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Abstract

In this paper we consider C1 vector fields X in R
3 having a “generalized heteroclinic

loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere
S

2 and a diameter Γ connecting the north with the south pole. The north pole is
an attractor on S

2 and a repeller on Γ. The equator of the sphere is a periodic
orbit unstable in the north hemisphere and stable in the south one. The full space
is topologically homeomorphic to the closed ball having as boundary the sphere
S

2. We also assume that the flow of X is invariant under a topological straight line
symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient
Poincaré map, we prove the existence of infinitely many symmetric periodic orbits
of X near L that gives n turns around L in a period. We also exhibit a class of
polynomial vector fields of degree 4 in R

3 satisfying this dynamics.
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1 Introduction

In this paper we shall analyze the dynamics of C1 vector fields X in R3 having
a “generalized heteroclinic loop” L. It is well known that the dynamics of a
vector field in a neighborhood of a homoclinic or a heteroclinic loop may be
very rich and complex. So, from a dynamical point of view, the study of the
behavior of a vector a field near these objects is very interesting.

Usually the heteroclinic loops that have been studied in the literature come
from heteroclinic loops having a transversal intersection of a stable invari-
ant manifold and the unstable one along their orbits different from singular
points, see for instance (7; 9; 15). These heteroclinic loops generically have
the Bernoulli shift as a subsystem and consequently the vector field possesses
infinitely many periodic orbits near the heteroclinic loop. The mechanism that
generates the infinitely many periodic orbits near these heteroclinic loops is
the transversality, whereas for the generalized heteroclinic loops studied in this
paper the mechanism is the symmetry. The origin of the transversality and of
the Bernoulli shift can be found in (15), but one of the best applications of this
dynamics can be found in (9) where the author uses a heteroclinic transversal
loop in order to study the dynamics near the parabolic orbits of the Sitnikov
problem.

In this paper our generalized heteroclinic loop has no transversal intersection
between the stable and unstable invariant manifolds, these invariant manifolds
coincide. So it does not posses the Bernoulli shift as a subsystem, see for more
details (9; 10). Nevertheless it still conserves infinitely many periodic orbits
near it. There are very few articles in the literature studying heteroclinic loops
that have no transversal intersection between their stable and unstable invari-
ant manifolds and that these coincide, see for instance (4; 5). Moreover, usually
the invariant manifolds that appear associated to the heteroclinic loops stud-
ied in the literature have the same dimension. In our heteroclinic loop these
objects have different dimension. From the point of view of having invariant
manifolds with different dimension our heteroclinic loop can recall to the ho-
moclinic loops of Silnikov type (see for example (1; 8; 11; 12)), but the main
difference with these kind of loops is that their invariant manifolds cannot
coincide as in our heteroclinic loop.
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Of course there are many other kinds of phenomena related with homoclinic
and heteroclinic loops, as for instance the ones related with blue sky catastro-
phes (see for instance (13; 14)), or the ones related with homoclinic snaking
(for example see (2; 3; 6; 16)), and several others. But all these other phenom-
ena are different to our generalized heteroclinic loops.

Modulo a diffeomorphism we assume that L is the union of the sphere S2

of radius 1 centered at the origin of R3, and the open diameter Γ along the
z–axis.

Let X = (f(x, y, z), g(x, y, z), h(x, y, z)) be a C1 vector field defined on the
closed ball D3 = {(x, y, z) ∈ R3 : x2+y2+z2 6 1}. We denote S2 = {(x, y, z) ∈
R3 : x2 + y2 + z2 = 1}, by S+ = S2 ∩ {z > 0} and S− = S2 ∩ {z < 0}. Assume
that X satisfies the following conditions:

(C1) The vector field X has two hyperbolic singular points on S2, e+ = {(0, 0, 1)}
and e− = {(0, 0,−1)}, which are nodes on S2.

(C2) The equator of the sphere Λ = {(x, y, z) ∈ R3 : x2 + y2 = 1, z = 0} is
a semistable periodic orbit such that W s(Λ) = W u(e−) = S− \ {e−} and
W u(Λ) = W s(e+) = S

+ \ {e+}.
(C3) W

u(e+) = W s(e−) = Γ = {(x, y, z) ∈ R3 : x = y = 0, −1 < z < 1}.
(C4) In a small neighborhood U of Λ in D3, the flow of X satisfies that ż > 0 in

U \ Λ.
(C5) The flow on D3 is invariant under the time–reversibility symmetry s :

(x, y, z, t) −→ (−x, y,−z,−t). That is, it is symmetric with respect to the
y–axis, denoted by the straight line L in what follows.

Under these assumptions the vector fieldX possesses a generalized heteroclinic
loop L formed by three invariant objects (the singular points e+ and e− and
the semistable periodic orbit Λ) and their invariant manifolds.

It is well known that a periodic orbit Γ on a 2–dimensional sphere S2 can be
either stable, unstable or semistable. In the first case Γ is a local attractor on
S2, in the second case is a local repeller on S2, and in the last case in one side
of S2 is a local attractor and in the other side is a local repeller.

