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We characterize the weighted Hardy inequalities for monotone functions in R
n
+. In

dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the
result was previously only known for the case p = 1. In fact, our main theorem is
proved in the more general setting of partly ordered measure spaces.

1. Introduction

The theory of weighted inequalities for the Hardy operator, acting on monotone
functions in R+, was first introduced in [2]. Extensions of these results to higher
dimensions have been considered only in very specific cases: in particular, in the
diagonal case, for p = 1 only (see [3]). The main difficulty in this context is that
the level sets of the monotone functions are not totally ordered, contrary to the
one-dimensional case, where one considers intervals of the form (0, a), a > 0. It is
also worth pointing out that, with no monotonicity restriction, the boundedness
of the Hardy operator is known only in dimension n = 2 (see [11, 13] and for an
extension in the case of product weights see [4]).

In this work we characterize completely the weighted Hardy inequalities for all
values of p > 0, namely, the boundedness of the operator

S : Lp
dec(u) → Lp(u),
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where

Sf(s, t) =
1
st

∫ s

0

∫ t

0
f(x, y) dy dx,

and Lp
dec(u) is the cone of positive and decreasing functions, on each variable, in

Lp(u) = Lp(R2
+, u(x) dx) (we consider, for simplicity, n = 2, although the result

holds in any dimension).
The techniques we will use were introduced in [6] for the one-dimensional case,

and also apply to a more general setting, which we now define.
We will consider a family of σ-finite measure spaces (X, µx) (where µx is a mea-

sure on X, for each x ∈ X), with a partial order ‘�’ satisfying the following condi-
tions.

(i) If Xx := {u ∈ X : u � x}, then � restricted to Xx is a total order.

(ii) If D is a decreasing set, with respect to the order � (i.e. χD is a decreasing
function), then D is measurable.

(iii) µx(Xx) = 1 (observe that Xx is a decreasing set).

(iv) If u ∈ Xx, then dµx(y) = µx(Xu) dµu(y). In particular, µx(Xu)µu(Xx) = 1.

The main examples are as follows.

(a) X = R+ with the usual order, and µx(E) = x−1|E|. This is the case consid-
ered in [2].

(b) X is a tree with the usual order on geodesics, and µx(E) = Card(E)/|x|,
where |x| = Card([o, x]) and [o, x] is the geodesic path joining the origin o
with any vertex x of the tree. (For more information on this case, see [10] and
the references quoted therein.)

(c) R
2
+ with the order given by (a1, b1) � (a2, b2) if and only if a1 = a2 and b1 � b2

(we could also choose to fix the second coordinate). For x = (a, b) ∈ R
2
+,

µx(E) = b−1
∫

E∩({a}×R+)
dt.

(d) In many cases, we can easily obtain the existence of the family of measures µx

by taking a non-negative measure µ on X, and defining µx = µ/µ(Xx).

We now define the Hardy operator as follows:

Sf(x) =
∫

Xx

f(u) dµx(u).

This definition is similar to the one considered in [3]. For the case of R+,

Sf(x) =
1
x

∫ x

0
f(t) dt.
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On a tree,

Sf(x) =
∑

y∈[o,x]

f(y)
|x|

and, for R
2
+,

Sf(a, b) =
1
b

∫ b

0
f(a, t) dt.

One of the main techniques we will use is the following lemma. This is a kind of
integration by parts.

Lemma 1.1. Let (X, µ,�) be a finite measure space with a total order �, and α ∈ R.
There then exists a constant, Cα, which depends only on α (and not on (X, µ,�)),
such that (∫

X

dµ

)α

� Cα

∫
X

(∫
Xu

dµ

)α−1

dµ(u).

Proof. Since µ(X) < ∞, by dividing both sides by (µ(X))α it suffices to show that

1 � Cα

∫
X

ϕα−1(u) dµ(u),

where ϕ(u) = µ(Xu) and µ(X) = 1.
If α � 1, then, using the fact that 0 � ϕ � 1, we obtain ϕα−1(u) � 1, and∫

X

ϕα−1(u) dµ(u) � µ(X) = 1.

