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For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an
open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial
vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools
for proving this result are, first, the existence in the phase portrait of a symmetry with respect
to a plane and, second, the existence of two symmetric heteroclinic loops.
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1. Introduction and main result

In this paper we will study the periodic orbits near
infinity of a class of polynomial vector fields in R3.
In order to study the behaviour of a polynomial vec-
tor field near infinity we will use the Poincaré com-
pactification (see Section 2 for details). This tech-
nique allows us to extend the vector field in R3 to a
unique analytic vector field on the Poincaré sphere
S3 and on the Poincaré ball D3, whose boundary,
the sphere S2, plays the role of the infinity for the
initial polynomial vector field.

Let P , Q and R be polynomials in the variables
x, y and z. We consider the polynomial vector field
X = (P,Q,R) in R3 that satisfies the following con-
ditions

(C1) The flow of X is invariant under the symme-
try (x, y, z, t) −→ (−x, y, z,−t). So the phase
portrait of X is symmetric with respect to the
plane x = 0.

(C2) The maximum of the degrees of P , Q and R is
called the degree of X. Here we assume that
this degree is even and equal to n.

(C3) The straight line y = z = 0 is invariant by
the flow of X, it does not contain any singular
point and the flow on it goes in the increasing
direction of the x–axis.

(C4) The straight line y = z = 0 intersects the
boundary of the Poincaré ball at two singular
points a and b, the origins of the local charts
U1 and V1 respectively. Moreover, a is hyper-
bolic with local unstable manifold z2 = z3 = 0
in the local chart U1. Recall that a singular
point is hyperbolic if the real part of all its
eigenvalues is different from zero. Note that
by the symmetry of the problem the singular
point b is also hyperbolic.

(C5) The straight line z2 = z3 = 0 of the local
chart U2 of the Poincaré ball is invariant by
the flow of X, it does not contain any singular
point and the flow on it goes in the decreasing
direction of the z1–axis.

We note that conditions (C2)–(C5) say that the
Poincaré compactification of X, p(X), possesses a
heteroclinic loop L which is formed by two singular
points at infinity (the points a and b) connected by

Fig. 1. The heteroclinic loops L and L′ and the
Poincaré ball D3.

the straight line y = z = 0 in R3 and the straight
line z2 = z3 = 0 at infinity in the local chart U2,
see Fig. 1.

Recall that the flow on the infinity S2 is sym-
metric with respect to the origin of S2. This sym-
metry reverses the orientation of the orbits because
the degree n is even. Due to this symmetry on S2,
p(X) possesses another heteroclinic loop L′ which
is formed by the two previous singular points at in-
finity connected by the straight line y = z = 0 in
R3 and the straight line z2 = z3 = 0 at infinity in
the local chart V2.

On the other hand, as we will see in Section 3,
if an orbit ϕ crosses the plane x = 0 in two dif-
ferent points, then using the symmetry (C1) ϕ is a
symmetric periodic orbit.

Using the symmetry (C1) and the heteroclinic
loops L and L′ we get our main result.

Theorem 1.1. Let X be a polynomial vector field
in R3 satisfying conditions (C1)–(C5). Let Dε de-
note the punctured disc {0 < y2

0 + z2
0 < ε2} minus a

differentiable curve γ that passes through the origin
of the disc and separates it into two components as
in Fig. 2.

(a) There exists ε > 0 sufficiently small such that
the solutions of X having initial conditions
x(0) = 0, y(0) = y0 and z(0) = z0, with
(y0, z0) ∈ Dε are periodic solutions that lie
near one of the heteroclinic loops L and L′.
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Fig. 2. The punctured disc Dε.

(b) The 2–dimensional unstable manifold of the
singular point b, W u(b), coincides with the
2–dimensional stable manifold of the singular
point a, W s(a).

The class of polynomial vector fields satisfying
conditions (C1)–(C5) is not empty. In particular,
we shall prove the following result.

Theorem 1.2. A polynomial vector field X =
(P,Q,R) in R3 satisfies conditions (C1)–(C5) if and
only if

(i) P =
∑

0 6 i + j + k 6 n
i even

aijk x
iyjzk,

Q =
∑

0 6 i + j + k 6 n
i odd, j + k > 1

bijk x
iyjzk,

R =
∑

0 6 i + j + k 6 n
i odd, j + k > 1

cijk x
iyjzk;

(ii)
∑

0 6 i 6 n
i even

ai00 x
i > 0 for all x ∈ R;

(iii) an00 > 0;

(iv) ci,n−i,0 = 0 for all odd i ∈ {1, . . . , n− 1};

(v) bn−1,1,0 > an00 > cn−1,0,1;

(vi)
∑

0 6 i + j + k 6 n
i even

ai,n−i,0 z
i
1 −

∑
0 6 i + j + k 6 n

i odd

bi,n−i,0 z
i+1
1 is

negative for all z1 ∈ R.

