
DOUBLE–ANTIPRISM CENTRAL CONFIGURATIONS

OF THE 3n–BODY PROBLEM

Abstract. In this paper we study numerically a new type of central
configurations of the 3n–body problem with equal masses which consist
of three n–gons contained in three planes z = 0 and z = ±β 6= 0. The
n–gon on z = 0 is scaled by a factor α and it is rotated by an angle of
π/n with respect to the ones on z = ±β. In this kind of configurations,
the masses on the planes z = 0 and z = β are at the vertices of an
antiprism with bases of different size. The same occurs with the masses
on z = 0 and z = −β. We call this kind of central configurations double–
antiprism central configurations. We will show the existence of central
configurations of this type.

1. Introduction

We consider the spatial N–body problem

mk q̈k = −
N∑

j = 1
j 6= k

Gmkmj
qk − qj

|qk − qj |3
,

k = 1, . . . , N , where qk ∈ R
3 is the position vector of the punctual mass mk

in an inertial coordinate system, and G is the gravitational constant which
can be taken equal to one by choosing conveniently the unit of time. We fix
the center of mass

∑N
i=1mi qi/

∑N
i=1mi of the system at the origin of R3N .

The configuration space of the N–body problem in R
3 is

E = {(q1, . . . ,qN ) ∈ R
3N :

N∑

i=1

mi qi = 0, qi 6= qj for i 6= j} .

Given m1, . . . ,mN a configuration (q1, . . . ,qN ) ∈ E is central if there
exists a positive constant λ such that

q̈k = −λqk ,

k = 1, . . . , N . Thus a central configuration (q1, . . . ,qN ) ∈ E of the N–body
problem with positive masses m1, . . . ,mN is a solution of the system of the

1991 Mathematics Subject Classification. Primary: 70F10; Secondary: 70F15.
Key words and phrases. Spatial central configurations, 3n–body problem, double–

antiprism central configurations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RIUVic

https://core.ac.uk/display/50524656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 DOUBLE–ANTIPRISM CENTRAL CONFIGURATIONS

N vectorial equations

(1)
N∑

j = 1
j 6= k

mj
qk − qj

|qk − qj|3
= λqk,

for k = 1, . . . , N and N+1 unknowns qk for k = 1, . . . , N plus the unknown
λ > 0.

The simplest spatial central configurations of the N–body problem are
the ones with N equal masses at the vertices of a regular polyhedron of N
vertices, see for instance [1]. There are also some papers studying central
configurations consisting of nested regular polyhedra, see for instance [2, 3]
and the references therein.

In [1] the authors study the spatial central configurations of the N–body
problem with equal masses such that the set of positions {q1, . . . ,qN} is
an orbit by the action of a finite subgroup of O(3). Under this condition,
they find that the antiprism with N = 2k > 6 vertices, the prism with
regular bases with N = 2k > 4 vertices are central configurations. Moreover
they find some additional classes of symmetric central configurations for
N = 4, 6, 8, 12, 20, 24, 30, 48, 60, 120, between them the regular polyhedra.

In addition to regular polyhedron central configurations, the simplest spa-
tial central configurations of the N–body problem are the ones known as
pyramidal central configurations, which consists of N = n + 1 masses, n of
which are coplanar and the (n + 1)–th being off the plane (see for instance
[5] and [9]). The n positions of the coplanar masses are called the base of the
pyramidal central configuration. There are also the central configurations
known as double pyramidal central configurations. Such configurations con-
sist of N = n+ 2 masses, n of which are coplanar and the other two being
off the plane and positioned symmetrically above and below that plane. In
the literature we can find some papers related with double pyramidal cen-
tral configurations with different shapes of bases. For instance, in [10] the
authors studied for all n ≥ 4 the double pyramidal central configurations
such that the n equal coplanar masses are at the vertices of a regular n–gon,
and the two masses outside the plane determined by the n–gon are equal.
In [4] the authors also consider spatial central configurations consisting of
n ≥ 2 equal masses at the vertices of a regular n–gon and two masses out-
side the plane determined by the n–gon but they do not impose conditions
on the two masses being outside the plane, neither on the positions, nor on
the values of these masses (this problem has also been studied in [6, 7] for
n = 3).