If 1 < α � 2, then ϕα−1(u) � ϕ(u) and, hence, it suffices to prove it for α = 2.
If 2 < α, using Jensen’s inequality,

(∫
X

ϕ(u) dµ(u)
)α−1

�
∫

X

ϕα−1(u) dµ(u),

and as before, this reduces to the case α = 2.
Finally, if α = 2,
∫

X

(∫
Xu

dµ(x)
)

dµ(u) =
∫

X

(∫
{x�u}

dµ(u)
)

dµ(x)

=
∫

X

(
1 −

∫
{x>u}

dµ(u)
)

dµ(x)

= 1 −
∫

X

∫
{u�x}

dµ(u) dµ(x) +
∫

X

∫
{u=x}

dµ(u) dµ(x)

(here we have used the fact that the order is total). Thus,
∫

X

(∫
Xu

dµ(x)
)

dµ(u) � 1
2
.
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2. The weighted Hardy inequality

In this section we will prove the main theorem. In order to include all the examples,
we need to consider a second, weaker order ≺ satisfying the following conditions.

(i) If x � y, then x ≺ y.

(ii) If f is ≺-decreasing, then Sf is ≺-decreasing.

We recall that we still keep � to define the operator S.

Remark 2.1. We can (and will in some cases) take ≺ to be �. In fact, we need
only to check that the second condition holds for �: if f is �-decreasing, and u � x,
then Sf(x) � Sf(u) if and only if∫

Xu

f(y)[1 − µx(Xu)] dµu(y) −
∫

Xx\Xu

f(y)µx(Xu) dµu(y) � 0

(here we have used the fact that dµx(y) = µx(Xu) dµu(y)), and this follows from
the fact that inf f |Xu � sup f |Xx\Xu

.

If a function f , or a set D, is ≺-decreasing, it is also �-decreasing.

The main example we have in mind is � in R
2
+ as before, and ≺ the order given

by the rectangles (which is clearly a weaker order): (a1, b1) ≺ (a2, b2), if and only
if a1 � a2 and b1 � b2 (i.e. the rectangle in R

2
+ determined by the origin and

(a1, b1) is contained in that determined by the origin and (a2, b2)). To show the
second condition, assume that f is a function decreasing on each variable. It is then
obvious that

y−1
∫ y

0
f(x, t) dt

is also decreasing on each variable.

We denote by Lp
≺(dν) the class of ≺-decreasing functions in Lp(dν). As a general

assumption, we will only consider cases for which measurability of the functions
involved always holds.

Theorem 2.2. Let (X, µx,�) and ≺ satisfy the conditions given above, for all x ∈
X. Let dν be a measure on X, and p > 0. The Hardy operator then is bounded:

S : Lp
≺(dν) → Lp(dν),

if and only if there exists a constant C > 0 such that, for all ≺-decreasing sets D,∫
X\D

µp
x(D ∩ Xx) dν(x) � Cν(D). (2.1)

Proof. Consider f = χD, where D is ≺-decreasing. Then (Sf)p(x) = µp
x(D ∩ Xx),

and hence

‖Sf‖p
Lp(dν) =

∫
X

µp
x(D ∩ Xx) dν(x)

=
∫

D

µp
x(D ∩ Xx) dν(x) +

∫
X\D

µp
x(D ∩ Xx) dν(x)

� Cν(D).
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Thus, ∫
X\D

µp
x(D ∩ Xx) dν(x) � Cν(D).

Observe that, since D is also �-decreasing, if x ∈ D, then Xx ⊂ D, and so
µp

x(D ∩ Xx) = µp
x(Xx) = 1. Therefore,

∫
D

µp
x(D ∩ Xx) dν(x) = ν(D).

Conversely, if p � 1 and f ∈ Lp
≺(dν), using the lemma with (Xx, µ,�) and

dµ(u) = f(u) dµx(u), for a constant C that does not depend on either f or x, we
have

(Sf)p(x) =
(∫

Xx

f(u) dµx(u)
)p

� C

∫
Xx

(∫
Xu

f(y) dµx(y)
)p−1

f(u) dµx(u)

= C

∫
Xx

(∫
Xu

f(y) dµu(y)
)p−1

f(u)µp−1
x (Xu) dµx(u)

= C

∫ ∞

0

∫
{g>t}∩Xx

µp−1
x (Xu) dµx(u) dt,

where g(u) = (Sf)p−1(u)f(u). Hence,

‖Sf‖p
Lp(dν) � C

∫
X

∫ ∞

0

∫
{g>t}∩Xx

µp−1
x (Xu) dµx(u) dt dν(x)

≈
∫

X

∫ g(x)

0

∫
{g>t}∩Xx

µp−1
x (Xu) dµx(u) dt dν(x)

+
∫

X

∫ ∞

g(x)

∫
{g>t}∩Xx

µp−1
x (Xu) dµx(u) dt dν(x)

= I + II .

