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Abstract

In this paper we prove that there are only two different classes of central configura-
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We also analyze the central configurations with convenient masses located at the
vertices of three nested regular tetrahedra when one them is a homothecy of the
other one, and the third one is a homothecy followed by a rotation of Euler angles
α = γ = 0 and β = π of the other two.

In all these cases we have assumed that the masses on each tetrahedron are equal
but masses on different tetrahedra could be different.
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1 Introduction

The equations of motion of the N–body problem in the 3–dimensional Eu-
clidean space are

mi q̈i = −
N∑

j=1, j 6=i

G mi mj
qi − qj

|qi − qj|3
, i = 1, . . . , N ,

where qi ∈ R
3 is the position vector of the punctual mass mi in an inertial

coordinate system and G is the gravitational constant which can be taken
equal to one by choosing conveniently the unit of time. We fix the center of
mass

∑N
i=1 mi qi/

∑N
i=1 mi of the system at the origin of R3N . The configuration

space of the N–body problem in R3 is

E = {(q1, . . . ,qN) ∈ R
3N :

N∑

i=1

mi qi = 0, qi 6= qj , for i 6= j} .

Given positive masses m1, . . . , mN a configuration (q1, . . . ,qN) ∈ E is central
if there exists a positive constant λ such that

q̈i = −λqi , i = 1, . . . , N . (1)

That is if the acceleration q̈i of each point mass mi is proportional to its
position qi relative to the center of mass of the system and is directed towards
the center of mass. On a central configuration system (1) can be written as

N∑

j=1, j 6=i

mj
qi − qj

|qi − qj |3/2
= λqi , i = 1, . . . , N . (2)

Therefore a central configuration (q1, . . . ,qN) ∈ E of the N–body problem
with positive masses m1, . . . , mN is a solution of (2) with λ > 0.

Two central configurations in R3 are in the same class if there exists a rotation
and a homothecy of R3 which transform one into the other.

A general rotation in the 3-dimensional Euclidean space having the origin of
coordinates fixed is an element of SO(3) that can be parametrized by using
the Euler angles (α, β, γ) via the rotation matrix R given by




cos γ sin γ 0

− sin γ cos γ 0

0 0 1







1 0 0

0 cos β sin β

0 − sin β cos β







cos α sin α 0

− sin α cos α 0

0 0 1




,
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where α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π), see for more details [4].

Consider two regular tetrahedra with vertices qi and qi+4 for i = 1, . . . , 4
respectively. We say that these two tetrahedra are nested if they have the
same center and the positions of the vertices of the two tetrahedra satisfy the
relation qi+4 = ρRqi for all i = 1, . . . , 4, for some scale factor ρ and for some
rotation matrix R. Notice that if ρ = 1, then R 6= Id where Id denotes the
identity matrix.

In a similar way if we consider three regular tetrahedra with vertices qi, qi+4

and qi+8 for i = 1, . . . , 4 respectively, then these three tetrahedra are called
nested if they have the same center and the positions of the vertices of the
three tetrahedra satisfy the relations qi+4 = ρRqi and qi+8 = RR′ qi for all
i = 1, . . . , 4, for some scale factors ρ and R and for some rotation matrices R
and R′.

In [6] and in [2] it is proved that the configuration formed by 4 equal masses
m1 located at the vertices of a regular tetrahedron and 4 additional masses
m2 located at the vertices of a second nested regular tetrahedron is central for
the 8–body problem when R = Id and the ratio of the masses m2/m1 and the
scale factor ρ satisfy a convenient relation. In [5] it is proved that this kind of
central configurations is also central when R is the rotation matrix of Euler
angles α = 0, β = π and γ = 0. In Section 2 we summarize these results and
we prove that these are the two unique classes of central configurations formed
by two nested regular tetrahedra of the 8–body problem, see Theorem 2.

In Section 3 we provide a new class of central configurations of the 12–body
problem consisting of three nested regular tetrahedra with one of them rotated
with respect to the other two by a rotation matrix with Euler angles α = 0,
β = π and γ = 0. Of course on each tetrahedron the four masses located on
its vertices are equal, see Result 3. The central configurations of the 12–body
problem consisting of three nested regular tetrahedra when R = R′ = Id have
been described in [3].

2 Two nested tetrahedra

In this section we study the spatial central configurations of the 8–body prob-
lem with the masses located at the vertices of two nested regular tetrahedra.
In particular we give all classes of central configurations formed by two nested
regular tetrahedra of the 8–body problem

We assume that the masses on each tetrahedron are equal but the masses on
different tetrahedra could be different. Taking conveniently the unit of masses
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we can assume that the masses of the tetrahedron with scale factor 1 are equal
to one, that is m1 = m2 = m3 = m4 = 1, and the ones of the tetrahedron
with scale factor ρ are equal to m, that is m5 = m6 = m7 = m8 = m. We also
choose the unit of length in such a way that the edges of the tetrahedron with
scale factor 1 have length 2.

Recall that the set of spatial central configurations is invariant under homoth-
ecies and rotations of SO(3). So without loss of generality we can assume that
ρ > 1 and that the positions of the vertices of the tetrahedron with scale factor

1 are a1 = (0, 0,
√

3/2)T , a2 = (0, 2/
√

3,−1/
√

6)T , a3 = (1,−1/
√

3,−1/
√

6)T

and a4 = (−1,−1/
√

3,−1/
√

6)T .

In what follows a configuration of two nested regular tetrahedra means the
configuration consisting of four equal masses m1 = m2 = m3 = m4 = 1 at
the vertices of a regular tetrahedron having the positions ai for i = 1, . . . , 4
and four additional masses m5 = m6 = m7 = m8 = m at the vertices of a
regular tetrahedron having positions qi+4 = ρR ai for i = 1, . . . , 4, for some
scale factor ρ > 1 and for some rotation matrix R.

We say that two configurations of two nested regular tetrahedra with ro-
tation matrices R and R′ respectively are in the same class if R and R′

are such that the set {q5,q6,q7,q8} is the same for R and R′; that is, if
{Ra1,Ra2,Ra3,Ra4} = {R′a1,R′a2,R′a3,R′a4}.

As usual < u,v >= uTv denotes the scalar product of the vectors u and v.

Lemma 1 Let

f(i) =
4∑

j=1

3/2 − ρ < ai,Raj >

(3ρ2/2 − 2ρ < ai,Raj > +3/2)3/2
,

g(i)=
4∑

j=1

3ρ/2− < Rai, aj >

(3ρ2/2 − 2ρ < Rai, aj > +3/2)3/2
,

for i = 1, . . . , 4.

A configuration of two nested regular tetrahedra is central for the 8–body prob-
lem if and only if one of the following statements hold.

(a) f(1) = f(2) = f(3) = f(4), g(1) = g(2) = g(3) = g(4), 2f(1)/3−1/(2ρ3) 6=
0,

λ = 1/2 + 2mf(i)/3 > 0 and m =
2g(1)/(3ρ) − 1/2

2f(1)/3 − 1/(2ρ3)
> 0.

(b) f(1) = f(2) = f(3) = f(4), g(1) = g(2) = g(3) = g(4), 2f(1)/3−1/(2ρ3) =
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2g(1)/(3ρ)− 1/2 = 0 and λ = 1/2 + 2mf(i)/3 > 0 and m > 0.

