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Abstract

An e�cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the

problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution

has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm

can perform e�ciently even in the presence of hard distortions.

I. Introduction

When linear models fail, nonlinear models, because of their better approximation capabilities,

appear to be powerfull tools for modeling practical situations. Examples of actual nonlinear

systems include digital satellite and microwave channels which are composed of a linear �lter

followed by a memoryless nonlinear travelling wave tube ampli�er [6], magnetic recording

channel, etc. Identi�cation of such systems is, therefore, of great theoretical and practical

interest.

Many researches have been done for the identi�cation and/or the inversion of such sys-

tems. Traditional nonlinear system identi�cation methods have been based on higher-order

input/output cross-correlations [2], or on the application of the Bussgang and Prices theorems

[3], [10] for nonlinear systems with Gaussian inputs.

These methods assume the availability of the nonlinear system input. However, in a real

world situation, one often does not have access to the system input: blind identi�cation of the

nonlinearity becomes then a necessary and a powerful tool. Although higher order statistics of

the output signal has been used in the detection of nonlinearities [11], [12] or in the identi�cation

of cascade of linear system - memoryless polynomial nonlinearity - linear system [13], blind

identi�cation of nonlinear systems has remained an intractable problem, except for a very

restricted class of inputs, mainly Gaussian.
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It is well known that, unlike the case of linear systems, prior knowledge of the model is

necessary for nonlinear system identi�cation [14]. This paper is concerned by a particular

class of nonlinear systems. These are composed by a linear time invariant subsystem (�lter h)

followed by a memoryless nonlinear distortion (function f) (Figure 1). This class of nonlinear

systems, also known as Wiener systems, is not only another nice and mathematically attracting

model, but also a model found in various areas, such as biology: study of the visual system [5],

relation between the muscle length and tension [8], industry: description of a distillation plant

[1], sociology and psychology. See also [9] and the references therein. Despite its interest, at

our knowledge, no blind procedure exists for the inversion of such systems.

The paper organizes as follows. In section II, the model, notations and assumptions are

detailed. The cost function, based on mutual information, is proposed in section III. Derivation

of the cost function optimization algorithm is exposed in section IV. In V, practical issues for

implementing the algorithm are adressed. Finally, section VI illustrates the good behavior of the

proposed algorithm in a hard situation, and its e�ciency by means of Monte-Carlo simulations.

II. Model and assumptions

We suppose that the input of the system, S = fs(t)g is an unknown non-Gaussian indepen-

dent and identically distributed (iid) process, and that both subsystems h; f are unknown and

invertible. We are concerned by the restitution of s(t) by only observing the system's output.

This implies the blind design of an inverse structure (Figure 2), this structure will be composed

of the same subsystems than the Wiener system, i.e. a linear �lter and a memoryless nonlin-

earity, but in the reverse order, i.e. a Hammerstein system. The nonlinear part g is concerned

by the compensation of the distortion f without access to its input, while the linear part w is
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a deconvolution �lter.

The following notation will be adopted through the paper. For each process Z = fz(t)g, z

denotes a vector of in�nite dimension, whose t-th entry is z(t). Following this notation, the

unknown input-output transfert can be written as:

e = f(Hs) (1)

where:

H =

0
BBBBBBBBB@

� � � � � � � � � � � � � � �

� � � h(t + 1) h(t) h(t� 1) � � �

� � � h(t + 2) h(t + 1) h(t) � � �

� � � � � � � � � � � � � � �

1
CCCCCCCCCA

(2)

denotes a square Toeplitz matrix of in�nite dimension and represents the action of the �lter h

on s(t). This matrix is nonsingular provided that the �lter h is invertible, i.e. h�1 exists and

satis�es h�1 � h = h � h�1 = �0, where �0 is the Dirac impulse at t = 0.

One can recognise in equation (1) the postnonlinear (pnl) model [15]. However, this model

has been studied only in the �nite dimentional case, in which it has been shown that, under

mild conditions, the system is separable provided that the input s has independent components,

and that the matrix H has at least two nonzero entries per row or per column.