Since Xu ⊂ Xx, if u ∈ Xx, and p � 1, then

I �
∫

X

∫ g(x)

0
µp−1

x (Xx)µx(Xx) dt dν(x) =
∫

X

g(x) dν(x).

Since both Sf and f are ≺-decreasing, and p � 1, g is ≺-decreasing and {g > t} is
a ≺-decreasing set. Also, if u ∈ {g > t} ∩ Xx, then Xu ⊂ {g > t} ∩ Xx, and hence

∫
{g>t}∩Xx

µp−1
x (Xu) dµx(u) � µp

x({g > t} ∩ Xx).

Therefore, using the hypothesis,

II �
∫ ∞

0

∫
X\{g>t}

µp
x({g > t} ∩ Xx) dν(x) dt

� C

∫ ∞

0

∫
{g>t}

dν(x) dt = C

∫
X

g(x) dν(x).
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Therefore, using Hölder’s inequality,

‖Sf‖p
Lp(dν) � C

∫
X

(Sf)p−1(x)f(x) dν(x) � C‖Sf‖p−1
Lp(dν)‖f‖Lp(dν).

From this a priori estimate, one may obtain the general result by a standard
density argument.

If 0 < p < 1, and f ∈ Lp
≺(dν), set Dt = {f > t}, and

gx(t) =
∫

Dt∩Xx

dµx(u).

Then, using the embedding Lp
dec(t

p−1) ↪→ L1 (see [14]), we have (observe that gx

is a decreasing function)
(∫

X

(∫
Xx

f(u) dµx(u)
)p

dν(x)
)1/p

=
(∫

X

(∫ ∞

0
gx(t) dt

)p

dν(x)
)1/p

� C

(∫
X

∫ ∞

0
tp−1(gx(t))p dt dν(x)

)1/p

.

Since gx(t) � µx(Xx) = 1, we then have
∫ ∞

0
tp−1

∫
Dt

(gx(t))p dν(x) dt �
∫ ∞

0
tp−1

∫
Dt

dν(x) dt =
1
p
‖f‖p

Lp(dν).

On the other hand, using the hypothesis (observe that Dt ∩ Xx is a decreasing
set),

∫ ∞

0
tp−1

∫
X\Dt

(gx(t))p dν(x) dt � C

∫ ∞

0
tp−1

∫
Dt

dν(x) dt =
C

p
‖f‖p

Lp(dν).

Therefore, (∫
X

(∫
Xx

f(u) dµx(u)
)p

dν(x)
)1/p

� C‖f‖Lp(dν).

The following results follow easily by particularizing on each case condition (2.1)
of theorem 2.2.

Corollary 2.3.

Case 1 (equality of orders ≺ and �). Let (X, µx,�) satisfy the conditions given
above. Let dν be a measure on X, and p > 0. Then, the Hardy operator is bounded
as

S : Lp
�(dν) → Lp(dν)

if and only if there exists a constant C > 0 such that, for all �-decreasing sets D,
∫

X\D

µp
x(D ∩ Xx) dν(x) � Cν(D).
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Case 2 (R+). Condition (2.1) of theorem 2.2 is∫ ∞

r

(
r

x

)p

dν(x) � C

∫ r

0
dν(x),

for all r > 0, which is Bp (see [2]).

Case 3 (tree T ). Condition (2.1) of theorem 2.2 is
∑

x∈T\D

|x ∨ D|p
|x|p ν(x) � C

∑
x∈D

ν(x),

where x ∨ D is the largest vertex in [o, x] ∩ D.

Case 4 (R
2
+). Condition (2.1) of theorem 2.2 is∫

R
2
+\D

|Dx|p
tp

dν(x, t) � C

∫
D

dν(x, t),

where Dx = {t > 0 : (x, t) ∈ D}, and D is any decreasing set (on each variable).

Remark 2.4. As mentioned above, the case of R+ was first considered in [2].
Bp weights are well understood and enjoy a very rich structure (see also [7, 8, 14]
for an account of Bp and normability properties of weighted Lorentz spaces).

The discrete case N is a particular case of a tree, and can be found in [8]. Weights
for a general tree were studied, without the monotonicity condition, in [1, 9]. It is
easy to prove that a weight satisfying case 3 of corollary 2.3 must necessarily be in
Bp(N) (uniformly) on each geodesic (see [8]), but the converse is not true in general.