PROOF. It is easy to check that at the configuration of two nested tetrahe-
dra, system (2) can be written as

4∑

j=1,j 6=i

ai − aj

|ai − aj |3
+ m

4∑

j=1

ai − ρRaj

|ai − ρRaj |3
= λai , (3)

4∑

j=1

ρRai − aj

|ρRai − aj |3
+ m

4∑

j=1,j 6=i

ρRai − ρRaj

|ρRai − ρRaj |3
= λρRai , (4)

for i = 1, . . . , 4. We do the scalar product of the i–th equation of (3) with the
vector ai and the scalar product of the i–th equation of (4) with the vector
Rai and we get

4∑

j=1,j 6=i

< ai, ai > − < ai, aj >

|ai − aj |3
+ m

4∑

j=1

< ai, ai > −ρ < ai,Raj >

|ai − ρRaj |3

= λ < ai, ai > , (5)
4∑

j=1

ρ < Rai,Rai > − < Rai, aj >

|ρRai − aj |3
+ m

4∑

j=1,j 6=i

ρ < Rai,Rai > −ρ < Rai,Raj >

|ρRai − ρRaj |3

= λρ < Rai,Rai > , (6)

for i = 1, . . . , 4. It is easy to check that < ai, ai >=< Rai,Rai >= 3/2,
< Rai,Raj >=< ai, aj >, |ρRai − ρRaj |3 = ρ3|ai − aj |3 and

4∑

j=1,j 6=i

< ai, ai > − < ai, aj >

|ai − aj |3
=

3

4
,

for all i = 1, . . . , 4. On the other hand

|ai − ρRaj | =
(
3ρ2/2 − 2ρ < ai,Raj > +3/2

)1/2

,

|ρRai − aj | =
(
3ρ2/2 − 2ρ < Rai, aj > +3/2

)1/2

.

So equations (5) and (6) become

3

4
+ m f(i) =

3

2
λ , g(i) + m

3

4ρ2
=

3ρ

2
λ , (7)

for i = 1, . . . , 4. In short, the configuration consisting of two nested tetrahedra
is central if and only if λ and m is a solution of (7) satisfying that λ > 0 and
m > 0.
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From the first equation of (7) we have that λ = 1/2+2mf(i)/3 for i = 1, . . . , 4,
this implies that f(1) = f(2) = f(3) = f(4). From the second equation of (7)
we have λ = 2g(i)/(3ρ) + m/(2ρ3) for i = 1, . . . , 4, so g(1) = g(2) = g(3) =
g(4). Equating both expressions of λ for i = 1 we have that if 2f(1)/3 −
1/(2ρ3) 6= 0, then

m =
2g(1)/(3ρ)− 1/2

2f(1)/3 − 1/(2ρ3)
.

This proves statement (a).

Moreover if 2f(1)/3−1/(2ρ3) = 2g(1)/(3ρ)−1/2 = 0, then the solution of (7)
is λ = 1/2+2mf(i)/3 > 0 and m > 0, which concludes the prove of statement
(b).

Theorem 2 The following statements hold.

(a) There are two unique classes of central configurations of two nested regular
tetrahedra.

(a.1) The class of configurations of Type I with {q5,q6,q7,q8} = {ρa1, ρa2, ρa3,
ρa4}.

(a.2) The class of configurations of Type II with {q5,q6,q7,q8} = {ρRa1, ρRa2,
ρRa3, ρRa4} and

R = P =




1 0 0

0 −1 0

0 0 −1




.

These two classes of configurations are shown in Figure 1.
(b) (see [2,6]) The configuration of Type I is central for the spatial 8–body prob-

lem when

m = mI(ρ) =
n(ρ)

d(ρ)
=

(2/3)3/2

(ρ − 1)2
− ρ

2
+

2
√

2 (3ρ + 1)

(3ρ2 + 2ρ + 3)3/2

−1/2

ρ2
− (2/3)3/2ρ

(ρ − 1)2
+

2
√

2 ρ (ρ + 3)

(3ρ2 + 2ρ + 3)3/2

,

and ρ > α = 1.8899915758 . . . , where α is the unique real solution of n(ρ) =
0 for ρ > 1. Moreover, fixed a value of m > 0 there exists a unique ρ > α
for which the configurations of Type I is central.

(c) (see [5]) The configuration of Type II is central for the spatial 8–body problem
when

m = mII(ρ) =
n(ρ)

d(ρ)
=

−ρ

2
+

2
√

2(3ρ − 1)

(3ρ2 − 2ρ + 3)3/2
+

(2/3)3/2

(ρ + 1)2

− 2
√

2(ρ − 3)ρ

(3ρ2 − 2ρ + 3)3/2
+

(2/3)3/2ρ

(ρ + 1)2
− 1

2ρ2

,
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(a) Conf. of Type I
ρ > 1

(b) Conf. of Type II
1 6 ρ 6 3

(c) Conf. of Type II
ρ > 3

Fig. 1. Plot of the possible classes of configurations of two nested regular tetrahedra.
Notice that we have two possibilities for the configurations of Type II, in (b) the
faces of both tetrahedra intersect whereas in (c) they do not intersect.

and ρ ∈ [1, α1) ∪ (α2,∞) where α1 = 1.3981650369 . . . is the unique real
solution of n(ρ) = 0 with ρ > 1 and α2 = 6.5360793703 . . . is the unique
real solution of d(ρ) = 0 with ρ > 1. Moreover the following statements
hold.

(c.1) There is a unique central configuration of Type II with ρ ∈ [1, α1) for
m ∈ (0, 1]. In this configuration the faces of both tetrahedra intersect.

(c.2) Let α3 = 8.7756058918 . . . be the unique real solution of (n(ρ)/d(ρ))′ with
ρ > 1 and m0 = n(α3)/d(α3) = 2880.33 . . . . There are no central configu-
rations for m ∈ (1, m0).

(c.3) There is a unique central configuration of Type II with ρ = α3 for m = m0.
In this configuration the faces of the tetrahedra do not intersect.

(c.4) There are two central configurations of Type II, one with ρ ∈ (α2, α3) and
the other with ρ ∈ (α3,∞), for m ∈ (m0,∞). In this configuration the
faces of the tetrahedra do not intersect.

In [6,5] the authors also consider values of the scale factor ρ ∈ (0, 1]. The
results for the values of ρ in (0, 1] can be obtained from the ones given in
Theorem 2 by replacing m by 1/m and ρ by 1/ρ. In particular, fixed a value
of m > 0 there exists a unique 0 < ρ < 1/α = 0.5291028874 . . . for which the
configurations of Type I is central. There is a unique central configuration of
Type II with ρ ∈ (1/α1, 1] = (0.7152231486 . . . , 1] for m ∈ [1, +∞). There is
a unique central configuration of Type II with ρ = 1/α3 = 0.1139522458 . . .
for m = 1/m0 = m̃0 = 0.0003471823 . . . . There are two central configurations
of Type II, one with ρ ∈ (1/α3, 1/α2) = (0.1139522458 . . . , 0.1529969280 . . . )
and the other one with ρ ∈ (0, 1/α3) = (0, 0.1139522458 . . . ), for m ∈ (0, m̃0).

PROOF. [Proof of Theorem 2] We know that the spatial central configura-
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tions are invariant under rotations of SO(3). Consider the rotation

A =




1/2
√

3/2 0

1/(2
√

3) −1/6 2
√

2/3
√

2/3 −
√

2/3 −1/3




.