In [8] the authors find spatial central configurations that bifurcate from
planar ones consisting of two regular n–gons, lying in horizontal planes, cen-
tered on a common vertical axis, and aligned so that corresponding vertices
lie in the same vertical half–plane, i.e. the masses are at the vertices of a
truncated pyramid.
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n = 3
n = 4 n = 5

n = 6
n = 7 n = 8

Figure 1. The double–antiprism central configurations for
n = 3, 4, 5, 6, 7, 8.

In this paper we show the existence of spatial central configurations of
the N = 3n body problem with equal masses consisting of three regular
n–gons with n ≥ 2, lying in three horizontal equi–spaced planes centered
on a common vertical axis, and such that the n–gons on the upper and the
bottom plane are identical whereas the n–gon on the middle plane is scaled
by a factor α and rotated by an angle π/n with respect to the other two, see
Figure 1. Note that in these configurations the masses at the vertices located
on the upper and the bottom plane form a prism, whereas the masses at the
vertices located on the upper and the middle one (respectively, the bottom
and the middle one) form an antiprism whose bases have different sizes.
For this reason we call this kind of central configurations double–antiprism
central configurations. Notice that these central configurations are neither a
prism nor an antiprism, so in general they are not the ones obtained in [1].

As we shall see in this paper, we have found numerically double–antiprism
central configurations for n = 2, 3, . . . , 100000. We also provide some con-
jectures related to the existence and the uniqueness for each integer n ≥ 2
of the double–antiprism central configurations.
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2. Equations of the double–antiprism central configurations

We consider 3n equal masses m1 = · · · = m3n = 1. Let α, β > 0 and
let θj = 2π j/n and ϕj = θj + π/n for all j = 1, . . . , n. Assume that the
masses m1, . . . ,mn are at the vertices of a regular n–gon on the plane z = 0
and that their positions are qj = (α eiθj , 0) ∈ C × R ≡ R

3 with α > 0. The
masses mn+1, . . . ,m2n are at the vertices of a regular n–gon on the plane
z = β > 0 and their positions are qn+j = (eiϕj , β). And finally the masses
m2n+1, . . . ,m3n are at the vertices of a regular n–gon on the plane z = −β
and their positions are q2n+j = (eiϕj ,−β).

It is easy to check that the center of mass of these configurations is at the
origin of coordinates. Then equations (1) become

n∑

j = 1
j 6= k

qk − qj

r3k,j
+

n∑

j=1

qk − qn+j

r3k,n+j

+
n∑

j=1

qk − q2n+j

r3k,2n+j

= λqk,

n∑

j=1

qn+k − qj

r3n+k,j

+
n∑

j = 1
j 6= k

qn+k − qn+j

r3n+k,n+j

+
n∑

j=1

qn+k − q2n+j

r3n+k,2n+j

= λqn+k,(2)

n∑

j=1

q2n+k − qj

r32n+k,j

+
n∑

j=1

q2n+k − qn+j

r32n+k,n+j

+
n∑

j = 1
j 6= k

q2n+k − q2n+j

r32n+k,2n+j

= λq2n+k,

for k = 1, . . . , n, where rℓ,i = |qℓ − qi|.

The equations for the complex coordinate of the vectorial equations (2)
are

n∑

j = 1
j 6= k

α eiθk − α eiθj

r3k,j
+

n∑

j=1

αeiθk − eiϕj

r3k,n+j

+
n∑

j=1

αeiθk − eiϕj

r3k,2n+j

= λα eiθk ,(3)

n∑

j=1

eiϕk − α eiθj

r3n+k,j

+
n∑

j = 1
j 6= k

eiϕk − eiϕj

r3n+k,n+j

+
n∑

j=1

eiϕk − eiϕj

r3n+k,2n+j

= λ eiϕk ,(4)

n∑

j=1

eiϕk − α eiθj

r32n+k,j

+
n∑

j=1

eiϕk − eiϕj

r32n+k,n+j

+
n∑

j = 1
j 6= k

eiϕk − eiϕj

r32n+k,2n+j

= λ eiϕk ,(5)
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for k = 1, . . . , n. The equations for the real coordinate of the vectorial
equations (2) are