Here, we conjecture that this will remain true for the in�nite dimension case. The �rst

separability condition is full�led since s has independent components due to the iid assumption.

Moreover, due to the particular structure of the matrixH, the second condition of separability

will always hold except if h is proportional to a pure delay.
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The output of the inversion structure can be written in the same way than (1):

y =Wx (3)

with x(t) = g(e(t)). Following [15], the inverse system g; w is estimated by minimizing the

output mutual information. In fact, this criterion is always positive and vanishes i� y has

independent components, i.e. y(t) is an iid process.

III. Cost function

The mutual information of a random vector of dimension n is de�ned by:

I(z) =
nX
i=1

H(zi)�H(z1; z2; : : : ; zn) (4)

Since we are interested in the mutual information of in�nite dimension random vectors, a natural

question is "how does this quantity grow with n?". This comes by using the notion of entropy

rates of stochastic processes [4]. The entropy rate of the stochastic process Z = fz(t)g is

de�ned as:

H(Z) = lim
T!1

1

2T + 1
H(z(�T ); : : : ; z(T )) (5)

if the limit exists. Theorem 4.2.1 of [4] states that this limit exists for a stationary stochastic

process. We shall then de�ne the mutual information rate of a stationary stochastic process

by:

I(Z) = lim
T!1

1

2T + 1

(
TX

t=�T

H(z(t))�H(z(�T ); : : : ; z(T ))
)

= H(z(�))�H(Z) (6)

Here � is arbitrary due to the stationarity assumption. We shall notice that I(Z) is always

positive and vanishes i� Z is iid.
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Now, since S is stationary, and since h and w are time-invariant �lters, then Y is also

stationary, and I(Y) is de�ned by:

I(Y) = H(y(�))�H(Y) (7)

We need the following lemma, proof of which is given in Appendix A:

Lemma 1: Let X be a stationary stochastic process, and let h be an invertible linear time

invariant �lter, then:

H(h � X ) = H(X ) + 1

2�

Z 2�

0

logj
+1X
t=�1

h(t)e�jt�jd� (8)

2

Since y(t) = h � x(t), one can write, applying lemma 1:

H(Y) = H(X ) + 1

2�

Z 2�

0

logj
+1X
t=�1

w(t)e�jt�jd� (9)

Moreover, since x(t) = g(e(t)) and by using the stationarity of E = e(t), one can write:

H(X ) = lim
T!1

1

2T + 1

(
H(e(�T ); : : : ; e(T )) +

TX
t=�T

E [log g0(e(t))]

)

= H(E) + E [log g0(e(�))] (10)

Combining (9) and (10) in (7) leads �nally to:

I(Y) = H(y(�))� 1

2�

Z 2�

0

logj
+1X
t=�1

w(t)e�jt�jd� � E [log g0(e(�))]�H(E) (11)

IV. Theoretical derivation of the inversion algorithm

To derive the optimization algorithm we need the derivatives of I(Y) (11) with respect to

the linear part w and with respect to the nonlinear function g.
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A. Linear subsystem

For the linear subsystem w, this is quite easy since the �lter w is well parameterized by its

coe�cients. For the coe�cient w(t), corresponding to the t-th lag, we have:

@H(y(�))

@w(t)
= �E[

@y(�)

@w(t)
 y(�)(y(�))] = �E[x(� � t) y(�)(y(�))] (12)

where  y(�)(u) = (log py(�))
0(u). Since, by stationarity,  y(�) is independent of � , in the

following it will be denoted simply  y. The second term of interest is (see appendix B):

@

@w(t)

(
1

2�

Z 2�

0

logj
+1X

t0=�1

w(t0)e�jt
0�jd�

)
=

1

2�

Z 2�

0

e�jt�P+1
t=�1w(t)e

�jt�
d� (13)

One recognises the f�tg-th coe�cient of the inverse of the �lter w, which we denote w(�t).