It is easy to check that Aa1 = a2, Aa2 = a3, Aa3 = a1 and Aa4 = a4.
Since the rotation A leaves invariant the tetrahedron with scale factor 1, it
also must leave invariant the one with scale factor ρ. This means that the
sets {q5,q6,q7,q8} and {Aq5, Aq6, Aq7, Aq8} must be the same. Then either
Aq5 = q5, or Aq5 = q6, or Aq5 = q7, or Aq5 = q8. On the other hand, by
Lemma 1 the rotation matrix R provides a central configuration of two nested
tetrahedra if f(1) = f(2) = f(3) = f(4) and g(1) = g(2) = g(3) = g(4).

We start analyzing the solutions of system f5 = Aq5 − q5 = 0 where

f5 =




−
sin β

(√
3 sin γ − 3 cos γ

)

2
√

2
2 cosβ√

3
+

1

12
sin β

(
3
√

2 sin γ − 7
√

6 cos γ
)

sin β

(
sin γ − cos γ√

3

)
− 2

√
2

3
cos β




.

From the first equation of f5 = 0 we have that either β = 0, or β = π, or
γ = π/3, or γ = 4π/3. It is easy to check that β = 0 and β = π do not provide
solutions of the full system f5 = 0. If γ = π/3, then there is a unique solution
of f5 = 0 with β ∈ [0, π], the solution (α, β, γ) = (α, 2 arctan(1/

√
2), π/3) =

σ1(α). When γ = 4π/3 system f5 = 0 has a unique solution with β ∈ [0, π]
which is given by (α, β, γ) = (α, 2 arctan

√
2, 4/3) = σ2(α). These two solu-

tions of f5 = 0 leave invariant the tetrahedron with scale factor ρ.

It only remains to find the values of α for which σ1(α) and σ2(α) satisfy that
f(1) = f(2) = f(3) = f(4) and g(1) = g(2) = g(3) = g(4). The functions f(i)
and g(i) evaluated at σ1(α) are given by

f(1) = f(2) = f(3) = −
√

2(ρ − 3)

(3ρ2 − 2ρ + 3)3/2
+ F (α) + F (α + 2π/3) + F (α + 4π/3),

f(4) =

√
2/3

(ρ + 1)2
− 3

√
2(ρ − 3)

(3ρ2 − 2ρ + 3)3/2
,

g(1) =
3
√

2(3ρ − 1)

(3ρ2 − 2ρ + 3)3/2
+

√
2/3

(ρ + 1)2
,

g(2) = g(3) = g(4) =

√
2(3ρ − 1)

(3ρ2 − 2ρ + 3)3/2
+ G(α) + G(α + 2π/3) + G(α + 4π/3),
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where

F (α)=

√
6(8ρ cos α + ρ + 9)

(9ρ2 + 16ρ cos α + 2ρ + 9)3/2
,

G(α)=

√
6(9ρ + 8 cosα + 1)

(9ρ2 + 16ρ cos α + 2ρ + 9)3/2
.

We must find the values of α for which σ1(α) is a solution of system e1(α) =
f(1) − f(4) = 0 and e2(α) = g(1) − g(2) = 0. We consider the additional
equation

e(α) =
e1(α) + e2(α)

ρ − 1
= H0 − H(α) − H(α + 2π/3) − H(α + 4/π/3) = 0,

where

H0 =
8
√

2

(3ρ2 − 2ρ + 3)3/2
,

H(α)=
8
√

6(1 − cos α)

(9ρ2 + 16ρ cos α + 2ρ + 9)3/2
.

Notice that H0 > 0 for all ρ > 1 and H(α) > 0 for all ρ > 1 and α ∈ [0, 2π).
Next we prove that e(α) 6 0 for all ρ > 1 and α ∈ [0, 2π). First we find the
minimum values of the function h(α) = H(α)+H(α+2π/3)+H(α+4/π/3).

It is easy to check that h(α) is a periodic function of period 2π/3. Moreover
h(2π/3 − α) = h(α) so it is sufficient to study the behaviour of h(α) for
α ∈ [0, π/3]. The possible minimums of h(α) are given by the solutions of
h′(α) = 0 where

h′(α) = H ′(α) + H ′(α + 2π/3) + H ′(α + 4π/3),

and

H ′(α) =
8
√

6 (9ρ2 − 8ρ cos α + 26ρ + 9) sin α

(9ρ2 + 16ρ cos α + 2ρ + 9)5/2
.

In order to solve equation h′(α) = 0, we eliminate the radicals and the de-
nominators of the equation by using the procedure described in the Appendix
and we set c = cos α. The result is the polynomial equation

21233664(c− 1)(c + 1)(2c − 1)2(2c + 1)2ρ2 E(c, ρ) = 0, (8)

in the variable c with coefficients depending on ρ where E(c, ρ) is a polynomial
of degree 21 in c. Notice that we are only interested in solutions of h′(α) = 0
with α ∈ [0, π/3], so we only consider solutions of (8) with c ∈ [1/2, 1].
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We solve symbolically with the help of the algebraic manipulator Mathematica
the equation E(c, ρ) = 0. We see that only three of the 21 solutions c(ρ) are
real for all ρ > 1, one satisfies c(ρ) > 1.8638527724 . . . for all ρ > 1, the other
one satisfies c(ρ) > 1.9150397104 . . . , and finally the third one c(ρ) = c̃(ρ)
satisfies c̃(ρ) ∈ [0.5088804885 . . . , 1] for ρ ∈ [1, ρ∗] and c̃(ρ) > 1 for ρ > ρ∗.
Here ρ∗ = 6.1180170733 . . . is the unique real solution of E(1, ρ) = 0 with
ρ > 1. Two of the solutions of E(c, ρ) = 0 are real for ρ ∈ [1, ρ∗] and in C \ R

for ρ > ρ∗, moreover for these two real solutions c(ρ) 6∈ [1/2, 1]. The rest of
the solutions of E(c, ρ) = 0 are in C \ R for all ρ > 1. In short, there is a
unique solution c(ρ) = c̃(ρ) with ρ ∈ [1, ρ∗] satisfying that c(ρ) ∈ [1/2, 1]. This
solution provides a solution of the initial equation h′(α) = 0 only when ρ = ρ∗

and c = 1. Consequently the solutions of (8) with c(ρ) ∈ [1/2, 1] that provide
solutions of h′(α) = 0 are c = 1/2 and c = 1 for all ρ > 1. Therefore h′(α) = 0
has two unique solutions in the interval [0, π/3] that are independent of ρ,
α = 0 which corresponds to a minimum and α = π/3 which corresponds to a
maximum. Thus the minimum values of h(α) in the interval [0, 2π) are α = 0,
α = 2π/3 and α = 4π/3. Furthermore h(0) = h(2π/3) = h(4π/3) = H0.
Consequently e(α) 6 0 for all ρ > 1 and e(α) = 0 if and only if either α = 0,
α = 2π/3 or α = 4π/3. It is easy to check that all these solutions satisfy
system e1(α) = 0 and e2(α) = 0. On the other hand, in a similar way it can
be proved that the solutions of system e1(α) = 0 and e2(α) = 0 for ρ = 1 are
also α = 0, α = 2π/3 or α = 4π/3.

In short, there are three rotations for σ1(α) that satisfy conditions of Lemma 1,
they have Euler rotation angles (α, β, γ) equal to

(0, 2 arctan(1/
√

2), π/3),

(2π/3, 2 arctan(1/
√

2), π/3),

(4π/3, 2 arctan(1/
√

2), π/3).