0 = 0,
n∑

j=1

β

r3n+k,j

+
n∑

j=1

2β

r3n+k,2n+j

= λβ,(6)

−
n∑

j=1

β

r32n+k,j

−
n∑

j=1

2β

r32n+k,n+j

= −λβ,(7)

for k = 1, . . . , n. The explicit expressions of the denominators that appear
in (2) are

rk,j = 2α

∣∣∣∣sin
(
θj − θk

2

)∣∣∣∣ ,

rk,n+j = rk,2n+j =
√
1 + α2 + β2 − 2α cos(ϕj − θk),

rn+k,j = r2n+k,j =
√
1 + α2 + β2 − 2α cos(θj − ϕk),

rn+k,n+j = r2n+k,2n+j = 2

∣∣∣∣sin
(
ϕj − ϕk

2

)∣∣∣∣ ,

rn+k,2n+j = r2n+k,n+j =
√
2 + 4β2 − 2 cos(ϕj − ϕk),

for j, k = 1, . . . , n. Note that for all k = 1, . . . , n equations (4) and (5) are
the same, and equations (6) and (7) only differ in the sign. Therefore system
(2) is equivalent to the system formed by the equations (3), (4) and (6) for
k = 1, . . . , n.

By dividing the k–th equation of (3) by eiθk , the k–th equation of (4) by
eiϕk , and the k–th equation of (6) by β we get that system (2) is equivalent
to system

α
n∑

j = 1
j 6= k

1− ei(θj−θk)

r3k,j
+ 2

n∑

j=1

α− ei(ϕj−θk)

r3k,n+j

= λα,

n∑

j=1

1− α ei(θj−ϕk)

r3n+k,j

+
n∑

j = 1
j 6= k

1− ei(ϕj−ϕk)

r3n+k,n+j

+
n∑

j=1

1− ei(ϕj−ϕk)

r3n+k,2n+j

= λ,(8)

n∑

j=1

1

r3n+k,j

+ 2
n∑

j=1

1

r3n+k,2n+j

= λ,

for k = 1, . . . , n.

Playing with the real and imaginary part of the previous equations and
by using the properties of the trigonometric functions we can see that all the
summations in equations (8) are independent of k. Moreover, by choosing
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conveniently the value of k in each summation, after some tedious compu-
tations these equations can be written as

1

4α2

n−1∑

j=1

csc

(
π j

n

)
+ 2

n∑

j=1

α+ 1− 2 cos2
(
π
n

(
j − 1

2

))

R
3/2
1

= λα,

n∑

j=1

α+ 1− 2α cos2
(
π
n

(
j − 1

2

))

R
3/2
1

+
1

4

n−1∑

j=1

csc

(
π j

n

)
+

1

4

n∑

j=1

1− cos2
(
π j
n

)

R
3/2
2

= λ,(9)

n∑

j=1

1

R
3/2
1

+
1

4

n∑

j=1

1

R
3/2
2

= λ,

where

R1 = (α+ 1)2 + β2 − 4α cos2
(
π

n

(
j − 1

2

))
,

R2 = 1 + β2 − cos2
(
π j

n

)
.

Substituting λ from the third equation of (9) into the first two equations of
(9) we get the system of two equations

1

4α2

n−1∑

j=1

csc

(
π j

n

)
+

n∑

j=1

α+ 2− 4 cos2
(
π
n

(
j − 1

2

))

R
3/2
1

− 1

4

n∑

j=1

α

R
3/2
2

= 0,

(10)

1

4

n−1∑

j=1

csc

(
π j

n

)
+ α

n∑

j=1

1− 2 cos2
(
π
n

(
j − 1

2

))

R
3/2
1

− 1

4

n∑

j=1

cos2
(
π j
n

)

R
3/2
2

= 0,

with the two unknowns α and β.
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3. The existence of double–antiprism central configurations