In this paper, by means of a convenient Poincaré map π, we will prove that
the existence of this generalized heteroclinic loop together with the symmetry
of the vector field X guarantees the existence of infinitely many symmetric
periodic orbits near L. The key point for proving this result is that the image
by our Poincaré map of the segment on the line of symmetry γ = {(0, y, 0) :
0 < y < ε}, where ε is sufficiently small, is a spiral on the plane z = 0 that
approaches Λ spiraling infinitely many times. The intersection points of this
spiral with the line of symmetry L give the infinitely many symmetric periodic
orbits. In particular, in Section 2, we will prove the following result.
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Theorem 1 Assume that the vector field X is defined on the closed ball D3

satisfying the conditions (C1)–(C5). For each n ∈ N the vector field X has
infinitely many symmetric periodic orbits near the heteroclinic loop L that
cross exactly 2n times the plane z = 0 during a period.

We remark that in this paper when we say that an orbit is periodic of period
T this always means that T is the minimal period of the orbit.

We note that all the periodic orbits with the same number of crossings with
z = 0 accumulate to the heteroclinic loop as we shall see in the proof of
Theorem 1. Consequently their period tends to infinity when the periodic
orbit tends to the loop.

In (5), motivated by models of Celestial Mechanics, an analogue of Theorem 1
for a class of vector fields in D3 having a generalized heteroclinic loop formed by
two singular points e+ and e− that are foci on S2, and their invariant manifolds
satisfying W u(e−) = W s(e+) = S2 \ {e+, e−} and W u(e+) = W s(e−) = Γ
is proven. The flow of those vector fields is also symmetric with respect to
the straight line L. Under these hypotheses the image by the Poincaré map
of the segment γ is also a spiral on the plane z = 0 that approaches S2

spiraling infinitely many times. The spiraling property of π(γ) for the vector
fields considered in (5), which is needed in order to guarantee the existence of
infinitely many symmetric periodic orbits, is due to the fact that e+ and e−

are foci, whereas in this paper it is only due to the presence of the semistable
periodic orbit Λ.

Notice that if the vector field X satisfies conditions (C1)–(C5), but we consider
that in condition (C1) the singular points e+ and e− are foci on S2 instead of
nodes, then by using similar arguments than for the case where the points e+

and e− are nodes we can prove that it also possesses infinitely many symmetric
periodic orbits near L. This case is not considered in this paper because, as
we have mentioned, in such a case the existence of the semistable periodic
orbit Λ would not be really necessary in order to guarantee the existence of
infinitely many symmetric periodic orbits.

We note that when we perturb our model by destroying the periodic orbit Λ
but not the symmetry of the flow of the system with respect to the y–axis, if the
perturbation is sufficiently small some of the periodic orbits persist (the ones
which are more far from the loop), whereas perhaps infinitely many of them
disappear (the ones which are more close to the loop). This is due to the fact
that the existence of such periodic orbits become from the intersection of the
image of the y–axis through the Poincaré map with itself, and as we shall see
in the proof such image is an spiral with infinitely many turns (accumulating
to Λ), which intersect the y–axis, and for a sufficiently small perturbation
destroying Λ the spiral persists perhaps loosing infinitely many turns near Λ.

4



In Section 3 we analyze the conditions that must satisfy the coefficients of an
arbitrary polynomial vector field in R3 of degree four after imposing condi-
tions (C1)–(C5), i.e. the hypotheses of Theorem 1. In particular we prove the
following result.

Theorem 2 Let X = (P,Q,R) be the polynomial vector field

P =−b1y − a2xz − a1y
2 − b5x

2y − b5y
3 − b2yz

2 + a2x
3z +

a1x
2y2 + (a2 + c2 − c5 + c7)xz

3 + a2xy
2z + a1y

4 − b3y
2z2 ,

Q= b1x+ a1xy − b4yz + b5x
3 + b5xy

2 + b2xz
2 − a1x

3y + b4x
2yz −

a1xy
3 + b3xyz

2 + (b4 + c2 − c3 + c6 − c7)yz
3 + b4y

3z , (1)

R=−c1 − c2 + (c1 + c2 − c7)x
2 + (c1 + c2 − c6 + c7)y

2 + c1z
2 −

c4xz + c7x
4 + c4x

3z + c6x
2y2 + c5x

2z2 + c4xz
3 + c4xy

2z +

(c6 − c7)y
4 + c2z

4 + c3y
2z2 .

Assume that the coefficients of X satisfy the following conditions

(i) either c2 > 0 and c1 + c2 > 0, or c2 < 0 and c1 + 2c2 > 0, or c2 = 0 and
c1 > 0,

(ii) b1 + b5 6= 0,
(iii) 2c2 − c3 − c5 + c6 < −|c3 − c5 − c6 + 2c7|,
(iv) −2c1 − 2c2 − c6 > |c6 − 2c7|,
(v) | − c3 + c5 + c6 − 2c7| > 2|b1 + b2|
(vi) −a2 − b4 − 2c1 − 2c2 − c6 > | − a2 + b4 + c6 − 2c7|

Then the following statements hold.

(a) The set of coefficients satisfying conditions (i)–(vi) is not empty.
(b) The vector field X satisfies all the assumptions of Theorem 1.

2 Proof of Theorem 1

We shall prove with all details Theorem 1 for n = 1 and n = 2, see Proposi-
tion 3 and 4 respectively. The proof for n > 2, as we shall see from the proofs
for n = 1, 2, will be almost the same.

Proposition 3 Assume that the vector field X is defined on the closed ball
D3 and it satisfies conditions (C1)–(C5), then X has infinitely many periodic
orbits near the heteroclinic loop L that cross exactly 2 times the plane z = 0
during a period.
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Fig. 1. The map π.