All these rotations give configurations of Type II.

Proceeding in a similar way with the solution σ2(α) we obtain three additional
rotations that satisfy conditions of Lemma 1, they have Euler rotation angles
(α, β, γ) equal to

(π/3, 2 arctan
√

2, 4π/3),

(π, 2 arctan
√

2, 4π/3),

(5π/3, 2 arctan
√

2, 4π/3).

All these rotations give configurations of Type I.

We have just proved that all the rotations satisfying f5 = 0 and the conditions
of Lemma 1 provide configurations of Type either I or II.
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Type I Type II

(α, 0, 2π − α) with α ∈ [0, 2π) (α, π, α) with α ∈ [0, 2π)

(π, 2 arctan
√

2, 2π/3) (2π/3, 2 arctan(1/
√

2), π)

(π/3, 2 arctan
√

2, 0) (0, 2 arctan(1/
√

2), 5π/3)

Table 1
The Euler rotation angles (α, β, γ) of all the rotations that satisfy system Aq5−q6 =
0 and the conditions of Lemma 1 classified by the type of configurations that they
provide.

Type I Type II

(α, 0, 4π/3 − α mod 2π), α ∈ [0, 2π) (α, π, α + 2π/3 mod 2π), α ∈ [0, 2π)

(π/3, 2 arctan
√

2, 2π/3) (4π/3, 2 arctan(1/
√

2), 5π/3)

(5π/3, 2 arctan
√

2, 0) (0, 2 arctan(1/
√

2), π)

Table 2
The Euler rotation angles (α, β, γ) of all the rotations that satisfy system Aq5−q7 =
0 and the conditions of Lemma 1 classified by the type of configurations that they
provide.

Type I Type II

(α, 0, 2π/3 − α mod 2π), α ∈ [0, 2π) (α, π, α − 2π/3 mod 2π), α ∈ [0, 2π)

(π, 2 arctan
√

2, 0) (2π/3, 2 arctan(1/
√

2), 5π/3)

(5π/3, 2 arctan
√

2, 2π/3) (4π/3, 2 arctan(1/
√

2), π)

Table 3
The Euler rotation angles (α, β, γ) of all the rotations that satisfy system Aq5−q8 =
0 and the conditions of Lemma 1 classified by the type of configurations that they
provide.

By using similar arguments, we find all the rotations that satisfy system Aq5−
qi = 0, for i = 6, 7, 8, and the conditions of Lemma 1, moreover we see that all
these rotations provide configurations of Type either I or II. The Euler rotation
angles (α, β, γ) of those rotations classified by the type of configurations that
they provide are given in Tables 1, 2, and 3.

In short, all rotations that satisfy conditions of Lemma 1 provide configura-
tions of Type either I or II. This completes the proof of statement (a).

Statement (b) is proved in [2] by using the choice of the units of mass and
length that we use here and it is proved in [6] with a different choice of the
units. Here by using Lemma 1 we give a new and shorter proof of this result.
Indeed, statement (b) is an immediate consequence of Lemma 1 together with
statement (a). In statement (a) we have proved that if q5 = ρa1, q6 = ρa2,
q7 = ρa3, and q8 = ρa4 then the hypotheses of Lemma 1 hold. So applying
Lemma 1 we obtain the expressions of λ and m, these expressions provide a

11



central configuration if λ > 0 and m > 0. We see that 2f(1)/3 − 1/(2ρ3) 6= 0
for all ρ > 1 and 2g(1)/(3ρ) − 1/2 = 0 when ρ = α, in particular, λ > 0 and
m > 0 when ρ > α. Moreover m is an increasing function of ρ, so for each
value of m > 0 there exists a unique value of ρ > α for which the configuration
is central. This completes the proof of the statement (b).

Statement (c) is proved in [5] by using different choices of the units of mass and
length that the ones used here. Statement (c) is also an immediate consequence
of Lemma 1 together with statement (a). As above in statement (a) we have
proved that if q5 = ρPa1, q6 = ρPa2, q7 = ρPa3, and q8 = ρPa4 then
the hypotheses of Lemma 1 hold. So applying this Lemma 1 we obtain the
expressions of λ and m which provide a central configuration if λ > 0 and
m > 0. We see that 2f(1)/3−1/(2ρ3) = 0 at ρ = α2 and 2g(1)/(3ρ)−1/2 = 0
at ρ = α1, in particular, λ > 0 and m > 0 when ρ ∈ [1, α1) ∪ (α2,∞).
Moreover m = m(ρ) is decreasing at the interval [1, α2) with m(1) = 1 and
limρ→α−

2
m(ρ) = −∞, it is decreasing at the interval (α2, α3), increasing at

the interval (α3,∞), the point ρ = α3 is a minimum with m(ρ) = m0 and
limρ→α+

2
m(ρ) = ∞ and limρ→+∞ m(ρ) = ∞. These properties of m(ρ) together

with the fact the faces of the nested tetrahedra intersect when 1 6 ρ 6 3 prove
statements (c.1), (c.2), (c.3), and (c.4).

3 Three nested tetrahedra

In this section we study the spatial central configurations of the 12–body
problem when the masses are located at the vertices of three nested regular
tetrahedra with scale factors 1, ρ and R and some of them rotated with respect
to the others by a rotation of Euler angles α = 0, β = π and γ = 0 (i.e. by
a rotation with rotation matrix P ). Taking conveniently the unit of masses
we can assume that all the masses of the tetrahedron with scale factor 1 are
equal to one. We also choose the unit of length in such a way that the edges of
the tetrahedron with scale factor 1 have length 2. Without loss of generality
we can assume that the configuration has only one rotated tetrahedra which
could be either the inner, the medium or the outer one. This is due to the fact
that central configurations are invariant under rotations and a configuration
with two rotated tetrahedra can be transformed into a configuration with only
one rotated tetrahedra by doing a rotation of Euler angles α = 0, β = π and
γ = 0. Central configurations are also invariant under homothecies, so we can
assume that the rotated tetrahedra is the one with scale factor ρ, and that
1 6 ρ < R when the rotated tetrahedra is the medium one, 1 < R 6 ρ when
the rotated tetrahedra is the outer one, and finally 0 < ρ < 1 < R when the
rotated tetrahedra is the inner one (see Figure 2). We define

12



(a) 1 6 ρ < R (b) 1 < R 6 ρ (c) 0 < ρ < 1 < R

Fig. 2. Three possible central configurations with three nested regular tetrahedra
with scale factors 1, ρ and R and the one with scale factor ρ rotated with respect
to the other two by a rotation of Euler angles α = 0, β = π and γ = 0. In (a)
the medium tetrahedra is the rotated one, in (b) is the outermost and in (c) is the
innermost. In any of these three possibilities the tetrahedra can intersect or not.

Cm = {(ρ, R) ∈ R
2 : 1 6 ρ < R},

Co = {(ρ, R) ∈ R
2 : 1 < R 6 ρ},

Ci = {(ρ, R) ∈ R
2 : 0 < ρ < 1 < R}.

Result 3 Consider four equal masses m1 = m2 = m3 = m4 = 1 at the
vertices of a regular tetrahedron with edge length 2 having positions a1, a2, a3

and a4. Consider four additional equal masses m5 = m6 = m7 = m8 = m at
the vertices of a second nested regular tetrahedron having positions qi+4 = ρPai

for all i = 1, . . . , 4 with ρ > 0. Finally we consider four additional equal
masses m9 = m10 = m11 = m12 = M at the vertices of a third nested regular
tetrahedron having positions qi+8 = Rai for all i = 1, . . . , 4 with R > 1 (see
Figure 2). Then the following statements hold.