Let U be an open subset of R3. A non–constant
function H : U −→ R is called a first integral of X
if it is constant on every solution of X contained in
U . Then a function H ∈ C1(U) is a first integral of
X on U if and only if

∂H

∂x
P +

∂H

∂y
Q+

∂H

∂z
R = 0 .

Two first integrals H1 and H2 defined in U are in-
dependent if for all (x, y, z) ∈ U , except perhaps in
a subset of zero Lebesgue measure, their gradients
are linearly independent.

A vector field in R3 is called integrable if it
has two independent first integrals. For quadratic
polynomial vector fields in R3 satisfying conditions
(C1)–(C5) we get the following result.

Proposition 1.3. Let Dε be defined as in Theo-
rem 1.1. For the polynomial differential systems

ẋ = a000 + a200x
2 + a010y + a020y

2 + a001z +
a011yz + a002z

2 ,

ẏ = b110xy + b101xz ,

ż = c101xz ,

with a000 > 0, a020 < 0, b110 > a200 > 0 and c101 <
a200, we can find ε > 0 sufficiently small such that
their solutions with initial conditions x(0) = 0,
y(0) = y0 and z(0) = z0, with (y0, z0) ∈ Dε, are
periodic solutions with very large periods. Moreover
all these systems are integrable.

The fact that all quadratic vector fields satisfy-
ing conditions (C1)–(C5) are integrable (see Propo-
sition 1.3) induces the following natural question.

Open question: Are the polynomial vector fields
satisfying conditions (C1)–(C5) having arbitrary
even degree integrable?

The periodic orbits of polynomial vector fields
near different kinds of heteroclinic loops having
two singular points at infinity and two straight
lines orbits connecting them (finite or not) have
been studied by several authors, see for in-
stance [Buzzi et al., 2004], [Llibre et. al, 2004] and
[Newell et. al, 1988]. We note that a big difference
between our system and these systems previously
studied is that we have a symmetry with respect to
a plane, and all these other systems have a symme-
try with respect to a straight line.

This paper is organized as follows. In Sec-
tion 2 we describe the Poincaré compactification
for polynomial vector fields in R3. In Section 3 we
prove Theorem 1.1. In Section 4 we prove Theo-
rem 1.2. Finally in Section 5 we analyze the class
of quadratic vector fields satisfying conditions (C1)–
(C5). In particular, we will prove Proposition 1.3,
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and we also will describe the global phase portrait
of a particular example of this class of quadratic
vector fields.

2. The Poincaré compactification in R3

A polynomial vector field X in Rn can be ex-
tended to a unique analytic vector field on the
sphere Sn. The technique for making such an exten-
sion is called the Poincaré compactification. The
Poincaré compactification allows us to study the
vector field in a neighbourhood of infinity which
is represented by the equator Sn−1 of the sphere
Sn. Poincaré introduced this technique for polyno-
mial vector fields in R2, its extension to Rn can be
found in [Cima et al., 1990]. Here we only consider
the Poincaré compactification for polynomial vector
fields in R3.

Let X = (P 1, P 2, P 3) be a polynomial vec-
tor field in R3, let x = (x1, x2, x3) and let m =
max{deg(P 1),deg(P 2),deg(P 3)} be the degree of
X.

We consider the unit sphere in R4, S3 = {y =
(y1, y2, y3, y4) ∈ R4 : ||y|| = 1}, which is called the
Poincaré sphere; and we consider the hyperplane
Π = {(x1, x2, x3, x4) ∈ R4 : x4 = 1} which is
the tangent to S3 at the northern pole (0, 0, 0, 1).
We note that Π is diffeomorphic to R3, then we
identify R3 with Π. Let H+ = {y ∈ S3 : y4 > 0}
and H− = {y ∈ S3 : y4 < 0} be the northern and
southern hemispheres of S3, respectively.

We consider the central projections f+ : Π =
R3 −→ H+ and f− : Π = R3 −→ H−, de-
fined by f+(x) = (x1, x2, x3, 1)/∆(x) and f−(x) =
−(x1, x2, x3, 1)/∆(x) respectively, where ∆(x) =
(1 +

∑3
i=1 x

2
i )

1/2. Through these central projec-
tions, R3 can be identified with the northern and
southern hemispheres of S3 respectively. So the vec-
tor field X induces a vector field X̃ in H+ ∪ H−
defined by X̃(y) = (Df+)xX(x) when y = f+(x),
and by X̃(y) = (Df−)xX(x) when y = f−(x).

