with risk of chronic lymphocytic leukemia. Cancer Res. 68, 10178–10186 
(2008). 

31. Bosch, F. et al. Rituximab, fludarabine, cyclophosphamide, and mitoxantrone: a new, 
highly active chemoimmunotherapy regimen for chronic lymphocytic leukemia. J. Clin. 
Oncol. Off. J. Am. Soc. Clin. Oncol. 27, 4578–4584 (2009). 

32. Hallek, M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients 
with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376, 
1164–1174 (2010). 

33. Lannutti, B. J. et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase 
inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular 
viability. Blood 117, 591–594 (2011). 

34. Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell 
activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. 
Natl. Acad. Sci. U. S. A. 107, 13075–13080 (2010). 

35. Ponader, S. et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic 
lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119, 1182–
1189 (2012). 

36. Robak, T. & Robak, E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid 
malignancies and autoimmune disorders. Expert Opin. Investig. Drugs 21, 921–947 (2012). 

37. Tordai, A. et al. Cross-linking of surface IgM stimulates the Ras/Raf-1/MEK/MAPK 
cascade in human B lymphocytes. J. Biol. Chem. 269, 7538–7543 (1994). 

38. Messmer, D. et al. Chronic lymphocytic leukemia cells receive RAF-dependent survival 
signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood 117, 882–
889 (2011). 

39. Fecteau, J.-F. et al. Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells 
is associated with downregulation of RAF and myeloid cell leukemia sequence 1 (Mcl-1). 
Mol. Med. Camb. Mass 18, 19–28 (2012). 

40. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive 
feedback loop. Mol. Cell 10, 1057–1069 (2002). 

41. Wienands, J., Larbolette, O. & Reth, M. Evidence for a preformed transducer complex 
organized by the B cell antigen receptor. Proc. Natl. Acad. Sci. U. S. A. 93, 7865–7870 
(1996). 

42. Monroe, J. G. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. 
Nat. Rev. Immunol. 6, 283–294 (2006). 

43. Suljagic, M. et al. The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth 
in the Eμ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell 
receptor signaling. Blood 116, 4894–4905 (2010). 

44. Friedberg, J. W. et al. Inhibition of Syk with fostamatinib disodium has significant 
clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115, 
2578–2585 (2010). 

45. Hoellenriegel, J. et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress 
chronic lymphocytic leukemia B-cell activation and migration. Leukemia 26, 1576–1583 
(2012). 

46. Braselmann, S. et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc 
receptor signaling and reduces immune complex-mediated inflammation. J. Pharmacol. Exp. 
Ther. 319, 998–1008 (2006). 



24 
 

47. Ramsay, A. D. & Rodriguez-Justo, M. Chronic lymphocytic leukaemia--the role of the 
microenvironment pathogenesis and therapy. Br. J. Haematol. 162, 15–24 (2013). 

48. Patel, V., Balakrishnan, K., Wierda, W. G. & Gandhi, V. Impact of bone marrow stromal 
cells on Bcl-2 family members in chronic lymphocytic leukemia. Leuk. Lymphoma (2013). 
doi:10.3109/10428194.2013.819573 

49. Ghamlouch, H. et al. A combination of cytokines rescues highly purified leukemic CLL 
B-cells from spontaneous apoptosis in vitro. PloS One 8, e60370 (2013). 

50. Rosich, L. et al. The phosphatidylinositol-3-kinase inhibitor NVP-BKM120 overcomes 
resistance signals derived from microenvironment by regulating the Akt/FoxO3a/Bim axis in 
chronic lymphocytic leukemia cells. Haematologica (2013). 
doi:10.3324/haematol.2013.088849 

51. Tung, S. et al. PPARα and fatty acid oxidation mediate glucocorticoid resistance in 
chronic lymphocytic leukemia. Blood 122, 969–980 (2013). 

52. Quiroga, M. P. et al. B-cell antigen receptor signaling enhances chronic lymphocytic 
leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase 
inhibitor, R406. Blood 114, 1029–1037 (2009). 

53. Chen, L. et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment 
target in diffuse large B-cell lymphoma. Blood 111, 2230–2237 (2008). 

54. Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell 
lymphoma. Nature 463, 88–92 (2010). 

55. Advani, R. H. et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant 
activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. Off. J. Am. 
Soc. Clin. Oncol. 31, 88–94 (2013). 

56. Wang, Y.-H. et al. Expression levels of Lyn, Syk, PLCγ2 and ERK in patients with chronic 
lymphocytic leukemia, and higher levels of Lyn are associated with a shorter treatment-free 
survival. Leuk. Lymphoma 54, 1165–1170 (2013). 

57. Davids, M. S. & Brown, J. R. Targeting the B cell receptor pathway in chronic 
lymphocytic leukemia. Leuk. Lymphoma 53, 2362–2370 (2012). 

58. Baudot, A. D. et al. The tyrosine kinase Syk regulates the survival of chronic 
lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of 
Mcl-1 expression. Oncogene 28, 3261–3273 (2009). 

 