(a) Such configuration is central for the spatial 12–body problem when m =
m(ρ, R) and M = M(ρ, R) are given by the expression (11) and (R, ρ) ∈
D = {(R, ρ) ∈ R2 : det(A) 6= 0, m(R, ρ) > 0, M(R, ρ) > 0, ρ > 0, R > 1}
(see (11) for the definition of A and see Figure 3 for the plot of D).

(b) The set D is formed by the disjoint union of the sets Di for i = 1, . . . , 6
defined in Figure 3. Then the regions Di provide central configurations of
the 12–body problem with the masses located at the vertices of three nested
regular tetrahedra satisfying the following.

(b.1) The rotated tetrahedra is the inner one and it intersects only the medium
when (ρ, R) ∈ D2∩Ci, it intersects the medium and the outer when (ρ, R) ∈
D4 ∩ Ci, and the three tetrahedra do not intersect when (ρ, R) ∈ D1.

(b.2) The rotated tetrahedra is the medium one and it intersects only the inner
when (ρ, R) ∈ D2 ∩ Cm and when (ρ, R) ∈ D3 ∩ {ρ 6 3}, it intersects the
inner and the outer when (ρ, R) ∈ D5 ∩ Cm ∩ {ρ 6 3} and when (ρ, R) ∈
D4 ∩Cm, it intersects only the outer one when (ρ, R) ∈ D5 ∩Cm ∩{ρ > 3},
and the three tetrahedra do not intersect when (ρ, R) ∈ D3 ∩ {ρ > 3}.
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�

�

R

ρ
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D6

Fig. 3. The set D. The dotted curves correspond to points where det(A) = 0, the
continuous curves correspond to points where m(ρ,R) = 0, and finally, the curves
with small circles correspond to points where M(ρ,R) = 0.

(b.3) The rotated tetrahedra is the outer one and it intersects only the medium
when (ρ, R) ∈ D5 ∩ Co ∩ {ρ > 3}, it intersects the inner and the medium
when (ρ, R) ∈ D5 ∩Co ∩{ρ 6 3}, and the three tetrahedra do not intersect
when (ρ, R) ∈ D6.

(c) Let

m(M, ρ, R) =
ρ2(ρ + 2f(ρ, 1))

2ρ3f(1, ρ) + 1
− M

2ρ2(ρg1(R) − f(ρ, R))

2ρ3f(1, ρ) + 1
,

and M0(ρ, R) = (ρ2(ρ+2f(ρ, 1)))/(2ρ2(ρg1(R)−f(ρ, R)) (see (9) for the def-
initions of f and g1), and let p = (p1, p2) = (1.5094116757 . . . , 1.9479968088 . . . )
and q = (q1, q2) = (1.9926247501 . . . , 31.4606148079 . . . ) be the solutions of
system det(A) = det(A2) = det(A3) = 0 (see (11) for the definitions of A2

and A3). Then the following statements hold.
(c.1) For each M > M0(p) = 0.1252891302 . . . and m = m(M,p) = −0.4001317738 · · ·+

3.1936671053 . . .M we have a central configuration of the spatial 12–body
problem when (ρ, R) = p. In this configuration the rotated tetrahedra is
the medium and it intersects with the inner and the outer.

(c.2) For each M > M0(q) = 25204.620455 . . . and m = m(M,q) = −3.5811747685 · · ·+
0.0001420840585 . . .M we have a central configuration of the spatial 12–
body problem when (ρ, R) = q. In this configuration the rotated tetrahedra
is the medium and it intersects only the inner.
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The values of the masses m(ρ, R) and M(ρ, R) that provide central configu-
rations on sets Di are analyzed in Subsection 3.1.

We call the previous result as Result 3 instead of Theorem 3 because part of
its proof is done numerically with the help of Mathematica.

PROOF. [Proof of Result 3] The positions and the values of the masses have
been taken so that the center of mass of the configuration is located at the
origin of coordinates.

We substitute the positions and the values of the masses into (2). After some
computations we obtain that system (2) over the nested three tetrahedra con-
figuration with R > 1 is equivalent to system Ax = b, more precisely




1 f(1, ρ) g1(R)

ρ −1/(2ρ2) f(ρ, R)

R f(R, ρ) −1/(2R2)







λ

m

M




=




1/2

−f(ρ, 1)

g2(R)




, (9)

where

f(x, y)=
2
√

2(y − 3x)

(3x2 − 2yx + 3y2)3/2
− (2/3)3/2

(x + y)2
,

g1(x) =− 2
√

2(x + 3)

(3x2 + 2x + 3)3/2
+

(2/3)3/2

(x − 1)2
,

g2(x) =
2
√

2(3x + 1)

(3x2 + 2x + 3)3/2
+

(2/3)3/2

(x − 1)2
.

Since 3x2 − 2yx + 3y2 > 0 in D = {(x, y) ∈ R2 : x > 0, y > 0}, the function
f(x, y) is defined for all (x, y) ∈ D. The functions g1(x) and g2(x) are defined
for all x > 1, moreover

lim
x→1+

g1(x) = lim
x→1+

g2(x) = +∞. (10)

On the other hand f(x, y) < 0 for all (x, y) ∈ D. Indeed the set D can be
written as D = {(x, y) ∈ R2 : y = a x, x > 0, a > 0}. It is easy to check that
f(x, a x) = f1(a)/x2 where

f1(a) =
2
√

2(a − 3)

(3a2 − 2a + 3)3/2
− (2/3)3/2

(a + 1)2
.
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As in the Appendix we find the zeroes of f1(a) by reducing the problem to
find the zeroes of a polynomial of one variable and we see that f1(a) = 0 has
no real solutions for a > 0. In particular f1(a) < 0 for a > 0.

If det(A) 6= 0, then the solution of system (9) is

λ =λ(ρ, R) =
det(A1)

det(A)
=

1

det(A)

∣∣∣∣∣∣∣∣∣∣∣

1/2 f(1, ρ) g1(R)

−f(ρ, 1) −1/(2ρ2) f(ρ, R)

g2(R) f(R, ρ) −1/(2R2)

∣∣∣∣∣∣∣∣∣∣∣

,

m =m(ρ, R) =
det(A2)

det(A)
=

1

det(A)

∣∣∣∣∣∣∣∣∣∣∣

1 1/2 g1(R)

ρ −f(ρ, 1) f(ρ, R)

R g2(R) −1/(2R2)

∣∣∣∣∣∣∣∣∣∣∣

, (11)

M =M(ρ, R) =
det(A3)

det(A)
=

1

det(A)

∣∣∣∣∣∣∣∣∣∣∣

1 f(1, ρ) 1/2

ρ −1/(2ρ2) −f(ρ, 1)

R f(R, ρ) g2(R)

∣∣∣∣∣∣∣∣∣∣∣

.

The solution λ(ρ, R), m(ρ, R) and M(ρ, R) gives a central configuration of the
12–body problem if and only if R and ρ are such that λ(ρ, R) > 0, m(ρ, R) > 0
and M(ρ, R) > 0.