The derivatives of the other terms with respect to the w coe�cients are null, which leads, by

combining (12) and (13), to:

@I(Y)
@w(t)

= �E[x(� � t) y(y(�))]� w(�t) (14)

Equation (14) is the gradient of I(Y) with respect to w(t). Considering a small relative

variation of w, expressed as the convolution of w by a "small" �lter �:

w! w + � � w (15)

the �rst order variation of I(Y) writes as :

�I(Y) = ��(y; y(y) + �) � �	 (0) (16)

where y; y(y)(t) = E[y(� � t) y(y(�))] and � is the identity �lter. One immediately notices

that taking:

� = �
�
y; y(y) + �

	
; (17)
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where � is a small positive1 real constant, insures a continuous decrease of I(Y). It then

provides the following gradient descent algorithm:

w w + �
�
y; y(y) + �

	 � w (18)

which may be seen as a high-order correlation function of y(t). It is interesting to notice that

if y(t) is Gaussian N (0; 1) then  y(u) = �u, and y; y(y)(t) = �E[y(� � t)y(�)], which is

nothing but the correlation function, up to the sign, of y(t). In this case, the algorithm reduces

to a spectrum whitening.

B. Nonlinear subsystem

For this subsystem, we choose a nonparametric approach, implying no parametric-type re-

striction concerning its functional form. In consequence, and since the family of all possible

characteristics is so wide, the only possible parametrisation of g is itself. This may seem to be

confusing, but it will appear clearly in subsection V-D. Consider a small relative deviation of

g, expressed as the composition of g by a "small" function �:

g ! g + � � g (19)

Then, the variations of the two terms H(y(�)) and E [log g0(e(�))] in (11) are considere. We

have:

�E[log g0(e(�))] = E[log(1 + �0 � g(e(�)))] = E[�0(x(�))] (20)

and,

�H(y(�)) = �E[ y(y(�))fw � �(x)g(�)] (21)

1Small enough to insure the validity of the �rst order variation approximation.
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It leads to a variation:

�I(Y) = �E[ y(y(�))fw � �(x)g(�)] � E[�0(x(�))] (22)

of I(Y). Now let us write:

�0(x) =

Z
R

�(v)�0(x� v)dv (23)

�(x) =

Z
R

�(v)�(x� v)dv (24)

then:

�I(Y) = �
Z
R

E[ y(y(�))fw � �(x� v)g(�) + �0(x(�)� v)]| {z }
J(v)

�(v)dv (25)

To make a gradient descent, we may take:

�(v) = �Q � J(v) (26)

where � is a small positive real constant, and Q is any function such that:

Z
R

J(v)Q � J(v)dv � 0; (27)

to insure that I(Y) decreases. Using the Parseval equality, the last condition becomes

Z
R

jJ (�)j2<fQ(�)gd� � 0 (28)

where J and Q are the Fourier transforms of J and Q respectively and < denotes the real part.

It is thus su�cient to take <fQ(�)g > 0 for insuring the descent condition. The algorithm

writes then as:

g  g + � fQ � Jg � g (29)
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V. Practical issues

It is clear that (18) and (29) are unusable in practice. This section is concerned by

adapting these algorithms to an actual situation. We consider then a �nite discrete sam-

ple E = fe(1); e(2); : : : ; e(T )g. We assume that we already have computed the output of the

inversion system, i.e. X = fx(1); x(2); : : : ; x(T )g and Y = fy(1); y(2); : : : ; y(T )g. The �rst

question of interest is the estimation of the quantities involved in equations (18) and (29).

A. Estimation of  y

Two approaches can be used to estimate  y. The �rst approach consists in estimating the

pdf of y, and by  y = (log py)
0 one gets an estimate of  y. A possible choice of an estimator

of py consists in using nonparametric approaches, in particular methods based on kernels [7].

Kernel density estimators are easy to implement and have a very exible form. However, they

su�er from the di�culty of the choice of the kernel bandwidth B. In fact, this choice strongly

depends on the criterion used to evaluate the performance of the estimation.