PROOF. Using the invariance of the vector field X with respect to the sym-
metry (x, y, z, t) −→ (−x, y,−z,−t) (condition (C5)) we have that if φ(t) =
(x(t), y(t), z(t)) is a solution of X, then ψ(t) = (−x(−t), y(−t),−z(−t)) is
also a solution. This symmetry can be used in the standard way in order to
obtain symmetric periodic solutions. If φ(t) is an orbit such that at t = 0
satisfies that x(0) = z(0) = 0, then the symmetric solution ψ(t) satisfies that
ψ(0) = (0, y(0), 0) = ϕ(0). By the uniqueness theorem on the solutions of
the differential system associated to X the orbits φ and ψ are the same. If in
addition the orbit φ(t) satisfies that φ(τ) = (0, y(τ), 0) for some τ > 0, and
there is no 0 < t < τ such that x(t) and z(t) are simultaneously zero, then the
orbit φ = ψ must be a periodic orbit of period 2τ . In other words if an orbit
intersects the line of symmetry L in two different points, then it is a periodic
orbit.

Let Σ = {(x, y, z) ∈ D3 : z = 0}, let Σ0 = {(x, y, z) ∈ D3 : z = 0, x2 +y2 6 ε1}
for a fixed ε1 > 0 sufficiently small and let γ = {(0, y, 0) ∈ L : y > 0} ∩ Σ0.
We consider a small topological cylinder in a neighbourhood of the singular
point e− = {(0, 0,−1)} with base on S2 and boundaries Σ1 and Σ2 with
Σ1 = {(x, y, z) ∈ D3 : 0 < x2 + y2 6 ε2

2, z = −1 + ε3}, and Σ2 = {(x, y, z) ∈
D3 : x2+y2 = ε2

2,−1 < z 6 −1+ε3}, with εi > 0 sufficiently small for i = 2, 3.
Finally we consider the section Σ3 = {(x, y, z) ∈ D3 : 1 − ε5 6 x2 + y2 + ε2

4 <
1, z = −ε4}, with εi > 0 sufficiently small for i = 4, 5, see Fig. 1.

We define a map π : Σ0 −→ Σ by π = π3 ◦ π2 ◦ π1 ◦ π0, where π0 : Σ0 → Σ1,
π1 : Σ1 → Σ2, π2 : Σ2 → Σ3, and π3 : Σ3 → Σ, in the following way. We
denote by ϕ(t, q) the flow generated by system X, satisfying ϕ(0, q) = q. For
all i the map πi from the domain A to the image B; i.e. πi : A → B, is
defined by πi(q) = p, where q ∈ A and p is the point at which the orbit ϕ(t, q)
intersects B for the first positive time. Now we prove that the maps πi are
well defined when εi are sufficiently small, and consequently π is well defined
for ε1 sufficiently small. We also analyze the image by π of the segment γ.
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Since W u(e+) = W s(e−) = Γ (see condition (C3)), the flow of X on the orbit
Γ goes in the decreasing direction of the z–axis. By the continuity of the flow
ϕ with respect to initial conditions, if q ∈ Σ0 is sufficiently close to the point
P = Σ ∩ Γ, then the orbit ϕ(t, q) is close to the orbit Γ for all t in a finite
interval of time. Since the orbit Γ expends a finite time for going from the point
P to the point P1 = (0, 0,−1 + ε3), we can guarantee that if ε1 is sufficiently
small, then ϕ(t, q) intersects Σ1 for all q ∈ Σ0. Consequently the map π0 is
well defined and the image by π0 of γ is an arc on Σ1 having P1 as an endpoint
(see Fig. 1).

From conditions (C2) and (C3) we have that P1 ∈ Γ = W s(e−) and W u(e−) =
S− \ {e−}. So if q ∈ Σ1 is sufficiently close to P1, that is, ε2 is sufficiently
small, then ϕ(t, q) intersects Σ2 and consequently π1 is well defined. Moreover
the image by π1 of π0(γ) ∩ Σ1 is a curve on Σ2 that approaches a point
P2 ∈ S2 ∩ {(x, y, z) ∈ D3 : x2 + y2 = ε2, z < 0} when on γ we approach
to P (see again Fig. 1).

Since W u(e−) = W s(Λ) = S
− \ {e−}, if q ∈ Σ2 is sufficiently close to P2, that

is, ε3 is sufficiently small, then the orbit ϕ(t, q) is close to the orbit ϕ(t, P2)
for all t in a finite interval of time. The orbit ϕ(t, P2) intersects Σ3 at a point
P3 ∈ S2 ∩ {(x, y, z) ∈ D3 : z = −ε4} after a finite positive time because
ϕ(t, P2) ⊂ W s(Λ). Therefore π2 is well defined. Moreover the image by π2 of
π1(π0(γ) ∩ Σ1) ∩ Σ2 is a curve on Σ3 that approaches to P3 when on γ we
approach to P (see again Fig. 1).