We note that X̃(y) gives two copies of X one
on the northern hemisphere H+ and the other one
on the southern hemisphere H−. Moreover X̃(y) is
defined in H+ ∪H−, but in general it is not defined
on the equator S2 = {y ∈ S3 : y4 = 0} of S3. We
can extend analytically the vector field X̃(y) to the
whole sphere S3 in the following way

p(X)(y) = ym−1
4 X̃(y).

The vector field p(X) is called the Poincaré com-
patification of X.

The closed northern hemisphere is a closed ball
of R3, called the Poincaré ball D3, its interior is
diffeomorphic to R3 and its boundary S2 correspond
to the infinity of R3. We note that the boundary of
the Poincaré ball is invariant by the flow of p(X).
So p(X) allows us to study the behaviour of X in a
neighbourhood of infinity.

To compute the analytical expression for p(X)
we shall consider S3 as a differentiable manifold
and we choose the eight coordinate neighbourhoods
Ui = {y ∈ S3 : yi > 0} and Vi = {y ∈ S3 : yi < 0},
for i = 1, . . . , 4, with the corresponding coordinate
maps Fi : Ui −→ R3 and Gi : Vi −→ R3 defined by

Fi(y) = Gi(y) =
1
yi
yi = (z1, z2, z3) ,

where yi is the point (y1, y2, y3, y4) without the com-
ponent yi.

We do the computations of p(X) on the lo-
cal chart U1. The coordinate map on U1 is given
by F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3). We
note that the map F1 is the inverse of the central
projection from the origin to the tangent space of
S3 at the point (1, 0, 0, 0). The expression of p(X)
in this local chart U1 is given by (DF1)y(p(X)(y)),
which after doing the computations becomes

zm
3

(∆z)m−1

(
−z1P 1 + P 2,−z2P 1 + P 3,−z3P 1

)
,

where P i = P i(1/z3, z1/z3, z2/z3) and ∆z = (1 +∑3
i=1 z

2
i )1/2.

In a similar way we can deduce the expressions
for p(X) in the local charts U2 and U3. These are

zm
3

(∆z)m−1

(
−z1P 2 + P 1,−z2P 2 + P 3,−z3P 2

)
,

where P i = P i(z1/z3, 1/z3, z2/z3), and

zm
3

(∆z)m−1

(
−z1P 3 + P 1,−z2P 3 + P 2,−z3P 3

)
,

where P i = P i(z1/z3, z2/z3, 1/z3), respectively.
The expression for p(X) in the local chart U4

is (∆z)1−m(P 1, P 2, P 3) where P i = P i(z1, z2, z3).
Finally, the expression for p(X) in the local charts
Vi is the same as in Ui multiplied by (−1)m−1.

We note that with a convenient change of the
time we shall omit the factor 1/(∆z)m−1 in the ex-
pressions of p(X).
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Fig. 3. The Poincaré maps π : Σ −→ Σ and π′ :
Σ −→ Σ′.

3. Proof of Theorem 1.1

Let X be a polynomial vector field in R3 satisfying
conditions (C1)–(C5). Recall that a and b are the
origins of the local charts U1 and V1 of the Poincaré
ball D3, respectively. Let γ1 be the straight line
y = z = 0 in R3, and let γ2 (respectively, γ′2) be
the straight line at infinity z2 = z3 = 0 in the local
chart U2 (respectively, V2). From conditions (C2)–
(C5), the vector field p(X) possesses two hetero-
clinic loops L and L′ formed by the singular points
a and b connected by the straight lines γ1, γ2 and γ1,
γ′2, respectively, see Fig. 1. We denote by ϕ(t, q) the
flow generated by system X, satisfying ϕ(0, q) = q.

We consider the cross section Σ =
{(z1, z2, z3) ∈ U2 ∩ Int(D3) : z1 = 0} to the orbit
γ2 at the origin of the local chart U2, and the cross
section Σ′ = {(z1, z2, z3) ∈ V2∩Int(D3) : z1 = 0} to
the orbit γ′2 at the origin of the local chart V2, see
Fig. 3. As usual Int(D3) denotes the interior of the
Poincaré ball D3. In a neighbourhood of the origin
a of the local chart U1 we take three cross sections:
a cross section Σ1 to the orbit γ1 at a point q1 ∈ γ1

near a, a cross section Σ2 to the orbit γ2 at a point
q2 ∈ γ2 near a, and a cross section Σ′2 to the orbit
γ′2 at a point q′2 ∈ γ′2 near a. Finally, we consider
the cross section Σ = {(x, y, z) ∈ R3 : x = 0} to
the orbit γ1 at the origin.