3. Weights in Bp(Rn
+)

We will now show how to apply our previous result to obtain the weighted inequal-
ities for the multidimensional Hardy operator, acting on decreasing functions. For
simplicity, we will only consider the case n = 2, the general case being an easy
extension. We first introduce the following notation:

S1f(x, y) =
1
x

∫ x

0
f(s, y) ds, S2f(x, y) =

1
y

∫ y

0
f(x, t) dt,

Sf(x, y) =
1
xy

∫ x

0

∫ y

0
f(s, t) dt ds = S1(S2f)(x, y) = S2(S1f)(x, y).

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

We denote by Dx = {t > 0 : (x, t) ∈ D}, and Dy
x = D ∩ ([0, x] × [0, y]). Lp

dec(u) is
the usual cone of functions in Lp(u), which are decreasing on each variable. We
then have the following theorem.

Theorem 3.1. If 0 < p < ∞, the following conditions are equivalent:
(a) S : Lp

dec(u) → Lp(u);

(b) there exists a constant C > 0 such that, for every decreasing set D,∫
R

2
+\D

|Dy
x|p

(xy)p
u(x, y) dxdy � C

∫
D

u(x, y) dxdy; (3.2)

(c) S1, S2 : Lp
dec(u) → Lp(u).
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Proof. The fact that (a) implies (b) follows as usual: taking f = χD, and using the
fact that

Sf(x, y) =
|Dy

x|
xy

,

we then see that (3.2) is a consequence of the hypothesis.

To show that (b) implies (c), we observe that if (x, y) 
∈ D, then

[0, x] × Dx ⊂ Dy
x

and, hence, x|Dx| � |Dy
x|. Therefore,

∫
R

2
+\D

|Dx|p
yp

u(x, y) dxdy �
∫

Dc

|Dy
x|p

(xy)p
u(x, y) dxdy

� C

∫
D

u(x, y) dxdy,

and the result follows from case 4 of corollary 2.3. A similar result holds for S1.

(c) implies (a): iterate and observe that Sjf is decreasing if f is decreasing.

Remark 3.2. The iteration technique used to prove theorem 3.1 can be extended
very easily to other settings. For example, we could consider in N

2 the operator

S({an,m}n,m) =
1

nm

n∑
j=1

m∑
k=1

aj,k,

acting on decreasing two-index sequences, and obtain the characterization of the
boundedness of S on the weighted sequence spaces �p({un,m}n,m), for general
weights {un,m}n,m, which improves some of the results in [4] proved only for product
weights.

Condition (3.2) in R
n
+ takes the form

∫
R

n
+\D

|D ∩ ([0, x1] × · · · × [0, xn])|p
(x1 · · ·xn)p

u(x1, . . . , xn) dx1 · · ·dxn

� C

∫
D

u(x1, . . . , xn) dx1 · · ·dxn,

which will be denoted by u ∈ Bp(Rn
+). Observe that, since |D ∩ ([0, x1] × · · · ×

[0, xn])| � x1 · · ·xn, we obtain Bp(Rn
+) ⊂ Bq(Rn

+), if p < q.
We will now prove that, as in the one-dimensional case (see [2] for the original

result and [12] for a different proof, related to the one we will use), Bp(Rn
+) satisfies

the p − ε condition.

Theorem 3.3. If u ∈ Bp(Rn
+), 1 � p < ∞, then there exists an ε > 0 such that

u ∈ Bp−ε(Rn
+).

Proof. We will consider the case n = 2 only (n � 3 follows similarly). Using theo-
rem 3.1, it suffices to show that Sj : Lp−ε

dec (u) → Lp−ε(u), j = 1, 2, and, by symmetry,
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we may consider only the case j = 2. Take any decreasing set D ⊂ R
2
+. There then

exists a decreasing function h : R+ → R+ such that

D = {(s, t) ∈ R
2
+; 0 < t < h(s)}.

Therefore, case 4 of corollary 2.3 gives
∫ ∞

0

∫ ∞

h(s)

hp(s)
tp

u(s, t) dt ds � C

∫ ∞

0

∫ h(s)

0
u(s, t) dt ds.

With f = χD, we have

S2f(s, t) =

⎧⎪⎨
⎪⎩

1 if 0 < t � h(s),

h(s)
t

if 0 � h(s) < t.

By iterating, we can prove that, for every m ∈ N,

Sm
2 f(s, t) = S2 ◦ m· · · ◦S2f(s, t) =

⎧⎪⎨
⎪⎩

1 if 0 < t � h(s),

h(s)
t

m−1∑
j=0

1
j!

logj t

h(s)
if 0 � h(s) < t.