Let U be the small neighbourhood defined in condition (C4). Clearly if ε4 and
ε5 are sufficiently small, then Σ3 ⊂ U . From condition (C4), the flow of X on U
satisfies that ż > 0. This together with the fact that W s(Λ)∩ Int(D3) = ∅ and
W u(Λ) ∩ Int(D3) = ∅ (because W s(Λ) = S− \ {e−} and W u(Λ) = S+ \ {e+})
implies that if ε4 and ε5 are sufficiently small, then the orbit of a point q ∈ Σ3

intersects Σ. Consequently π3 is well defined. Now we analyze the image by π3

of π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3. The orbit ϕ(t, P3) tends to the periodic orbit
Λ as t → ∞. In fact, ϕ(t, P3) is a spiral on S− which rotates infinitely many
times tending to Λ. Moreover the different turns of the spiral accumulate to
Λ. If q ∈ π2(π1(π0(γ) ∩ Σ1) ∩ Σ2) ∩ Σ3 is sufficiently close to the point P3,
then by the continuity of the flow ϕ with respect to initial conditions, the
orbit ϕ(t, q) is close to the orbit ϕ(t, P3) for all t in a finite interval of time
that we denote by Iq. Moreover the interval of time Iq tends to infinity as q
tends to P3. So the number of turns near S

2 and around the z–axis of the
orbit ϕ(t, q) before crossing Σ tends to infinity as q tends to P3. Assume that
q1, q2 ∈ π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3 are such that ϕ(t, q1) (respectively, ϕ(t, q2))
cross Σ after doing exactly n (respectively, n + 1) turns around the z–axis.
The orbits associated to the points on π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3 between q1
and q2 will cross Σ after doing n turns but before completing the turn n + 1.
So by continuity, the image by π3 of the points on π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3
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between q1 and q2 gives a complete turn around the z–axis. Therefore, the
image by π3 of π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3 is a spiral on Σ that approaches to
Λ by giving infinitely many turns around the z–axis when on γ we approach
to P (see again Fig. 1).

We have just seen that we can find εi > 0 for i = 1, . . . , 5 such that the maps
π0, π1, π2 and π3 are well defined. Moreover we can take ε3 = ε3 > 0 small
enough so that π2(Σ2) ⊂ Σ3. Fixed ε3 = ε3 we can take ε2 = ε2 > 0 small
enough so that π1(Σ1) ⊂ Σ2. Finally fixed ε2 = ε2 and ε3 = ε3, we can take
ε1 = ε1 > 0 small enough so that π0(Σ0) ⊂ Σ1. In short if ε1 = ε1, then the
map π = π3 ◦ π2 ◦ π1 ◦ π0 is well defined and the image π(γ) is a spiral on
Σ that approaches to S

2, when we approach to P , by giving infinitely many
turns around the z–axis.

We note that π(γ) intersects the line of symmetry L infinitely many times near
the point Q, and infinitely many times near the point R. Since the points of γ
belong to the line of symmetry, those intersection points correspond to orbits
of X that cross the line of symmetry at two different points. That is, they
correspond to symmetric periodic orbits. By the construction, these periodic
orbits cross exactly 2 times the plane z = 0. 2

Notice that if we consider the image by π of the segment γ′ = {(0, y, 0) ∈ L :
y < 0} ∩Σ0 instead of the segment γ, then we can repeat the arguments used
in the proof of Proposition 3 and we also obtain a family of infinitely many
symmetric periodic orbits near L that cross exactly 2 times the plane z = 0
during a period. This family is different than the one obtained in Proposition 3.

Proposition 4 Assume that the vector field X is defined on the closed ball
D3 and it satisfies conditions (C1)–(C5), then X has infinitely many periodic
orbits near the heteroclinic loop L that cross exactly 4 times the plane z = 0
during a period.

PROOF. We consider γ, Σ, Σ0, Σ1, Σ2 and Σ3 defined as in the proof of
Proposition 3. We define Σ4 = s(Σ3), Σ5 = s(Σ2), and Σ6 = s(Σ1), where s is
the symmetry defined in condition (C5) (see Fig. 2).

We define a map Π : Σ0 −→ Σ by Π = π7 ◦ π6 ◦ π5 ◦ π4 ◦ π3 ◦ π2 ◦ π1 ◦ π0,
where π0, π1, π2 and π3 are defined as in the proof of Proposition 3, and
π4 : Σ → Σ4, π5 : Σ4 → Σ5, π6 : Σ5 → Σ6, π7 : Σ6 → Σ. As in Proposition 3,
for all i the map πi from the domain A to the image B; i.e. πi : A → B, is
defined by πi(q) = p, where q ∈ A and p is the point at which the orbit ϕ(t, q)
intersects B for the first positive time. Then, by using the invariance of the
flow of X under the symmetry s, we have that π4 = s◦π−1

3 ◦s, π5 = s◦π−1
2 ◦s,
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Fig. 2. The map Π.

π6 = s ◦ π−1
1 ◦ s, and π7 = s ◦ π−1

0 ◦ s. Clearly, if ε1 is sufficiently small, then
Π is well defined. Now we analyze the image of γ under Π.