Let

A =
1

4

n−1∑

j=1

csc

(
π j

n

)
> 0,

f1(α, β) =
n∑

j=1

α3 + 2α2 − 4α2 cos2
(
π
n

(
j − 1

2

))

(
(α+ 1)2 + β2 − 4α cos2

(
π
n

(
j − 1

2

)))3/2 ,

f2(α, β) =
1

4

n∑

j=1

α3

(
1 + β2 − cos2

(
π j
n

))3/2 ,

g1(α, β) = α
n∑

j=1

1− 2 cos2
(
π
n

(
j − 1

2

))

(
(α+ 1)2 + β2 − 4α cos2

(
π
n

(
j − 1

2

)))3/2 ,

g2(β) =
1

4

n∑

j=1

cos2
(
π j
n

)

(
1 + β2 − cos2

(
π j
n

))3/2 .

Note that all the denominators in the previous functions are positive because
β > 0 and they are distances between two different bodies. By using this
notation the system (10) can be written as

(11)
F (α, β) = A+ f1(α, β) − f2(α, β) = 0,
G(α, β) = A+ g1(α, β) − g2(β) = 0.

3.1. Analysis of the curve G(α, β) = 0. When α = 0 we have that

G(0, β) = A− g2(β).

We claim that for α = 0 equation G(0, β) = 0 has a unique solution with
β > 0. Now we prove the claim, clearly

lim
β→0+

g2(β) = +∞ and lim
β→+∞

g2(β) = 0.

Moreover

g′2(β) = −3β

4

n∑

j=1

cos2
(
π j
n

)

(
1 + β2 − cos2

(
π j
n

))5/2 < 0,

for all β > 0. In short, G(0, β) is an increasing function of β such that

lim
β→0+

G(0, β) = −∞, lim
β→+∞

G(0, β) = A > 0,

and consequently G(0, β) = 0 has a unique solution β = h0 > 0. So the
claim is proved.

When α→ +∞, then

lim
α→+∞

G(α, β) = G(0, β).
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Therefore when α→ +∞, equation G(α, β) = 0 has a unique solution which
coincides with the solution for α = 0.

If the derivative dG/dβ 6= 0 for all α, β > 0 then we can assure that there
exist a curve β = h(α), defined for all α ≥ 0, such that h(0) = h0 > 0,
where β = h0 is the unique solution G(0, β) = 0, and limα→+∞ h(α) = h0
that satisfies G(α, β) = 0. Moreover if dG/dβ evaluated at (α, β) = (0, h0)
is different from zero, then from the implicit function theorem the solution
of G(α, β) = 0 for α = 0 can be continued to a unique solution G(α, β) = 0
for α > 0 small. Therefore the curve β = h(α) is the unique curve solution
of G(α, β) = 0 such that limα→0+ h(α) = h0. After some simplifications, we
get

(12)
d

dβ
G(α, β) = 3αβ

n∑

j=1

aj − g′2(β),

where

aj =
cosψj

(1 + α2 + β2 − 2α cosψj)
5/2

,

and ψj = π
n(2j − 1). We have seen that g′2(β) < 0 for all β > 0. So, from

(12), if
∑n

j=1 aj > 0 for all α, β > 0, then dG/dβ > 0 for all α, β > 0.
Moreover, from (12) again, dG/dβ evaluated at α = 0 is different from zero.
Therefore if

∑n
j=1 aj > 0 for all α, β > 0, then there exists a unique curve

solution of G(α, β) = 0, β = h(α), defined for all α > 0, satisfying that
limα→0 h(α) = limα→+∞ h(α) > 0.

Now we analyze the sign of
∑n

j=1 aj when α > 0. By using the properties
of the trigonometric functions we see that

(13) cosψn−j+1 = cosψj for all j = 1, . . . , [n/2].

Assume that n is even, that is n = 2k for some k ∈ N. From (13) we have
that

n∑

j=1

aj = 2
k∑

j=1

aj .

Moreover it is easy to check that

cosψk−j+1 = − cosψj for all j = 1, . . . , [k/2].