Formally, using normalized kernels2, one estimates py by:

p̂y(u) =
1

BT

TX
t=1

K

�
u� y(t)

B

�
(30)

and  y by:

 ̂y(u) =

PT
t=1K

0

�
u�y(t)
B

�
B
PT

t=1K

�
u�y(t)
B

� (31)

In our experiments we used the Gaussian kernel (K has a Gaussian shape), however many other

kernel shapes can be good candidates (see [7] for more details). A "quick and dirty" method

2
R
R
K(u)du = 1.
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for the choice of the bandwith consists in using the rule of thumb h = 1:06 �̂y T
�1=5 which

is based on the minimum asymptotic mean integrated error criterion. Probably better choices

could be used, but experimentally we noticed that the proposed estimator works �ne.

A second approach for the estimation of  y is based on the direct mean square minimisation

of:

�( ̂y) = E[( ̂y(y)�  y(y))2] (32)

which can be done without knowing the true function  y. In fact, using:

E[ y(y) ̂y(y)] = �E[ ̂0y(y)]

equation (32) reduces to:

�( ̂y) = E[ ̂y(y)
2 + 2 ̂0y(y)] + E[ y(y)

2] (33)

in which the true function  y appear as a constant term.  ̂y being nonlinear, it could then

be modeled, for example, by a neural network [16] and trained using the backpropagation

algorithm. This approach has not been used in this paper where we prefer a nonparametric

approach.

B. Estimation of y; y(y)

According to the previous subsection, it is assumed that one has an estimator of  y. We are

now interested in estimating:

y; y(y)(t) = E[y(� � t) y(y(�))] (34)

Assuming y(t) is ergodic, one can get the estimate:

̂y; y(y)(t) =
1

T

TX
�=1

y(� � t) ̂y(y(�)) (35)
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where, by convention, y(�) = 0 for � < 1 and � > T . This estimate corresponds to the use of

a rectangular window. Other estimates can be obtained by choosing di�erent windows. Since,

in theory, y; y(y)(0) = �1, ̂y; y(y)(0) will be set to �1 without computing. Equation (35) is

a convolution, it implementation is done by resort to the FFT which reduces dramatically the

computation load.

C. Filter estimation

In pratical situations, the �lter w, updated according to:

w w + �f̂y; y(y) + �g � w; (36)

has a �nite length (FIR). The result of the convolution of w with ̂y; y(y)+� should be truncated

to �t the size of w. A smooth truncation, e.g. using of a Hamming window, is preferable to

avoid overshooting.

D. Nonlinear subsystem estimation

We recall that no parametrisation of g is used. Then, one would ask the intriguing question

"How would I compute the output of the nonlinear subsystem without having g?". In fact,

applying the equation (29) to the t-th element of the sample E , and using x(t) = g(e(t)), one

gets:

x(t) x(t) + � fQ � Jg (x(t)) (37)

As (37) converges, for each input sample e(t), we know that x(t) = g(e(t)). A simple nonlinear

approximation using the samples [x(t); e(t)]; t = 1; : : : ; T could lead to an approximation of

teh function g. However, this is not necessary and (37) has the advantage to be nonparametric,

and e�cient for any g.
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E. Estimation of Q � J

This function is necessary to adapt the output of the nonlinear subsystem, and can be

estimated by:

Q � J(v) = 1

T

TX
t=1

�Q0(v � x(t)) +  y(y(t))fw �Q(v � x)g(t) (38)

A possible choice of Q is:

Q(u) =

8>><
>>:
�u if u � 0

0 otherwise

(39)

which is very simple from a computational point of view. The real part of its Fourier transform

is <Q(!) = 1=!2 and satis�es (28).

In order to reduce the computational load when T is large, equation (38) can be simpli�ed.

Instead of computing Q�J at each sample x(t), it is computed only at N � T equally-spaced

points in the range [xmin; xmax] of the input signal x(t). The values of Q�J at the sample x(t)

are then obtained by linear interpolation. Equation (37) is in fact quite robust to sampling:

this can be explained by the low-pass �ltering e�ect of Q on J .

F. Indeterminacies

The output of the nonlinear subsystem x(t); t = 1; : : : ; T should be centered and normalized.