It is easy to check that

det(A)=
ρ

2R2
f(1, ρ) +

1

4R2ρ2
+ Rf(ρ, R)f(1, ρ) − f(R, ρ)f(ρ, R) +

R

2ρ2
g1(R) + ρf(R, ρ) g1(R) .

We analyze the sign of det(A) on the boundaries of the regions Cm, Co and Ci.

Clearly

lim
ρ→0+

det(A) = sign
(

1

4R2
+

R

2
g1(R)

)
· ∞ ,

and from (10)

lim
R→1+

det(A) = sign

(
1

2ρ2
+ ρf(1, ρ)

)
· ∞ .

We solve equation f2(R) = 1/(4R2)+Rg1(R)/2 = 0 as in the Appendix and we
see that it has no real solutions for R > 1, moreover f2(R) > 0 for all R > 1.
Solving equation f3(ρ) = 1/(2ρ2)+ρf(1, ρ) = 0 as in the Appendix we find two
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unique real roots ρ = b1 = 0.7152231486 . . . and ρ = b2 = 6.5360789462 . . . .
Moreover f3(ρ) > 0 for ρ ∈ (0, b1) ∪ (b2,∞) and f3(ρ) < 0 for ρ ∈ (b1, b2).
In short, limρ→0+ det(A) = +∞ for all R > 1, limR→1+ det(A) = +∞ when
ρ ∈ (0, b1)∪ (b2,∞) and limR→1+ det(A) = −∞ when ρ ∈ (b1, b2). The regions
of these two limits are indicated in Figure 4.

After some computations we see that when ρ = 1 and R > 1

det(A)= f4(R) = −−9 + 9
√

2 +
√

6

36R2
+

3
√

6R (R2 + 2R + 1) − 8

27(R − 1)2(R + 1)2

+
2
(
3
√

3R(R + 1)2 + R(R + 1)2 − 4
)

27(R + 1)4
+

8 (3R2 − 10R + 3)

(3R2 − 2R + 3)3

−
2
(
9 +

√
3
)

(R − 3)R

9 (3R2 − 2R + 3)3/2
− 8 (5R2 − 2R + 1)

3
√

3(R − 1)2(R + 1) (3R2 − 2R + 3)3/2

−
(R + 3)

(
9
√

2R3 + 18
√

2R2 + 9
√

2R − 8
√

3
)

9(R + 1)2 (3R2 + 2R + 3)3/2

+
8 (3R2 + 8R − 3)

(3R2 − 2R + 3)3/2 (3R2 + 2R + 3)3/2
.

We solve equation f4(R) = 0 as in the Appendix and we find two real so-
lutions with R > 1, they are R = c1 = 1.3711124500 . . . and R = c2 =
28.2412927769 . . . . Moreover f4(R) > 0 for R ∈ (c1, c2) and f4(R) < 0 for
R ∈ (1, c1) ∪ (c2,∞).

For R = ρ and ρ > 1 we have that

det(A)= f5(ρ) =

(
−18 + 9

√
2 − 2

√
3
)

(ρ − 3)

9ρ (3ρ2 − 2ρ + 3)3/2
+

−2 − 6
√

3 + 3
√

6

27(ρ − 1)2ρ
+

(
18 − 9

√
2 + 2

√
3
)

(ρ + 3)

9ρ (3ρ2 + 2ρ + 3)3/2
+

2 + 6
√

3 − 3
√

6

27ρ(ρ + 1)2
− 29 + 12

√
3

108ρ4
.

We solve equation f5(ρ) = 0 as in the Appendix and we see that it has no real
solutions with ρ > 1. Moreover f5(R) < 0 for all ρ > 1.

Notice that det(A) is continuous for all ρ > 0, R > 1. This means that if det(A)
has different signs on two different curves γ1 and γ2, then there exist an odd
number of curves of zeroes of det(A) (taking into account their multiplicities)
between γ1 and γ2, whereas if det(A) has the same sign on the curves γ1 and
γ2, then there exist an even number (that could be 0) of curves of zeroes of
det(A) (taking into account their multiplicities) between γ1 and γ2. Moreover
these curves are continuous.
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Fig. 4. The level curves det(A) = 0. The dashed lines correspond to the boundaries
of the regions Cm, Co and Ci.

By analyzing the sign of det(A) on the boundary of Ci we have seen that
det(A) > 0 on {(ρ, R) ∈ R2 : ρ = 0, R > 1} ∪ {(ρ, R) ∈ R2 : ρ ∈ (0, b1), R =
1} ∪ {(ρ, R) ∈ R2 : ρ = 1, R ∈ (c1, c2)}, det(A) < 0 on {(ρ, R) ∈ R2 : ρ =
1, R ∈ (1, c1)} ∪ {(ρ, R) ∈ R2 : ρ = 1, R ∈ (c2, +∞)} and that det(A) = 0 at
the points (1, c1) and (1, c2). Therefore on Ci there exists a curve Γ1 starting
at the point (b1, 1) and passing through the point (1, c1) and another one
Γ2 coming from R = +∞ and passing through the point (1, c2) on which
det(A) = 0 (see Figure 4).

On the boundary of Cm we have that det(A) < 0 everywhere with the exception
of the set {(ρ, R) ∈ R2 : ρ = 1, R ∈ (c1, c2)} and det(A) = 0 at the points
(1, c1) and (1, c2). Therefore we can guarantee the existence of a curve in Cm

with R ∈ (c1, c2) on which det(A) = 0. This curve starts at the point (1, c1),
so it is the continuation on the region Cm of the curve Γ1. By plotting the level
curves det(A) = 0 with the help of Mathematica (see Figure 4), we see that
the curve Γ2 can be continued to the region Cm and that the curves Γ1 and Γ2

do not coincide.

Finally on the boundary of Co we have that det(A) < 0 at everywhere with
the exception of the set {(ρ, R) ∈ R

2 : ρ ∈ (b2, +∞), R = 1} and det(A) = 0
at the point (b2, 1). Therefore there exists a curve Γ3 on Co starting at the
point (b2, 1) and going to ρ = +∞ (see again Figure 4).

By plotting the level curves det(A) = 0 for larger values of ρ and R we see
that these are the unique three curves with det(A) = 0.
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Boundary Sign of det(A2)

ρ > 0, R = 1 limR→1+ det(A2) = +∞

ρ = 0, R > 1 det(A2) > 0

ρ = 1, R > 1
det(A2) > 0 when R ∈ (1, c3)
det(A2) < 0 when R ∈ (c3,∞)

R = ρ, ρ > 1
det(A2) > 0 when ρ ∈ (1, d1)
det(A2) < 0 when ρ ∈ (d1,∞)

Table 4
The sign of det(A2) on the boundaries of Cm, Co and Ci. Here c3 = 1.7097032687 . . . is
the unique solution of equation det(A2)|ρ=1

= 0 with R > 1, d1 = 2.4741715435 . . .
is the unique solution of equation det(A2)|R=ρ = 0 with ρ > 1.
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ρ

+ −

+
+

+

−

(1, c3)
(d1, d1)

Ci

Cm

Co

Cm

Co

Ci

+ − −

+

R

ρ

�

Fig. 5. The level curves det(A2) = 0. The dashed lines correspond to the boundaries
of the regions Cm, Co and Ci.

Now we analyze the sign of det(A2) on the boundaries of Cm, Co and Ci. From
(11) we have that

det(A2) = g1(R)g2(R)ρ +
ρ

4R2
+

f(ρ, 1)

2R2
+

1

2
Rf(ρ, R) + Rf(ρ, 1)g1(R)

−f(ρ, R)g2(R) .