Assume that q1, q2 ∈ π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3 are such that ϕ(t, q1) (respec-
tively, ϕ(t, q2)) cross Σ after doing exactly n (respectively, n+1) turns around
the z–axis, and that ϕ(t, q1)∩Σ = p1 ∈ L (respectively, ϕ(t, q2)∩Σ = p2 ∈ L).
The existence of such points follows from the proof of Proposition 3. Notice
that ϕ(t, q1) and ϕ(t, q2) are symmetric orbits because p1 ∈ L and p2 ∈ L.
Since Σ4 = s(Σ3) and ϕ(t, q1) (respectively, ϕ(t, q2)) is a symmetric orbit that
gives n (respectively, n + 1) turns around the z–axis when it goes from Σ3

to Σ, ϕ(t, p1) (respectively, ϕ(t, p2)) intersects Σ4 after doing n (respectively,
n+1) additional turns around the z–axis. Thus ϕ(t, q1) (respectively, ϕ(t, q2))
intersects Σ4 after doing 2n (respectively, 2n + 2) turns around the z–axis.
As in Proposition 3, this implies that the image by π4 ◦ π3 of the points on
π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3 between q1 and q2 gives two complete turns around
the z–axis. Therefore the image by π4 of π3(π2(π1(π0(γ) ∩ Σ1) ∩ Σ2) ∩ Σ3) is
a spiral on Σ4 that approaches to S2 by giving infinitely many turns around
the z–axis when on γ we approach to P (see again Fig. 2).

Since the orbits on S2∩{(x, y, z) ∈ D3 : z = ε4} expend a finite time for going
form Σ4 to S2 ∩ {(x, y, z) ∈ D3 : x2 + y2 = ε2, z > 0}, we can guarantee that
the image by π5 of π4(π3(π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3))∩Σ4 is a spiral on Σ5

that approaches to S2 by giving infinitely many turns around the z–axis when
on γ we approach to P .
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Now we prove that the fact that e+ is an hyperbolic singular point which is
a node on S2 with W s(e+) = S+ \ {e+} and such that W u(e+) = Γ, implies
that the image by π6 of π5(π4(π3(π2(π1(π0(γ)∩Σ1)∩Σ2)∩Σ3))∩Σ4)∩Σ5 is a
spiral on Σ6 that approaches the point P6 = (0, 0, 1 − ε3) by giving infinitely
many turns around the z–axis when on γ we approach to P .

Since e+ is a hyperbolic singular point which is a node on S
2 with W s(e+) =

S+ \ {e+} and such that W u(e+) = Γ, by the Hartman Theorem, the flow of
X in a sufficiently small neighborhood of e+ is topologically conjugate to the
flow of the linear differential system given by either
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













, (3)

for some λ1, λ2 < 0 and λ3 > 0. Therefore if ε2 and ε3 are sufficiently small,
then the image by π6 of a curve ζ = {(x, y, z) ∈ Σ5 : x = ε2 cos θ, y =
ε2 sin θ, z = z0(θ), θ ∈ [0, 2π]} is topologically conjugate to the image by π :
Σ5 → Σ6 of the curve ζ = {(x, y, z) ∈ Σ5 : x = ε2 cos θ, y = ε2 sin θ, z =
z0(θ) − 1, θ ∈ [0, 2π]}. Here Σ5 = {(x, y, z) ∈ R3 : x2 + y2 = ε2

2, z ∈ [−ε3, 0)},
Σ6 = {(x, y, z) ∈ R3 : 0 < x2 + y2 6 ε2

2, z = −ε3} and π : Σ5 → Σ6 is defined
by π(q) = p, where q ∈ Σ5 and p is the point at which the orbit of the flow
generated by either system (2) or system (3), ϕ(t, q), intersects Σ6 for the first
positive time.

Next we compute the image by π of the circle ζz0
= {(x, y, z) ∈ Σ5 : x =

ε2 cos θ, y = ε2 sin θ, z = z0, θ ∈ [0, 2π]} for some fixed z0 ∈ [−ε3, 0). After
some computations we get that the solution of (2) with initial conditions
x(0) = ε2 cos θ, y(0) = ε2 sin θ and z(0) = z0 is given by

x(t) = ε2 cos θeλ1t, y(t) = ε2 sin θeλ2t, z(t) = z0e
λ3t.

This solution intersects Σ6 at t = ln (−ε3/z0) /λ3. So the image π(ζz0
) is a

curve on Σ6 such that

x = ε2 cos θ
(−ε3

z0

)

λ1

λ3

, y = ε2 sin θ
(−ε3

z0

)

λ2

λ3

. (4)

Notice that expression (4) gives the parametric equations of an ellipse centered

at the origin with semimajor axis a(z0) = ε2 (−ε3/z0)
λ1/λ3 and semiminor axis
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b(z0) = ε2 (−ε3/z0)
λ2/λ3 . On the other hand, if 0 > z0 > z1, then a(z0) < a(z1)

and b(z0) < b(z1) because λ1, λ2 < 0 and λ3 > 0. This implies that when the
linearization of X near the singular point e+ diagonalizes, the image by π of a
spiral on Σ5 that approaches to z = 0 by giving infinitely many turns around
the z–axis is a spiral on Σ6 that approaches the point (0, 0,−ε3) by giving
infinitely many turns around the z–axis.

The solution of (3) with initial conditions x(0) = ε2 cos θ, y(0) = ε2 sin θ and
z(0) = z0 is given by

x(t) = ε2 cos θeλ1t, y(t) = ε2e
λ1t(t cos θ + sin θ), z(t) = z0e

λ3t.