We define two Poincaré maps π : Σ −→ Σ and
π′ : Σ −→ Σ′ in the following way. We consider the
diffeomorphism π0 : Σ → Σ1 defined by π0(q) = p,
where p is the point at which the orbit ϕ(t, q) in-
tersects the cross section Σ1 for the first time. By
the continuity of the flow ϕ with respect to initial
conditions, if q is sufficiently close to the origin of
Σ, then the orbit ϕ(t, q) is close to the orbit γ1 for

Fig. 4. The sets A1 and A′1 restricted to a rectangle
sufficiently small contained in Σ1.

all t in a finite interval of time. Since the orbit
γ1 expends a finite time for going from the origin
to q1, we can guarantee that for q sufficiently close
to the origin the orbit ϕ(t, q) intersects Σ1. Con-
sequently π0 is well defined in a sufficiently small
neighbourhood of the origin of Σ.

We note that a is a hyperbolic singular point
having the straight line z2 = z3 = 0 (in the local
chart U1) as the unstable manifold. Let W s(a) be
the stable manifold of a. All the orbits of X passing
through points of Σ1 \W s(a), that are sufficiently
close to q1 intersect either Σ2 or Σ′2. Let A1 and
A′1 be the set of points of Σ1 \W s(a) associated to
orbits that intersect Σ2 and Σ′2, respectively (see
Fig. 4). We can consider two diffeomorphisms, the
diffeomorphism π1 : A1 ⊂ Σ1 → Σ2 defined by
π1(q) = p, where p is the point at which the orbit
ϕ(t, q) intersects the cross section Σ2 for the first
time; and the diffeomporphism π′1 : A′1 ⊂ Σ1 → Σ′2
defined in a similar way.

We consider the diffeomorphism π2 : Σ2 → Σ
defined by π2(q) = p, where p is the point at which
the orbit ϕ(t, q) intersects the cross section Σ for
the first time. Clearly if q is sufficiently close to
q2, then π2 is well defined. We consider also the
diffeomorphism π′2 : Σ′2 → Σ′ defined in a similar
way.

For ε > 0 sufficiently small we define Dε =
{(0, y0, z0) ∈ Σ\W : 0 < y2

0 +z2
0 < ε2}, where W =

π−1
0 (W s(a) ∩ Σ1). We note that W is a differential

curve in Σ passing through the origin that separates
the punctured disc {(0, y0, z0) ∈ Σ : 0 < y2

0 + z2
0 <

ε2} into two components, Dε
1 and Dε

2. We consider
the Poincaré maps π : Σ −→ Σ and π′ : Σ −→ Σ′

defined by π = π2 ◦ π1 ◦ π0 and π′ = π′2 ◦ π′1 ◦ π0.
It is easy to see that if ε > 0 is sufficiently small,
then π and π′ are well defined in all Dε

1 ⊂ Σ and
Dε

2 ⊂ Σ, respectively.
From condition (C1), the vector field X
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is invariant under the symmetry (x, y, z, t)
−→ (−x, y, z,−t), this means that if φ(t) =
(x(t), y(t), z(t)) is an orbit of X, then
ψ(t) = (−x(−t), y(−t), z(−t)) is also an orbit.
This symmetry can be used in order to obtain
symmetric periodic orbits in the following way.
Using the symmetry it is easy to see that if
x(0) = 0, then the orbits φ(t) and ψ(t) must be
the same. Moreover, if there exists a time t > 0
such that x(t) = 0 and x(t) 6= 0 for all 0 < t < t,
then the orbit is periodic with period 2t. In other
words, if an orbit intersects the plane of symmetry
x = 0 at two different points, then it is a periodic
orbit.

We note that the sets Σ and Σ and Σ′ belong
to the plane of symmetry x = 0. Since for ε > 0
sufficiently small π(Dε

1) ⊂ Σ and π′(Dε
2) ⊂ Σ′, all

the orbits of X passing through points of Dε
1 (re-

spectively, Dε
2) intersect the plane of symmetry at

two different points, one in Σ and the other one in Σ
(respectively, Σ′). Therefore, for ε > 0 sufficiently
small the points of Dε = Dε

1 ∪ Dε
2 correspond to

initial conditions of symmetric periodic orbits of X
that are close to either the heteroclinic loop L or
the heteroclinic loop L′. This proves statement (a)
of Theorem 1.1.

The fact that for ε > 0 sufficiently small the
points of Dε correspond to periodic orbits of X im-
plies that W u(b) = W s(a). Indeed, if W u(b) 6=
W s(a), then W u(b) ∩ Σ would be a differentiable
curve in Σ passing through the origin different from
the curve W . Then by statement (a) the points of
W u(b) ∩ Dε would correspond to periodic orbits.
But the points of W u(b) could not correspond to
periodic orbits because the orbits passing through
these points tend to b when t → −∞. Therefore
W u(b) = W s(a). This proves statement (b) of The-
orem 1.1.