So if k is even, that is, k = 2ℓ for some ℓ ∈ N, then
∑k

j=1 aj is given by

ℓ∑

j=1

cosψj

(
1

(1 + α2 + β2 − 2α cosψj)
5/2

− 1

(1 + α2 + β2 + 2α cosψj)
5/2

)
.

Since cosψj > 0 for all j = 1, . . . , ℓ, then

1

(1 + α2 + β2 − 2α cosψj)
5/2

>
1

(1 + α2 + β2 + 2α cosψj)
5/2

.

Therefore if n = 4ℓ, then
∑n

j=1 aj > 0 for all α, β > 0.
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If k is odd, that is k = 2ℓ+ 1 for some ℓ ∈ N, then
∑k

j=1 aj is given by

ℓ∑

j=1

cosψj

(
1

(1 + α2 + β2 − 2α cosψj)
5/2

−

1

(1 + α2 + β2 + 2α cosψj)
5/2

)
+

cosψℓ+1

(1 + α2 + β2 − 2α cosψℓ+1)
5/2

.

Since cosψℓ+1 = cos π/2 = 0, we have that
∑n

j=1 aj > 0 for all α, β > 0
when n = 4ℓ+ 2.

In short we have proved the following result.

Lemma 1. If n is even, then there exists a curve β = h(α) solution of
G(α, β) = 0, defined for all α > 0, such that limα→0 h(α) = limα→+∞ h(α) >
0. Moreover this is the unique curve solution of G(α, β) = 0 satisfying these
properties.

Assume now that n is odd, that is n = 2k + 1 for some k ∈ N,

n∑

j=1

aj = 2
k∑

j=1

aj + ak+1.

Clearly

cosψk+1 = cos π = −1.

Since

cosψk−j+1 = − cos(2π j/n) for all j = 1, . . . , [k/2],

it is not difficult to see that
∑k

j=1 aj can be written as
∑k

j=1 bj where

bj =
(−1)j+1 cos

(
π j
n

)

(
1 + α2 + β2 − 2(−1)j+1α cos

(
π j
n

))5/2 .

Since cos(π j/n) > cos(π (j+1)/n) > 0 for all j = 1, . . . , k−1, we have that

cos
(π
n(j + 1)

)

(
1 + α2 + β2 + 2α cos

(
π
n(j + 1)

))5/2 <
cos

(
π j
n

)

(
1 + α2 + β2 − 2α cos

(
π j
n

))5/2 .

So b1 > |b2|, b3 > |b4|, and so on. Therefore
∑k

j=1 bj > 0 for all α, β > 0.

We have numerical evidences that

2
k∑

j=1

bj > −ak+1,

for all k ≥ 1. So, under this assumption
∑n

j=1 aj > 0 for all α, β > 0.
Therefore we do the following conjecture.

Conjecture 1. Lemma 1 holds for all positive integer n ≥ 2.
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3.2. Analysis of the curve F (α, β) = 0. Notice that the n–th term of
the summation f2(α, β), which is given by α3/(4β3), is not defined when
β = 0. All the other terms of the summations in the expression of F (α, β)
are defined for all α, β ≥ 0.

Lemma 2. The function F satisfies the following properties:

(a) fixed a value of α > 0, limβ→0+ F (α, β) = −∞,

(b) if α→ +∞ and β → 0+, then F (α, β) → −∞,
(c) fixed a value of α > 0, limβ→+∞ F (α, β) = A > 0,
(d) the limit of F when (α, β) → (+∞,+∞) on straight lines of the form

β = aα is

lim
α→+∞

F (α, aα) = A+
n

(a2 + 1)3/2
− n

4a3
= L(a),

(e) for all β > 0, F (0, β) = A > 0,
(f) limβ→+∞ F (0, β) = A > 0,
(g) fixed a value of β > 0, limα→+∞ F (α, β) = −∞,
(h) the limit of F when (α, β) → (0, 0) on straight lines of the form

β = b α is

lim
α→0

F (α, b α) = A− 1

4b3
.

Proof. The proof follows immediately from simple computations. �

Lemma 3. For each α > 0, there exists at least one β = H(α) > 0 such
that F (α,H(α)) = 0.