Hence, if h(s) < t, we find that the inequality

(Sm
2 f(s, t))p �

(
h(s)

t

)p 1
(m − 1)!

logm−1 t

h(s)

follows easily and that
∫ ∞

0

∫ ∞

h(s)

(
h(s)

t

)p 1
(m − 1)!

logm−1 t

h(s)
u(s, t) dt ds � Cm

∫ ∞

0

∫ h(s)

0
u(s, t) dt ds.

Thus, taking σ > max(C, 1/p), and summing over m gives
∫ ∞

0

∫ ∞

h(s)

(
h(s)

t

)p ∞∑
m=1

1
σm−1(m − 1)!

logm−1 t

h(s)
u(s, t) dt ds

=
∫ ∞

0

∫ ∞

h(s)

(
h(s)

t

)p−1/σ

u(s, t) dt ds

�
∞∑

m=1

(
C

σ

)m ∫ ∞

0

∫ h(s)

0
u(s, t) dt ds

= C ′
∫ ∞

0

∫ h(s)

0
u(s, t) dt ds,

and the result follows with ε = 1/σ.

It was proved in [3] that, for the case of the identity operator (i.e. when consid-
ering embeddings), one cannot, in general, replace the condition on all decreasing
sets just by taking rectangles of the form [0, a1] × · · · × [0, an], aj > 0. However, in
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the case of product weights, both conditions were equivalent (see [3, theorem 2.5]).
We will now show that, in this context,

u(x) =
n∏

j=1

uj(xj) ∈ Bp(Rn
+)

factorizes very nicely as uj ∈ Bp, for all j ∈ {1, . . . , n}.

Theorem 3.4. Let

u(x) =
n∏

j=1

uj(xj)

be a product weight. The following conditions are then equivalent:

(a) u ∈ Bp(Rn
+);

(b) for every aj > 0, j ∈ {1, . . . , n},
∫

R
n
+\([0,a1]×···×[0,an])

|([0, a1]×· · ·×[0, an]) ∩ ([0, x1]×· · ·×[0, xn])|p
(x1 · · ·xn)p

u(x) dx1 · · ·dxn

� C

∫
[0,a1]×···×[0,an]

u(x) dx1 · · ·dxn;

(c) uj ∈ Bp, j ∈ {1, . . . , n}.
Proof. As before, and by simplicity, we will work the details only for n = 2.

If u ∈ Bp(R2
+), then by evaluating (3.2) for rectangles of the form [0, a1] × [0, a2]

we get (b).
Assuming now that (b) holds, we evaluate the condition and obtain∫
R

2
+\([0,a1]×[0,a2])

|([0, a1] × [0, a2]) ∩ ([0, x1] × [0, x2])|p
(x1x2)p

u1(x1)u2(x2) dx1 dx2

=
(∫ a1

0
u1(x1) dx1

)
ap
2

∫ ∞

a2

u2(x2)
xp

2
dx2 +

(∫ a2

0
u2(x2) dx2

)
ap
1

∫ ∞

a1

u1(x1)
xp

1
dx1

+ (a1a2)p

(∫ ∞

a1

u1(x1)
xp

1
dx1

)(∫ ∞

a2

u2(x2)
xp

2
dx2

)

� C

(∫ a1

0
u1(x1) dx1

)(∫ a2

0
u2(x2) dx2

)
,

from which we easily deduce that, for j = 1, 2,

ap
j

∫ ∞

aj

uj(xj)
xp

j

dxj � C

∫ aj

0
uj(xj) dxj ,

and, hence, uj ∈ Bp.
Finally, by iterating the one-dimensional Hardy operator, and using the fact that

u is a product weight, we deduce that

S : Lp
dec(u) → Lp(u),

which is equivalent to (a).
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Remark 3.5. The equivalence between theorem 3.4(c) and the boundedness of the
Hardy operator S : Lp

dec(u1u2) → Lp(u1u2), for the range p � 1, was proved in [5],
by using an indirect argument related to the characterization of the normability
property of some multidimensional analogues of the weighted Lorentz spaces (in
particular this proof did not make use of the Bp(Rn

+) condition). For the case p = 1,
one can even prove a quantitative estimate of the constant in the B1 condition,
namely, if we set

‖u‖B1(R2
+) = sup

D decreasing

∫
R

2
+

SχD(s, t)u(s, t) ds dt∫
D

u(s, t) ds dt
,

then ‖u1(x1)u2(x2)‖B1(R2
+) = ‖u1‖B1‖u2‖B1 .

As we pointed out in remark 3.2, similar results to theorem 3.4 may be obtained,
for product weights, in more general settings (for example, in N

2 [4]).
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