4. Proof of Theorem 1.2

We consider an arbitrary polynomial vector field
X = (P,Q,R) of even degree n with

P =
∑

06i+j+k6n

aijk x
iyjzk ,

Q =
∑

06i+j+k6n

bijk x
iyjzk

R =
∑

06i+j+k6n

cijk x
iyjzk .

Assuming that the straight line y = z = 0 is invari-
ant by the flow of X we have that bi00 = ci00 = 0 for
all i ∈ {0, 1, . . . , n}. Imposing that the system as-
sociated to X is invariant under the symmetry (C1)
we get that aijk = 0 for all odd i ∈ {1, . . . , n − 1},
and bijk = cijk = 0 for all even i ∈ {0, . . . , n}. Un-
der these conditions the flow on the straight line
y = z = 0 is given by

ẋ =
∑

0 6 i 6 n
i even

ai00 x
i = f(x) .

Since we want that the flow of X on the straight
line y = z = 0 does not contain any singular point,
we need that the equation f(x) = 0 has no real
solutions. Moreover since the flow on this straight
line must go in the increasing direction of the x–axis
we have that f(x) > 0 for all x ∈ R. In short, after
imposing conditions (C1)–(C3), we get conditions
(i) and (ii) of the theorem.

Now we analyze the vector field X at infinity.
We start imposing the condition (C5). The system
in the local chart U2 associated to the vector field
X is given by

ż1 = −
∑

0 6 i + j + k 6 n
i odd, j + k > 1

bijk z
i+1
1 zk

2 z
n−i−j−k
3 +

∑
0 6 i + j + k 6 n

i even

aijk z
i
1 z

k
2 z

n−i−j−k
3 ,

ż2 = −
∑

0 6 i + j + k 6 n
i odd, j + k > 1

bijk z
i
1 z

k+1
2 zn−i−j−k

3 +

∑
0 6 i + j + k 6 n
i odd, j + k > 1

cijk z
i
1 z

k
2 z

n−i−j−k
3 ,

ż3 = −
∑

0 6 i + j + k 6 n
i odd, j + k > 1

bijk z
i
1 z

k
2 z

n−i−j−k+1
3 .

Imposing that the straight line z2 = z3 = 0 is in-
variant by the flow, we have that ci,n−i,0 = 0 for all
odd i ∈ {1, . . . , n − 1}; that is, we have obtained
condition (iv). On the other hand, we need that
the straight line z2 = z3 = 0 in the local chart U2

does not contain any singular point and the flow on
it goes in the decreasing direction of the z1–axis.
The flow on this straight line is given by ż1 = g(z1)
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with

g(z1) =
∑

0 6 i 6 n
i even

ai,n−i,0 z
i
1 −

∑
0 6 i 6 n

i odd

bi,n−i,0 z
i+1
1 .

Then, we need that g(z1) < 0 for all z1 ∈ R. Hence,
condition (vi) is obtained.

Now we impose the condition (C4); that is,
we impose that the origin a of the chart U1 be
a hyperbolic singular point with the straight line
z2 = z3 = 0 as the local unstable manifold. The
system in the local chart U1 associated to the vec-
tor field X is given by

ż1 = −
∑

0 6 i + j + k 6 n
i even

aijk z
j+1
1 zk

2 z
n−i−j−k
3 +

∑
0 6 i + j + k 6 n
i odd, j + k > 1

bijk z
j
1 z

k
2 z

n−i−j−k
3 ,

ż2 = −
∑

0 6 i + j + k 6 n
i even

aijk z
j
1 z

k+1
2 zn−i−j−k

3 +

∑
0 6 i + j + k 6 n
i odd, j + k > 1

cijk z
j
1 z

k
2 z

n−i−j−k
3 ,

ż3 = −
∑

0 6 i + j + k 6 n
i even

aijk z
j
1 z

k
2 z

n−i−j−k+1
3 .

Since cn−1,1,0 = 0, the linear part of this system at
the origin is the matrix M given by −an00 + bn−1,1,0 bn−1,0,1 0

0 −an00 + cn−1,0,1 0
0 0 −an00

 .

The eigenvalues of M are −an00, −an00 + bn−1,1,0

and −an00 + cn−1,0,1, and the eigenvectors associ-
ated to these eigenvalues are (0, 0, 1), (1, 0, 0) and
(−bn−1,0,1/(bn−1,1,0 − cn−1,0,1), 1, 0), respectively.
We note that the third eigenvector of M is defined
only when bn−1,1,0−cn−1,0,1 6= 0. The necessary and
sufficient conditions for the hyperbolicity of the sin-
gular point a and for W u(a) = {z2 = z3 = 0}, are
an00 > 0, −an00+bn−1,1,0 > 0 and−an00+cn−1,0,1 <
0. We note that if those conditions are satisfied then
bn−1,1,0− cn−1,0,1 > 0. So we obtain conditions (iii)
and (v). This completes the proof of Theorem 1.2.