Proof. The proof follows immediately from Lemma 2(a) and (c). �

Lemma 4. Let H̃ be a curve solution of F (α, β) = 0. Then H̃ must satisfy
one of the following properties.

(a) H̃ is a curve that starts and ends at the point (0, 0) tangent to the

straight line β = (4A)−1/3 α,

(b) H̃ is a curve that starts and ends at (+∞,+∞) tangent to the
straight line β = a α where a is the unique real solution of equa-
tion L(a) = 0 and L is defined in Lemma 2 d),

(c) H̃ is a curve, defined for all α > 0, that starts at (0, 0) tangent to
the straight line β = (4A)−1/3 α and ends at (+∞,+∞) tangent to
the straight line β = aα. Here a is defined as in statement b).

(d) H̃ is a closed bounded curve that does not approach the coordinate
axes.

Proof. Assume that β = H(α) is a solution of F (α,H(α)) = 0 defined
for all α > 0 sufficiently small (the existence of this solution follows from

Lemma 3), and let H̃ be the curve defined by this solution.

From Lemma 2(e) the curve H̃ does not intersect the β axis with β > 0,
and from Lemma 2(f) it cannot go to β = +∞ when α → 0. Therefore
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Figure 2. The plot of the function ℓ.

H̃ must tend to the origin when α → 0. Moreover, since the limit when
(α, β) → (0, 0) on the straight lines of the form β = b α (see Lemma 2(h))

equals zero when b = (4A)−1/3, we have that the curve H̃ tends to the origin

tangent to the straight line β = (4A)−1/3 α when α→ 0.

From Lemma 2(c), the curve H̃ cannot go to β = +∞ with a finite value
of α > 0, from Lemma 2(a) it cannot cross the α axis with α > 0, from
Lemma 2(b) it cannot tend to α = +∞ with β → 0, and from Lemma 2(g)
it cannot go to α = +∞ for a finite value of β > 0. Therefore, either the
curve H̃ is defined for all α > 0 and tends to β = +∞ when α → +∞, or
it is a curve that starts and ends at the point (0, 0) tangent to the straight

line β = (4A)−1/3 α (i.e. H̃ satisfies statement (a)).

Applying Lemma 3 again we know the existence of β = H1(β) that is a

solution of F (α,H1(α)) = 0 for α sufficiently large. Let H̃1 the curve defined
by this solution. By using the previous arguments this curve must tend to
β = +∞ when α→ +∞. Therefore, either the curve H̃1 coincides with the
curve H̃, or it is a curve that starts and ends at (+∞,+∞). Now we analyze

how the curve H̃1 tends to β = +∞ when α→ +∞. By equating the limit
when (α, β) → (+∞,+∞) on the straight lines of the form β = aα to zero,
we get that equation L(a) = 0 is equivalent to the equation

A

n
=

1

4a3
− 1

(a2 + 1)3/2
= ℓ(a),

(see Lemma 2(d)). We can see easily that ℓ is defined for all a > 0,
lima→0+ ℓ(a) = +∞, lima→+∞ ℓ(a) = 0, and ℓ′(a) = 0 has a unique real
solution a = a0 ∼ 1.16161 which correspond to a minimum of ℓ with
ℓ(a0) < 0, see Figure 2. Since A/n is positive for all integer n ≥ 2, then

equation L(a) = 0 has a unique solution a. Therefore the curve H̃1 tends to
(+∞,+∞) tangent to the line β = aα.

In short, either H̃1 starts and ends at (+∞,+∞) tangent to the line β =

aα (i.e. it satisfies statement (b)), or H̃1 coincides with H̃ and consequently
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Figure 3. The plot of the curve F (α, β) = 0 (continuous
line) and the plot of dF/dβ(α, β) = 0 (dashed line) for some
values of n.

it is a curve defined for all α > 0 that tends to the origin tangent to the
straight line β = b α when α → 0 and tends to β = +∞ when α → +∞
tangent to the line β = aα (i.e. it satisfies statement (c)).