Since the procedure is exactly the same than for the sign of det(A) we omit
the computations and we only summarize the results in Table 4.

The plot of the level curves det(A2) = 0 is given in Figure 5. As in the previous
case the plot of these level curves for larger values of ρ and R does not provide
new curves with det(A2) = 0.
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Boundary Sign of det(A3)

ρ > 0, R = 1
limR→1+ det(A3) = −∞ when ρ ∈ (1, b1) ∪ (b2,∞)
limR→1+ det(A3) = +∞ when ρ ∈ (b1, b2)

ρ = 0, R > 1
limρ→0+ det(A3) = −∞ when R ∈ (1, e1)
limρ→0+ det(A3) = +∞ when R ∈ (e1,∞)

ρ = 1, R > 1
det(A3) > 0 when R ∈ (1, c4)
det(A3) < 0 when R ∈ (c4,∞)

R = ρ, ρ > 1
det(A3) > 0 when ρ ∈ (1, d2)
det(A3) < 0 when ρ ∈ (d2,∞)

Table 5
The sign of det(A3) on the boundaries of Cm, Co and Ci. Here e1 = 1.8899915758 . . .
is the unique real solution of equation R/4− g2(R)/2 = 0 with R > 1, the values b1

and b2 defined above are the unique real solutions of equation −ρf(1, ρ)−1/(2ρ2) = 0
with ρ > 1, c4 = 1.6436467629 . . . is the unique real solution of det(A3)|ρ=1 = 0
with R > 1, and d2 = 2.0151307882 . . . is the unique real solution of equation
det(A3)|R=ρ = 0 with ρ > 1.

Finally we analyze the sign of det(A3) on the boundaries of Cm, Co and Ci.
From (11) we have that

det(A3) =−f(1, ρ)f(ρ, 1)R +
R

4ρ2
+

1

2
ρf(R, ρ) + f(R, ρ)f(ρ, 1) − g2(R)

2ρ2

−ρf(1, ρ)g2(R) .

As above, and since the procedure is exactly the same than for the sign of
det(A) we omit the computations and we only summarize the results in Ta-
ble 5.

The plot of the level curves det(A3) = 0 is given in Figure 6. As in the previous
cases, the plot of these level curves for larger values of ρ and R does not provide
new curves with det(A3) = 0.

Since f(R, ρ) < 0 and g2(R) > 0 in the region ρ > 0, R > 1, from the third
equation of (9) we have that if m > 0 and M > 0, then λ > 0. So it is not
necessary to find the set of level curves det(A1) = 0.

Analyzing the sign of m and M on the regions Cm, Co, and Ci we prove that
the region D = {(R, ρ) ∈ R2 : det(A) 6= 0, m(R, ρ) > 0, M(R, ρ) > 0, ρ >
0, R > 1} where the solution of (9) given by (11) gives a central configuration
of the spatial 12–body problem is the one plotted in Figure 2. This proves
statement (a).

It is easy to check that the faces of the rotated tetrahedron, which has scale
factor ρ, intersect with the ones of the tetrahedron with scale factor 1 when
ρ ∈ [1/3, 3], and they intersect with the ones of the tetrahedron with scale
factor R when R ∈ [ρ/3, 3ρ]. Moreover the rotated tetrahedron can be either
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Fig. 6. The level curves det(A3) = 0. The dashed lines correspond to the boundaries
of the regions Cm, Co and Ci.
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Fig. 7. Geometric properties of the nested tetraheda in D. We use the notation
[{a, b, c}, a ∩ b, a∩c] where {a, b, c} denotes that a, b, and c are the scale factors of
the inner, medium and outer tetrahedra, respectively, a∩ b denotes that the faces of
the tetrahedron with scale factor a intersect with the ones of the scale factor b, and
a∩c denotes that the faces of the tetrahedron with scale factor a does not intersect
with the ones of the scale factor c. Using this notation we obtain ten different re-
gions [a]: [{ρ, 1, R}, ρ∩1, ρ∩R], [b]: [{ρ, 1, R}, ρ∩1, ρ∩R], [c]: [{ρ, 1, R}, ρ∩1, ρ∩R],
[d]: [{1, ρ,R}, ρ ∩ 1, ρ∩R], [e]: [{1, ρ,R}, ρ ∩ 1, ρ ∩ R], [f ]: [{1, ρ,R}, ρ∩1, ρ∩R], [g]:
[{1, ρ,R}, ρ∩1, ρ ∩ R], [h]: [{1, R, ρ}, ρ ∩ 1, ρ ∩ R], [i]: [{1, R, ρ}, ρ∩1, ρ ∩ R], [j]:
[{1, R, ρ}, ρ∩1, ρ∩R]. These ten regions are limited by the dashed and continuous
lines in the figures.

the inner, the medium and the outer one. Statement (b) can be proved by
analyzing these geometric properties of the three nested tetrahedra on the
regions Di for i = 1, . . . , 6 (see Figure 7 for more details).

Finally we analyze the solution of (9) at the points p and q. The numeri-
cal values of p and q can be found by solving system det(A) = det(A2) =
det(A3) = 0.

Let

A(ρ) =




1 f(1, ρ)

ρ −1/(2ρ2)


 .
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We note that det(A(ρ)) = −f3(ρ), so det(A(ρ)) 6= 0 for all ρ 6= b1 and ρ 6= b2.
In particular, det(A(p1)) 6= 0 and det(A(q1)) 6= 0.

Since det(A) = det(A3) = 0 and det(A(ρ)) 6= 0, system (9) is equivalent to
system 


1 f(1, ρ)

ρ −1/(2ρ2)







λ

m


 =




1/2 − Mg1(R)

−f(ρ, 1) − Mf(ρ, R)


 .

and it has infinitely many solutions which are given by

λ= λ(M) =
1

det(A)

∣∣∣∣∣∣∣

1/2 − Mg1(R) f(1, ρ)

−f(ρ, 1) − Mf(ρ, R) −1/(2ρ2)

∣∣∣∣∣∣∣

=−4ρ2f(1, ρ)f(ρ, 1)− 1

2 (2ρ3f(1, ρ) + 1)
− M

2ρ2f(1, ρ)f(ρ, R) + g1(R)

2ρ3f(1, ρ) + 1
,

m = m(M) =
1

det(A)

∣∣∣∣∣∣∣

1 1/2 − Mg1(R)

ρ −f(ρ, 1) − Mf(ρ, R)

∣∣∣∣∣∣∣
(12)

=
ρ2(ρ + 2f(ρ, 1))

2ρ3f(1, ρ) + 1
− M

2ρ2(ρg1(R) − f(ρ, R))

2ρ3f(1, ρ) + 1
.

This solution provides a central configuration of the 12–body problem when
λ(M) > 0, m(M) > 0 and M > 0. Moreover m(M) = 0 when M = (ρ2(ρ +
2f(ρ, 1)))/(2ρ2(ρg1(R) − f(ρ, R))).

Evaluating (12) at the point p we get λ = 0.3706146625 · · ·+0.6060692429 . . .M ,
and m = −0.4001317738 · · ·+3.1936671053 . . .M . Moreover this solution pro-
vides a central configuration of the 12–body problem when M > 0.1252891302 . . . .
Finally evaluating (12) at the point q we get the solution λ = −0.0001803428746 · · ·+
0.00001606707675 . . .M , and m = −3.5811747685 · · ·+0.0001420840585 . . .M ,
which provides a central configuration of the 12–body problem when M >
25204.620455 . . . . This completes the proof of statement (c).