5. The quadratic systems

In this section we will analyze the class of quadratic
systems that satisfy conditions (C1)–(C5). From

Theorem 1.2 the most general quadratic system sat-
isfying conditions (C1)–(C5) is

ẋ = a0 + a1x
2 + a2y + a3y

2 + a4z + a5yz + a6z
2,

ẏ = b1xy + b2xz, (1)
ż = cxz,

with a0 > 0, a3 < 0, b1 > a1 > 0 and c < a1.
We note that by rescaling conveniently the time

and the variables we can reduce by four the num-
ber of parameters, but we shall work with all the
parameters.

The next lemma proves the final state-
ment of Proposition 1.3. The previous part of
Proposition 1.3 follows immediately from Theo-
rems 1.1 and 1.2.

Lemma 5.1. For all the values of the parameters
satisfying conditions a0 > 0, a3 < 0, b1 > a1 > 0
and c < a1, system (1) has two independent first
integrals, and therefore it is integrable.

Proof. We will distinguish two cases: c 6= 0 and
c = 0. We start analyzing the case c = 0. Clearly
when c = 0, H1 = z is a first integral of (1), and it
is easy to cheek that the function H2 given by

|b1y + b2z|−2a1

[
a0

(
2a1

2 − 3a1b1 + b1
2
)

+

2a1
3x2 + z

(
a4b1

2 − a2b1b2 +
(
a6b1

2 − a5b1b2 +
a3b2

2
)
z
)

+ a1
2
(
− 3b1x2 + 2

(
a2y + a3y

2 + z
(
a4 +

a5y + a6z
)))

+ a1

(
b21x

2 + b2z
(
a2 + 2a3y + a5z

)
−

b1
(
2a2y + a3y

2 + z
(
3a4 + 2a5y + 3a6z

)))]b1
,

is another first integral of system (1). Moreover, it
is immediate to verify that if b1 6= 2a1, then the
first integrals H1 and H2 are independent. When
b1 = 2a1 the function F2 given by

1
2a1y + b2z

[
4a0a1

2 + 4a1
3x2 − 4a1

2a3y
2 +

4a1
2a4z − 2a1a2b2z − 2a1a3b2yz + 4a1

2a6z
2 −

2a1a5b2z
2 + a3b2

2z2 − 2
(
2a1y + b2z

)(
− a3b2z +

a1

(
a2 + a5z

))
ln |2a1y + b2z|

]
,

is another first integral of (1) independent with H1

when c = 0.
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Now we analyze the case c 6= 0. We can verify
that when c 6= 0

H1 = |z|−b1

(
y +

b2z

b1 − c

)c

,

and the function H2 given by

|z|−2a1
[
a1 (b1 − 2a1) (b1 − a1) (c− 2a1) (c− a1)