In fact, the inverse of the nonlinear distortion can be restored only up to a scale and a shift

factor. For the linear subsystem, the output y(t); t = 1; : : : ; T should also be normalized due
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to scale indeterminacy on w. For example, the mean and variance of x(t) are estimated by:

m̂x =
1

T

TX
t=1

x(t) (40)

�̂x =

vuut 1

T

TX
t=1

(x(t)� m̂x)2 (41)

and x(t) is normalized by:

x(t) x(t)� m̂x

�̂x
(42)

One can use the same normalisation scheme for y(t).

VI. Experimental results

A. Hard experiment

To test the previous algorithm, we simulate a hard situation. The iid input sequence s(t),

shown in �gure 5, is generated by applying a cubic distortion to an iid Gaussian sequence. The

�lter h is FIR, with the coe�cients:

h = [0:826;�0:165; 0:851; 0:163; 0:810]

Its frequency response is shown in �gure 3. Figure 4 shows that h has two zeros outside the

unit circle, which indicates that h is non-minimum phase.

The nonlinear distortion is a hard saturation f(u) = tanh(10u). The observed sequence is

shown in �gure 5.

The algorithm was provided with a sample of size T = 1000. The size of the impulse response

of w was set to 51 with equal size for the causal and anti-causal parts. Estimation results,

shown in �gures 5,6 and 7, prove the good behavior of the proposed algorithm. The phase of
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w (Figure 6) is composed of a linear part which corresponds to an arbitrary uncontrolled but

constant delay, and of a nonlinear part which cancels the h phase.

B. Performance analysis

The performance of the proposed algorithm is evaluated by means of Monte-Carlo simula-

tions. Since we are interested in restoring the original sequence, a good performance index

consists in evaluating the error between the original signal s(t) and the restored signal y(t).

The performance index writes then as:

PT = E

"
1

T

TX
t=1

(y(t)� s(t))2
#

(43)

in which, it is supposed that y(t) has been properly delayed and rescaled.

A uniformally distributed signal in the range [�p3;p3] is chosen for the simulations. Filter

h is a simple low-pass �lter with coe�cients [1; 0:5], and the nonlinear distortion is still f(u) =

tanh(10u). Figure 8 shows the results of the simulations, where each point is the average of

50 experiments. As one can expect, the performance index decreases when the sample size T

increases.

C. Real data

The previous procedure has been tested on real data. Figure 9 shows a seismic refraction

pro�le recorded using a vessel and an Ocean Bottom Seismometer (OBS) over the Beaulieu

plateau in France.

Each wave correspond to the signal recorded by the unique sensor, located on the sea bottom

(OBS), in response to the shots which are produced at regular time intervals by the vessel which

moves at constant speed.
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In this experiment, the proposed procedure provides an estimate of the nonlinearity g which

is far from a linear characteristic. The output of the nonlinear processing is shown in Figure

10.

Figure 11 compares a purely linear deconvolution and the proposed nonlinear method as-

suming the existence of a nonlinear memoryless distortion. We can notice that the proposed

procedure provides an enhanced version of the purely linear deconvolution revealing hidden

structures not emphasized by the linear deconvolution. However, these results are currently

not well understood since seismic experts consider usually purely linear models. The only

thing that can be said is that the linear model does not hold since our procedure revealed the

existence of a nonlinearity.

VII. Final remarks and conclusion

In this paper a blind procedure for the inversion of a nonlinear Wiener system was pro-

posed. Contrary to other blind identi�cation procedures, the system input is not assumed to

be Gaussian. Moreover, the nonlinear subsystem is unknown or not directly identi�able. The

inversion procedure is based on a quasi-nonparametric relative gradient descent of the mutual

information rate of the inversion system output. It is inspired from recent results on blind

source separation in nonlinear mixtures.