3.1 The functions m(ρ, R) and M(ρ, R)

In this section we analyze some of the properties of the functions m(ρ, R) and
M(ρ, R) on the regions Di for i = 1, . . . , 6.

After some tedious computations we can prove that

lim
R→∞

M(ρ, R) =





+∞ if ρ ∈ K1,

−∞ if ρ ∈ K2,
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where

K1 = (0, 0.501930 . . . ) ∪ (0.715223 . . . , 1.992306 . . . ) ∪ (6.536078,∞),

K2 = (0.501930 . . . , 0.715223 . . . ) ∪ (1.992306 . . . , 6.536078 . . . ),

lim
ρ→∞

M(ρ, R) = mI(R), lim
ρ→0

M(ρ, R) = mI(R),

lim
R→∞

m(ρ, R) = mII(ρ), lim
ρ→∞

m(ρ, R) = +∞, lim
ρ→0

m(ρ, R) = 0,

where mI(ρ) and mII(ρ) are the solutions given in Theorem 2.

With the help of Mathematica, we plot the functions m(ρ, R) and M(ρ, R)
defined in (11) on the regions Di for i = 1, . . . , 6. We also find numerically the
minimum and the maximum values of m and M in each region. The results
that we have obtained are the following.

(a) The plot of m(ρ, R) on the region
D1. Here m ∈ (0, 0.000347182 . . . ).

(b) The plot of M(ρ, R) on the region
D1. Here M ∈ (0,∞).

On the region D1 the function m(ρ, R) is equal to zero on the boundaries
ρ = 0 and m(ρ, R) = 0. Moreover on the boundary M(ρ, R) = 0 and when
R → +∞ the behaviour of m(ρ, R) is equal to the one of the function mII(ρ)
with ρ ∈ (0, 0.152996 . . . ). From the plot of m(ρ, R) we see that its maximum
value takes place either on M(ρ, R) = 0, or when R → ∞. Thus on D1 we have
that m ∈ (0, m̃0) with m̃0 = 0.000347182 . . . . Clearly the function M(ρ, R)
is equal to zero on the boundary M(ρ, R) = 0 and the behaviour of M(ρ, R)
on the boundary ρ = 0 is equal to mI(R) which tends to infinity as R → ∞.
Therefore M ∈ (0, +∞) on D1.
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(c) The plot of m(ρ, R) on the region
D2. Here m ∈ (0,∞).

(d) The plot of M(ρ, R) on the region
D2. Here M ∈ (25204.62 . . . ,∞).

Clearly the function m(ρ, R) on D2 is equal to zero on the boundary m(ρ, R) =
0 and it tends to infinity when we approach to the boundary det(A) = 0.
Therefore on D2 we have that m ∈ (0, +∞). The function M(ρ, R) tends also
to infinity when we approach to the boundary det(A) = 0. Moreover, from the
plot of M(ρ, R), we see that its minimum value takes place on the boundary
m(ρ, R) = 0, in particular, it takes place on the point q and the minimum
value is M = M0(q) = 25204.620455 . . . (see Result 3 for the definitions of q

and M0(q)).

(e) The plot of m(ρ, R) on the region
D3. Here m ∈ (0,∞).

(f) The plot of M(ρ, R) on the region
D3. Here M ∈ (11625.1167 . . . ,∞).

On D3 clearly the function m(ρ, R) is equal to zero on the boundary m(ρ, R) =
0 and tends to infinity on the boundary det(A) = 0, so m ∈ (0, +∞) on
D3. The function M(ρ, R) also tends to infinity on det(A) = 0. Moreover,
from the plot of M(ρ, R), we see that its minimum value takes place on the
boundary m(ρ, R) = 0, in particular, it takes place on the point (ρ, R) =
(2.7556 . . . , 24.7316 . . . ) and the minimum value is M = 11625.1167 . . . .

(g) The plot of m(ρ, R) on the region
D4. Here m ∈ (0,∞).

(h) The plot of M(ρ, R) on the region
D4. Here M ∈ (0,∞).
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The set D4 is delimited by the curves det(A) = 0, M(ρ, R) = 0, and fi-
nally, near p, the curve m(ρ, R) = 0 (see Result 3 for the definition of
p). Clearly m(ρ, R) (respectively, M(ρ, R)) is equal to zero on the curve
m(ρ, R) = 0 (respectively, M(ρ, R) = 0) and tends to infinity when we ap-
proach to det(A) = 0. Therefore m ∈ (0,∞) and M ∈ (0,∞) on D4.

(i) The plot of m(ρ, R) on the region
D5. Here m ∈ (0,∞).

(j) The plot of M(ρ, R) on the region
D5. Here M ∈ (0,∞).

The set D5 is also delimited by the curves det(A) = 0, M(ρ, R) = 0, and
m(ρ, R) = 0. So m ∈ (0,∞) and M ∈ (0,∞) on D5.

(k) The plot of m(ρ, R) on the region
D6. Here m ∈ (14997.0524 . . . ,∞).

(l) The plot of M(ρ, R) on the region
D6. Here M ∈ (0,∞)

From the plot of m(ρ, R), we see that the minimum value of m(ρ, R) takes
place on the boundary M(ρ, R) = 0, in particular, it takes place on the
point (ρ, R) = (21.62574 . . . , 2.56200 . . . ) and the minimum value is m =
14997.0524 . . . . Moreover m(ρ, R) → +∞ when ρ → +∞. Therefore m ∈
(14997.0524 . . . ,∞) on D6. On the other hand clearly M(ρ, R) is equal to zero
on M(ρ, R) = 0 and M(ρ, R) → mI(R) as ρ → +∞. So M ∈ (0,∞).

Appendix

In this appendix we analyze the solutions of the equations of the form F (x) = 0
when F is a rational function containing radicals. These type of equations are
solved by following the next steps.
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(1) We eliminate the denominators of the fractions which appear in F (x) by
multiplying equation F (x) = 0 by the least common multiple of all the
denominators.

(2) We eliminate the radicals of the resulting equation by isolating in a con-
venient way one or more radicals on one side of the equation and squaring
both sides of the equation. If the resulting equation still contains radi-
cals, then we repeat the process again. At the end we obtain a polynomial
equation.

(3) We find numerically all the solutions of the polynomial equation obtained
in step 2.

(4) Finally we cheek which of these solutions are really solutions of the initial
equation F (x) = 0.

Now we detail how to group the radicals in step 2 for each type of equations
that appear in this work after applying step 1.

(a) Equations with one radical: α1

√
a + α2 = 0. We eliminate the radicals by

applying step 2 in the following way

(α1

√
a)2 = (−α2)

2 .

(b) Equations of the form: α1

√
a + α2

√
b + α3

√
a
√

b + α4 = 0. Applying step 2
in the following way

(α1

√
a + α2

√
b)2 = (−α3

√
a
√

b − α4)
2 .

We obtain an equation with one radical of the form β1

√
a
√

b + β2 = 0.
(c) Equations of the form: α1

√
a
√

b + α2

√
a
√

c + α3

√
b
√

c = 0. Applying step 2
in the following way

(α1

√
a
√

b)2 = (−α2

√
a
√

c − α3

√
b
√

c)2 .

We obtain an equation with one radical of the form β1

√
a
√

b + β2 = 0.
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