(b1 + c− 2a1)x2 − 8a0a1
5 + 16a0a1

4b1 −
10a0a1

3b1
2 + 2a0a1

2b1
3 + 16a0a1

4c− 30a0a1
3b1c+

17a0a1
2b1

2c− 3a0a1b1
3c− 10a0a1

3c2 +
17a0a1

2b1c
2 − 8a0a1b1

2c2 + a0b1
3c2 + 2a0a1

2c3 −
3a0a1b1c

3 + a0b1
2c3 − 8a1

5a2y + 12a1
4a2b1y −

4a1
3a2b1

2y + 16a1
4a2cy − 22a1

3a2b1cy +
6a1

2a2b1
2cy − 10a1

3a2c
2y + 12a1

2a2b1c
2y −

2a1a2b1
2c2y + 2a1

2a2c
3y − 2a1a2b1c

3y −
8a1

5a3y
2 + 8a1

4a3b1y
2 − 2a1

3a3b1
2y2 +

16a1
4a3cy

2 − 14a1
3a3b1cy

2 + 3a1
2a3b1

2cy2 −
10a1

3a3c
2y2 + 7a1

2a3b1c
2y2 − a1a3b1

2c2y2 +
2a1

2a3c
3y2 − a1a3b1c

3y2 − 8a1
5a4z +

16a1
4a4b1z − 10a1

3a4b1
2z + 2a1

2a4b1
3z −

4a1
4a2b2z + 6a1

3a2b1b2z − 2a1
2a2b1

2b2z +
12a1

4a4cz − 22a1
3a4b1cz + 12a1

2a4b1
2cz −

2a1a4b1
3cz + 6a1

3a2b2cz − 8a1
2a2b1b2cz +

2a1a2b1
2b2cz − 4a1

3a4c
2z + 6a1

2a4b1c
2z −

2a1a4b1
2c2z − 2a1

2a2b2c
2z + 2a1a2b1b2c

2z −
8a1

5a5yz + 12a1
4a5b1yz − 4a1

3a5b1
2yz −

8a1
4a3b2yz + 4a1

3a3b1b2yz + 12a1
4a5cyz −

18a1
3a5b1cyz + 6a1

2a5b1
2cyz + 12a1

3a3b2cyz −
6a1

2a3b1b2cyz − 4a1
3a5c

2yz + 6a1
2a5b1c

2yz −
2a1a5b1

2c2yz − 4a1
2a3b2c

2yz + 2a1a3b1b2c
2yz −

8a1
5a6z

2 + 16a1
4a6b1z

2 − 10a1
3a6b1

2z2 +
2a1

2a6b1
3z2 − 4a1

4a5b2z
2 + 6a1

3a5b1b2z
2 −

2a1
2a5b1

2b2z
2 − 4a1

3a3b2
2z2 + 2a1

2a3b1b2
2z2 +

8a1
4a6cz

2 − 14a1
3a6b1cz

2 + 7a1
2a6b1

2cz2 −
a1a6b1

3cz2 + 2a1
3a5b2cz

2 − 3a1
2a5b1b2cz

2 +
a1a5b1

2b2cz
2 + 2a1

2a3b2
2cz2 − a1a3b1b2

2cz2 −
2a1

3a6c
2z2 + 3a1

2a6b1c
2z2 − a1a6b1

2c2z2
]c
,

are two first integrals of (1). Moreover if b1 6= 2a1

and c 6= 2a1 − b1, then these two first integrals are
independent. When b1 = 2a1 the function F2 given

by

|z|−2a1

[
a1 (a1 − c) c(c− 2a1)

2x2 − a3 (a1 − c) c

(2a1y − cy + b2z)
2 − 2a1 (a1 − c)

(
2a1a5 −

2a3b2 − a5c
)
z (2a1y − cy + b2z) +

c
(
a0 (a1 − c) (c− 2a1)

2 + a1z
(
2a2b2c+ 2a4c

2 +

a3b2
2z + a5b2cz + a6c

2z + 4a1
2 (a4 + a6z)−

2a1 (a2b2 + 3a4c+ a5b2z + 2a6cz)
))
−

2a1a2 (a1 − c) (2a1 − c) (2a1y − cy + b2z) ln |z|
]c
,

is another first integral of (1) independent with H1;
and when c = 2a1 − b1 the function G2 given by

|z|−2a1

[
2a0(a1 − b1)

2 (2a1 − b1) b1 + 2a1

(a1 − b1)
2 (2a1 − b1) b1x2 + a1

(
8a1

3a4z −

2a1b1
(
4a2 (b1y + b2z) + a3y (3b1y + 2b2z) +

z (−8a4b1 − 3a6b1z + a5b2z)
)

+ b1
2
(
4a2

(
b1y

+b2z
)

+ 2a3y (b1y + b2z) + z
(
− 4a4b1 −

2a6b1z + a5b2z
))

+ 4a1
2
(
a2 (b1y + b2z) +

b1
(
a3y

2 − z (5a4 + a6z)
) ))

− 2a1b1
(
a1a5 −

a5b1 + a3b2
)
z (2a1y − 2b1y − b2z) ln |z|

]2a1−b1
,

is also a first integral of (1) independent with H1.
We note that the case b1 = 2a1 and c = 2a1 − b1 is
not possible because c 6= 0. �

Next we give a complete description of the
global phase portrait of a particular quadratic sys-
tem satisfying conditions (C1)–(C5). For our analy-
sis we choose the system

ẋ = 1 +
x2

2
− y2 , ẏ = xy , ż = −xz . (2)

The phase portrait of system (2) is the descrip-
tion of R3 (the domain of definition of system (2))
as union of its orbits. It is well known that all
the orbits of a system of differential equations are
either an equilibrium point {p}, a periodic orbit dif-
feomorphic to S1, or a curve diffeomorphic to R.

By the proof of Lemma 5.1, system (2) is inte-
grable with the two independent first integrals

H1 = y z , and H2 = (2 + x2 + 2y2) z .
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Fig. 5. Phase portrait of system (2) on the invariant
plane z = 0.

Clearly the sets Ih1 = {(x, y, z) ∈ R3 : H1 = h1},
Ih2 = {(x, y, z) ∈ R3 : H2 = h2} and Ih1 h2 =
{(x, y, z) ∈ R3 : H1 = h1, H2 = h2} are invariant
by the flow of (2). Moreover the phase portrait of
(2) is essentially given by the foliation of the phase
space of (2) by the sets Ih1 h2 depending on the val-
ues of h1 and h2. We note that the first integrals
H1 and H2 are independent for all (x, y, z) ∈ R3

except for the points of the plane z = 0 and the
points of the straight lines x = 0, y = ±1. It is
easy to see that the straight lines x = 0, y = ±1
are lines of equilibrium points of system (2). On
the other hand, the plane z = 0 is invariant by the
flow of (2).