As above, this solution intersects Σ6 at t = ln (−ε3/z0) /λ3. So the image
π(ζz0

) is a curve on Σ6 such that

x = ε2 cos θ
(−ε3

z0

)

λ1

λ3

, y = ε2

(−ε3

z0

)

λ1

λ3

(

ln (−ε3/z0)

λ3

cos θ + sin θ

)

. (5)

From (5) we have that

cos θ =
x

ε2

(

−ε3

z0

)

−
λ1

λ3

, sin θ =
1

ε2

(

−ε3

z0

)

−
λ1

λ3

[

y − x
ln (−ε3/z0)

λ3

]

.

Since cos2 θ + sin2 θ = 1, the curve defined by (5) can be written as

x2
(

λ2
3 + ln2

(

− ε3

z0

)) (

− ε3

z0

)

−
2λ1

λ3

ε2
2λ

2
3

+
y2
(

− ε3

z0

)

−
2λ1

λ3

ε2
2

−
2xy ln

(

− ε3

z0

) (

− ε3

z0

)

−
2λ1

λ3

ε2
2λ3

= 1.

This is the equation of an ellipse centered at the origin rotated by an angle
φ = cot−1 (ln(−ε3/z0)/(2λ3)) /2 and having semiaxis

a(z0) =

√

√

√

√

√

√

2ε2
2 (−ε3/z0)

2λ1

λ3 λ2
3

2λ2
3 +

(

1 +
√

1 + 4λ2
3/ ln2 (−ε3/z0)

)

ln2 (−ε3/z0)
,

b(z0) =

√

√

√

√

√

√

2ε2
2 (−ε3/z0)

2λ1

λ3 λ2
3

2λ2
3 +

(

1 −
√

1 + 4λ2
3/ ln2 (−ε3/z0)

)

ln2 (−ε3/z0)
.

Since λ1, λ2 < 0 and λ3 > 0, we can prove after some computations that a(z0)

is decreasing for all z0 < 0 and b(z0) is decreasing for all z0 ∈ (−e
√

λ2

3
−4λ2

1
λ2

3
/λ1ε3,

0). This implies that when the linearization of X near the point e+ do not di-
agonalize, the image by π of a spiral on Σ5 that approaches to z = 0 by giving
infinitely many turns around the z–axis is still a spiral on Σ6 that approaches
the point (0, 0,−ε3) by giving infinitely many turns around the z–axis.
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Finally, since the orbit Γ expends a finite time for going from Σ6 to Σ, the
image by π7 of π6(π5(π4(π3(π2(π1(π0(γ) ∩ Σ1) ∩ Σ2) ∩ Σ3)) ∩ Σ4) ∩ Σ5) ∩ Σ6

is a spiral on Σ that approaches the point P by giving infinitely many turns
around the z–axis when on γ we approach to P (see again Fig. 2).

In short, Π(γ) is a spiral on Σ that approaches the point P by giving infinitely
many turns around the z–axis when on γ we approach to P . The points of
Π(γ)∩L give the infinitely many symmetric periodic orbits. It is easy to see by
using the symmetry s that the points of Π(γ)∩γ correspond to the symmetric
periodic orbits found in Proposition 3, which cross exactly 2 times the plane
z = 0 during a period, whereas the points of Π(γ)∩γ′ correspond to symmetric
periodic orbits that cross exactly 4 times the plane z = 0 during a period. 2

We could also analyze the image by Π of the segment γ′, but Π(γ′) ∩ L does
not give new symmetric periodic orbits of X that cross exactly 4 times the
plane z = 0 during a period because the points of Π(γ′) ∩ γ′ correspond to
symmetric periodic orbits that cross exactly 2 times the plane z = 0 during a
period and the points of Π(γ′) ∩ γ coincide with the points of Π(γ) ∩ γ′.

We remark that if we consider that the equilibrium points e+ and e− are foci
instead of nodes, then Propositions 3 and 4 also hold. In particular, the proof
of Proposition 3 when e+ and e− are foci is the same but taking into account
that the image by π1 of π0(γ) ∩ Σ1 is a spiral on Σ2 that approaches S2 by
giving infinitely many turns around the z–axis when on γ we approach to P .
The proof of Proposition 4 when e+ and e− are foci is also the same but now
the preservation of the spiralling structure near the point e+ is an immediate
consequence of the fact that e+ is a focus.

2.1 Extension of the proof for arbitrary n

Using similar arguments than the ones used in Propositions 3 and 4, we see
that the image by π of Π(γ) is a spiral on Σ that approaches to Λ spiraling
infinitely many times when on γ we approach to P . Clearly, π(γ) ∩ L ⊂
π(Π(γ))∩L, so π(Π(γ))∩L contains the intersection points corresponding to
the symmetric periodic orbits found in Proposition 3, which cross exactly 2
times the plane z = 0 during a period. Next we prove that π(Π(γ))∩L contains
infinitely many additional intersection points that correspond to symmetric
periodic orbits that cross exactly 6 times the plane z = 0 during a period.