Finally equation F (α, β) = 0 could define a bounded closed curve that
does not approach the coordinate axes (i.e. a curve satisfying statement
(d)). This completes the proof. �

Note that if the derivative dF/dβ evaluated at the solutions of F (α, β) = 0
is different from zero, then the curves of statements (a), (b) and (d) of
Lemma 4 are not possible.

We have plotted, with the help of Mathematica, the curves defined im-
plicitly by the equations F (α, β) = 0 and (dF/dβ)(α, β) = 0 for a large
number of values of n (in Figure 3 there is a sample of them). We observe
that for all these values of n the curve (dF/dβ)(α, β) = 0 is upper the curve
F (α, β) = 0, thus the derivative dF/dβ is different from zero on the curve
solution of F (α, β) = 0. Moreover we see that the behaviour of these curves
is essentially the same for all those values of n, so we conjecture that the
derivative dF/dβ evaluated at the solutions of F (α, β) = 0 is different from
zero for all n ≥ 2. In short, we have the following.

Conjecture 2. For any integer n ≥ 2, there exists a curve β = H(α)
solution of F (α, β) = 0, defined for all α > 0, such that limα→0H(α) = 0
and limα→+∞H(α) = +∞.

3.3. The existence of solutions of system (11). From Lemma 1 and
Conjecture 1, we have that for all n ≥ 2 the solution of equation G(α, β) = 0
consists of a curve β = h(α), defined for all α > 0, such that limα→0 h(α) =
limα→+∞ h(α) > 0. On the other hand, from Conjecture 2, we have that
for all n ≥ 2 there exists a curve β = H(α) defined for all α > 0, such
that limα→0H(α) = 0 and limα→+∞H(α) = +∞ and satisfying equation
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Figure 4. The plot of F (α, β) = 0 (continuous line) and
G(α, β) = 0 (dashed line) for some values of n.

F (α, β) = 0. Therefore the curves β = h(α) and β = H(α) intersect at least
at one point.

For n ≥ 2 even if Conjecture 2 holds, then it follows the existence of
double–antiprism central configurations of the 3n–body problem.

For n ≥ 2 odd if Conjectures 1 and 2 hold, it follows the existence of
double–antiprism central configurations of the 3n–body problem.

We note that in both previous paragraphs we only get the existence but
not the uniqueness of the double–antiprism central configurations of the
3n–body problem for n ≥ 2.

We have plotted, with the help of Mathematica, the curves defined im-
plicitly by F (α, β) = 0 and G(α, β) = 0 for a large number of values of n
(see Figure 4 for a sample of them). We observe that the behaviour of these
curves the curves β = h(α) and β = H(α) when we vary n is essentially the
same, and that they intersect at a unique point. In short, we can do the
following conjecture.

Conjecture 3. For all integer n ≥ 2 there exist a unique double–antiprism
central configuration of the 3n–body problem.

3.4. Some numerical values of the solutions of system (11). With the
help of Mathematica, we have computed numerically the solution of system
(11) for all n = 2, . . . , 100000. We have seen that for all these values of
n system (11) has a unique solution, which gives more numerical evidence
that Conjecture 3 holds. In Table 1 we show the solutions of this system
for some values of n. We note that the solution for n = 2 can also be found
analytically.

We note that for some values of n the central configurations provided by
the solutions of Table 1 are already known. For instance, if n = 2, then the
configuration corresponds to the octahedron, if n = 4, then it corresponds
to the cuboctahedron (both studied in [1]). But in general they are new.
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n α β

2
√
2 1

3 1.42229 0.989129

4
√
2 1

5 1.38904 0.990101
6 1.36331 0.97153
7 1.34136 0.951556
8 1.32334 0.93281
9 1.30851 0.916005
10 1.29616 0.901161

n α β
20 1.23345 0.816412
30 1.20746 0.777097
40 1.19222 0.752651
50 1.18182 0.735311
60 1.17411 0.72206
70 1.16808 0.711436
80 1.16317 0.702628
90 1.15908 0.695143
100 1.15558 0.688659

n α β
1000 1.10482 0.58228
10000 1.07884 0.51492
100000 1.06309 0.467138

Table 1. The solutions of system (11) for some values of n.
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