We start analyzing the flow on z = 0. System
(2) restricted to this plane is

ẋ = 1 +
x2

2
− y2 , ẏ = xy . (3)

This system has the first integral F1 = (2 + x2 +
2 y2)/y. Computing the sets If1 = {(x, y) ∈ R2 :
F1 = f1} we see that If1 is diffeomorphic to

∅ if |f1| < 4,
{p} if |f1| = 4,
S1 if |f1| > 4,

where p = (0,−1) if f1 = −4 and p = (0, 1) if f1 =
4. The phase portrait of system (3) is described in
Fig. 5.

Now we analyze the foliation of the space E =
{(x, y, z) ∈ R3 : z 6= 0} by the sets Ih1 and
Ih1 h2 . First we compute the sets Ih1 . Clearly,
Ih1 = {(x, y, z) ∈ R3 : y = h1/z}. We note that this

Fig. 6. Projection of the sets Ih1 on the plane x = 0.

set is homeomorphic to two copies of R2 if h1 6= 0,
and it is the plane y = 0 when h1 = 0, see Fig. 6.

Fixed a value of h1, we analyze the set Ih1 h2

which is given by{
(x, y, z) ∈ R3 : x = ±

√
h2 z − 2h2

1 − 2z2

z2

}
.

Let f(h1, h2, z) = h2 z−2h2
1−2z2 and g(h1, h2, z) =

(h2 z − 2h2
1 − 2z2)/z2. It is easy to check that if

h2
2 − 16h2

1 < 0 then f(h1, h2, z) < 0 for all z ∈ R. If
h2

2−16h2
1 = 0, then f(h1, h2, z) < 0 for all z 6= h2/4

and f(h1, h2, h2/4) = 0. Finally if h2
2 − 16h2

1 >
0, then f(h1, h2, z) > 0 for all z ∈ (α, β) =
((h2 −

√
h2

2 − 16h1
2)/4, (h2 +

√
h2

2 − 16h1
2)/4)

and f(h1, h2, α) = f(h1, h2, β) = 0. We note
that if h1 = 0, then α = 0 and the function
g(h1, h2, z) is not defined for z = 0. In particu-
lar, if h1 = h2 = 0, then g(0, 0, z) < 0 for all
z ∈ R. If h1 = 0 and h2 > 0 (respectively,
h2 < 0), then g(0, h2, z) > 0 for all z ∈ (0, h2/2),
g(0, h2, h2/2) = 0 and limz→0+ g(0, h2, z) = +∞
(respectively, g(0, h2, z) > 0 for all z ∈ (h2/2, 0),
g(0, h2, h2/2) = 0 and limz→0− g(0, h2, z) = +∞).
In short, Ih1 h2 is diffeomorphic to

∅ if either h2
2 − 16h2

1 < 0 or h1 = h2 = 0,
{p} if h2

2 − 16h2
1 = 0 and h1 6= 0,

S1 if h2
2 − 16h2

1 > 0 and h1 6= 0,
R if h2

2 − 16h2
1 > 0 and h1 = 0,

where p = (0, 4h1/h2, h2/4). This result is summa-
rized in Fig. 7.

We note that the plane y = 0 is invariant by the
flow of (2) and it corresponds to the invariant set
Ih1 with h1 = 0. In Fig. 8(a) we give the foliation
of I0 by the invariant sets I0 h2 . In Fig. 8(b) we
give the foliation of the set Ih1 , for a fixed value
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Fig. 7. Topology of the sets Ih1 h2 .

of h1 6= 0, by the invariant sets Ih1 h2 . We remark
that in Fig. 8(b) we only plot the coordinates x
and z, the coordinate y can be obtained through
the equation H1 = h1. Finally in Fig. 9 we give a
3–dimensional representation of the phase portrait
of system (2) restricted to E1 = Ih1 ∩ {(x, y, z) ∈
R3 : y > 0, z > 0} for h1 = 0, and for h1 6= 0.
Since system (2) is invariant under symmetries

(x, y, z, t) −→ (−x, y, z,−t) ,
(x, y, z, t) −→ (−x,−y,−z, t) ,
(x, y, z, t) −→ (−x, y,−z,−t) ,

the phase portrait on the sets Ih1 ∩{(x, y, z) ∈ R3 :
y > 0, z 6 0}, Ih1 ∩ {(x, y, z) ∈ R3 : y 6 0, z >
0} and Ih1 ∩ {(x, y, z) ∈ R3 : y 6 0, z 6 0} is
topologically the same.

From the analysis of the phase portrait of sys-
tem (2), we see that the set of non–periodic orbits
of the system has zero Lebesgue measure.
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