Let q1, q2 ∈ γ be such that π(q1) ∈ L ∩ {y > 0} and π(q2) ∈ L ∩ {y > 0}
and that the orbit ϕ(t, q1) (respectively, ϕ(t, q2)) intersects Σ for the first time
after doing exactly n (respectively, n+1) turns around the z–axis. As we have
seen, the image by π of the segment [q2, q1] is an arc on Σ close to Λ that

12



gives a complete turn around the z–axis. Notice that the image by π of the
interval [q2, q1] gives three symmetric periodic orbits that cross exactly 2 times
the plane z = 0 during a period, the two associated to the points π(q1) and
π(q2) and another one associated to the point π([q2, q1]) ∩ L ∩ {y < 0}. By
means of the symmetry s, the orbit ϕ(t, q1) (respectively, ϕ(t, q2)) intersects Σ
for the second time after doing exactly 2n (respectively, 2n+ 2) turns around
the z–axis. So the image by Π of the segment [q2, q1] is an arc on Σ close to
P that gives two complete turns around the z–axis. The image by Π of [q2, q1]
intersects L at 5 different points, the three points Π([q2, q1])∩γ correspond to
the three symmetric periodic orbits that cross exactly 2 times the plane z = 0
during a period given by π([q2, q1])∩L, whereas the two points Π([q2, q1])∩ γ′
correspond to symmetric periodic orbits that cross exactly 4 times the plane
z = 0.

In a similar way, wee see that the orbit ϕ(t, q1) (respectively, ϕ(t, q2)) intersects
Σ for the third time after doing exactly 3n (respectively, 3n+3) turns around
the z–axis. So the image by π ◦ Π of the segment [q2, q1] is an arc on Σ close
to Λ that gives three complete turns around the z–axis. Notice that the image
by π ◦ Π of [q2, q1] intersects L at 7 different points, 3 of them correspond
to the three symmetric periodic orbits that cross exactly 2 times the plane
z = 0 during a period given by π([q2, q1])∩L, whereas the other 4 correspond
to symmetric periodic orbits that cross exactly 6 times the plane z = 0. In
short, π(Π(γ))∩ L gives infinitely many points that correspond to symmetric
periodic orbits that cross exactly 6 times the plane z = 0 during a period.

Proceeding in a similar way, we have that the orbit ϕ(t, q1) (respectively,
ϕ(t, q2)) intersects Σ for the fourth time after doing exactly 4n (respectively,
4n + 4) turns around the z–axis. So the image by Π2 of the segment [q2, q1]
is an arc on Σ close to P that gives four complete turns around the z–axis,
consequently it intersects 9 times the line of symmetry L. It is easy to see that
3 of these intersection points correspond to symmetric periodic orbits that
cross exactly 2 times the plane z = 0 during a period, 2 of them correspond to
symmetric periodic orbits that cross exactly 4 times the plane z = 0 during a
period, and the remaining ones correspond to symmetric periodic orbits that
cross exactly 8 times the plane z = 0 during the period. Therefore Π2(γ) ∩ L
gives infinitely many points that correspond to symmetric periodic orbits that
cross exactly 8 times the plane z = 0 during a period.

The prove of Theorem 1 for all n > 4 can be done in a similar way by taking
into account that the image by Πn of the segment [q2, q1] is an arc on Σ close
to P that gives 2n complete turns around the z–axis, and the image by π ◦Πn

is an arc on Σ close to Λ that gives 2n+ 1 complete turns around the z–axis.

In Figure 3 we illustrate the intertwined structure of the points on the curve
γ that provide symmetric periodic orbits that intersect exactly 2n times the
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(a)

(b)

γ
0 . . . q1q2q3q4q5

qi+1 qiq2
iq4

i q4
iq6

i q6
i q6

i q6
iq8

i q8
i q8

i q8
i

Fig. 3. For a fixed value of n sufficiently large, for all i ∈ N, the points qi, qi+1 ∈ γ

represent initial conditions of symmetric periodic orbits that cross 2 times the plane
z = 0 during a period and such that the orbit ϕ(t, qi) (respectively, ϕ(t, qi+1))
intersects Σ for the first time after doing exactly n+ i− 1 (respectively, n+ i) turns
around the z–axis. In (a) we illustrate the distribution on γ of those points. In (b),
for a fixed i, we illustrate the distribution of the initial conditions on the interval
[qi+1, qi] of the symmetric periodic orbits that cross exactly 2, 4, 6 and 8 times de
plane z = 0 during a period. The notation qk

i represents the initial condition of a
symmetric periodic orbit that cross exactly k times the plane z = 0.

plane z = 0 for n = 1, . . . , 4.

3 Proof of Theorem 2

Let X be the polynomial vector field in R3 given by (1). First we prove that
if the coefficients of X satisfy conditions (i)–(vi), then X satisfies conditions
(C1)–(C5).

It is easy to check that the flow of X is invariant under the time–reversibility
symmetry s, so condition (C5) is satisfied.

Clearly e+ and e− are singular points of X. From condition (C3), we have
that W u(e+) = W s(e−) = Γ. This condition is satisfied if and only if Γ is
invariant under the flow of X, it does not contain any singular point and the
flow of X on Γ goes in the decreasing direction of the z–axis. The vector field
X restricted to the z–axis is given by

ẋ = 0 , ẏ = 0 , ż = c2z
4 + c1z

2 − c1 − c2 .

So the z–axis is invariant under the flow of X. The singular points of X on the
z–axis are given by the roots of equation c2z

4 + c1z
2 − c1 − c2 = 0. If c2 6= 0,

then the roots of this equation are z = ±1 and z = ±
√

−(c1 + c2)/c2, whereas
if c2 = 0, then they are z = ±1. Clearly if c2 = 0 and c1 > 0, then Γ does
not contain any singular point and the flow of X on Γ goes in the decreasing
direction of the z–axis. Now we analyze the case c2 6= 0. None of the singular

points z = ±
√

−(c1 + c2)/c2 should belong to Γ, thus either −(c1 + c2)/c2 < 0

or −(c1 + c2)/c2 > 1. Moreover the flow of X on Γ must go in the decreasing
direction of the z–axis, thus c1 + c2 > 0. If c2 > 0 and c1 + c2 > 0, then
−(c1 + c2)/c2 < 0, and if c2 < 0 and c1 + 2c2 > 0, then c1 + c2 > −c2 > 0
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which implies that −(c1 + c2)/c2 > 1. In short, since the coefficients c1 and c2
satisfy condition (i), condition (C3) is satisfied.