One may notice that some quantities involved in the algorithm can be e�ciently estimated

by resort to FFT and interpolation, which reduces dramatically the computational cost. The

estimation of g is done implicitely: only the values of x(t) = g(e(t)); t = 1; : : : ; T are esti-

mated. One can further use any regression algorithm based on these data to estimate g, e.g.

neural networks, splines, etc.
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The proposed procedure performs well, even in hard situations (hard nonlinearity and non

minimum phase �lter). Extension to complex channels is quite easy and is currently under

investigation.

This approach could be promising in many application areas, as suggest the preliminary re-

sults on seismic data. These results show that the method emphasizes novel information that

cannot be obtained by purely linear methods.
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de la Generalitat de Catalunya. The authors are very grateful to the nonlinear research group
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Appendix

I. Proof of lemma 1

We �rst show that, for two arbitrary stochastic processes X and Y, we have:

I(X ; h � Y) = I(X ;Y) (44)

In fact:

I(X ; h � Y) = H(X )�H(X =h � Y) (45)

and since h is supposed invertible, then the uncertaincy on X due to the knowledge of h � Y

is equal to that of X due to the knowledge of Y:

H(X =h � Y) = H(X =Y) (46)

and leads obviously to (44).
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Now, let Z be an arbitrary stationary stochastic process independent form X . We have:

I(X + Z;Z) = H(X + Z) +H(Z)�H(X + Z;Z) (47)

However, using the independence of Z and X , we have:

H(X + Z;Z) = H(Z) +H(X ) (48)

Combining (47) and (48) we get:

I(X + Z;Z) = H(X + Z)�H(X ) (49)

And similarily for h � Z and h � X , we have:

I(h � X + h � Z; h � Z) = H(h � X + h � Z)�H(h � X ) (50)

Using (44), the last equation becomes

I(h � X + h � Z; h � Z) = I(X + Z;Z) (51)

which leads �naly to:

H(h � X + h � Z)�H(X + Z) = H(h � X )�H(X ) (52)

for any Z. This expression shows that the di�erence between the output and input entropy is

independent from the input distribution. We can then write:

H(h � X )�H(X ) = H(h � G)�H(G) (53)

where G is a white stationary Gaussian process. However, for a Gaussian process, we have from

the Szeg�o-Kolmogorov-Krein theorem [17]:

H(h � G)�H(G) = 1

4�

Z 2�

0

logS(ej�)d� (54)
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where S(ej�) is the spectrum of h � G. But since G is white, we have:

S(ej�) = j
+1X
t=�1

h(t)e�jt�j2 (55)

from which, we deduce immediately that:

H(h � X )�H(X ) = 1

2�

Z 2�

0

logj
+1X
t=�1

h(t)e�jt�jd� (56)

II. Evaluation of (13)

Let us denote:

W (ej�) =
+1X

t0=�1

w(t0)e�jt
0� (57)

then,

1

2�

Z 2�

0

logj
+1X

t0=�1

w(t0)e�jt
0�jd� = 1

4�

Z 2�

0

logW (ej�)W (e�j�)d� (58)

and,

@

@w(t)

(
1

2�

Z 2�

0

logj
+1X

t0=�1

w(t0)e�jt
0�jd�

)
=

1

4�

Z 2�

0

e�jt�W (e�j�) + ejt�W (ej�)

jW (ej�)j2 d�

=
1

2�

Z 2�

0

<
�

e�jt�

W (ej�)

�
d� = < 1

2�

Z 2�

0

e�jt�

W (ej�)
d� (59)

However, since the �lter w is real, the imaginary part of the intergral is equal to zero leading

to the result (13).
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Fig. 2. Wiener system inversion structure - Hammerstein system.
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Fig. 3. h frequency domain response.
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Fig. 4. Zeros of h.
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Fig. 5. From left to right: Original input sequence s(t), Observed sequence e(t), Restored sequence y(t).
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Fig. 6. Estimated inverse of h: w frequency domain response.
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Fig. 7. Estimated inverse of the nonlinear characteristic f : x(t) vs. e(t)
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Fig. 10. Output of the nonlinear processing stage
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Fig. 11. Linear deconvolution vs. Nonlinear Wiener system deconvolution