The eigenvalues of the vector field X at the singular point e− are

λ1 = −2(c1 + 2c2) , λ2,3 =
1

2

(

−2c2 + c3 + c5 − c6 ±
√

∆
)

,

with eigenvectors

~vλ1
= (0, 0, 1) , ~vλ2,3

=

(

−c3 + c5 + c6 − 2c7 ±
√

∆

2(b1 + b2)
, 1, 0

)

,

where ∆ = (−c3 + c5 + c6 − 2c7)
2 − 4(b1 + b2)

2.

From condition (i) we have that λ1 < 0, and from conditions (iii) and (v) we
have that λ2,3 > 0. Therefore e− is an unstable node on S2. In a similar way
we can prove that e+ is a stable node on S2. So condition (C1) is satisfied.

Now we study the flow of X on the invariant sphere S2 by using spherical
coordinates x = r cos θ cosφ, y = r cos θ sinφ and z = r sin θ where r ∈
[0,+∞), θ ∈ [−π/2, π/2] and φ ∈ [0, 2π). In these coordinates, the vector field
X restricted to the sphere S2 (that is, restricted to r = 1) is given by

ṙ= 0 ,

θ̇=−cos θ sin2 θ

2
(2c2 − c3 − c5 + c6 + (c3 − c5 − c6 + 2c7) cos(2φ)) ,

φ̇=
1

2

(

2b1 + b2 + b5 + (2b3 + 2a1) cos θ sinφ sin2 θ−

(b2 − b5) cos(2θ) − (c3 − c5 − c6 + 2c7) sin(2φ) sin3 θ
)

.

Since ṙ = 0 the sphere S2 is invariant under the flow of X. The fact that e− is
an unstable node on S2 and e+ is a stable node on S2 implies that W u(e−) ⊂ S2

and W s(e+) ⊂ S2. The circle Λ = {(x, y, z) ∈ R3 : x2 + y2 = 1, z = 0} in
spherical coordinates is given by r = 1 and θ = 0. The vector field X restricted
to r = 1 and θ = 0 becomes

ṙ = 0 , θ̇ = 0 , φ̇ = b1 + b5 .

So Λ is invariant under the flow of X. Since b1 and b5 satisfy condition (ii), the
circle Λ does not contain any singular point of X, so it is a periodic orbit. On
the other hand, since c2, c3, c4, c5, and c6 satisfy condition (iii), the derivative
θ̇ restricted to r = 1 is positive for all θ ∈ (−π/2, 0)∪ (0, π/2) and φ ∈ [0, 2φ),
and consequently S− \ {e−} ⊂ W s(Λ) and S+ \ {e+} ⊂ W u(Λ). This also
implies that W u(e−) = S− \ {e−} and W s(e+) = S+ \ {e+}.
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Finally we study the sign of ṙ and θ̇ in a small neighbourhood U in D3 of the
periodic orbit Λ. The derivatives ṙ and θ̇ when r = 1 − ε and θ = δ, with
ε, δ > 0 sufficiently small are given by

ṙ=− (a2 + b4 + 2c1 + 2c2 + c6 + (a2 − b4 − c6 + 2c7) cos(2φ)) ε δ +

O3(ε, δ) ,

θ̇=− (2c1 + 2c2 + c6 − (c6 − 2c7) cos(2φ)) ε+O2(ε, δ) .

Since the coefficients of X satisfy conditions (iv) and (vi), ṙ < 0 in U∩{z < 0},
ṙ > 0 in U ∩{z > 0} and θ̇ > 0 for all ε and δ sufficiently small. The fact that
θ̇ > 0 implies condition (C4). The fact that ṙ < 0 in U ∩ {z < 0} and ṙ > 0
in U ∩ {z > 0} implies that W s(Λ) ∩ Int(D3) 6= ∅ and W u(Λ) ∩ Int(D3) 6= ∅.
Therefore W s(Λ) = S− \ {e−} and W u(Λ) = S+ \ {e+}.

This completes the proof of statement (b) of Theorem 2.

The set of coefficients satisfying conditions (i)–(vi) is not empty, for instance
if we take b1 = 1, b2 = 0, b5 = 0, c1 = 1, c2 = 0, c3 = 3, c5 = 0, c6 = −6,
c7 = −2, a2 = 0 and b4 = 0 then conditions (i)–(vi) are satisfied. This proves
statement (a) of Theorem 2.

Taking the remaining coefficients equal to zero; that is, a1 = 0, b3 = 0, and
c4 = 0 we obtain a polynomial vector field satisfying the dynamics described
in Theorem 1, which is given by

ẋ=−y − 2xz3 ,

ẏ= x− 7yz3 ,

ż=−1 + 3x2 + 5y2 + z2 − 2x4 − 6x2y2 − 4y4 + 3y2z2 .
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