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Abstract: In this paper we present a quantitative comparisons of different independent component analysis (ICA) algo-
rithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extrac-
tion) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination
between AD (or mild cognitive impairment, MCI) and age-match control subjects.

1 INTRODUCTION

Independent component analysis (ICA) is a method
for recovering underlying signals from linear mix-
tures of those signals. ICA draws upon higher-order
signal statistics to determine a set of ”components”
which are maximally independent of each other.

The aims of this paper is to investigate which ICA
algorithm is best adapted to deal as a preprocessing
stage with EEG signals. In order to do that, we made
different experiments with EEG data from Alzheimer
and age-match control subjects. The evaluation was
calculated in terms of measure of receiver operating
characteristic (ROC) score.

The paper is organized as follows: in Section 2
we present experimental data characteristics used in
the experiments. Section 3 is devoted to procedure
and ICA algorithms used. In Section 4 we explain
the measure that we will use for obtaining the experi-
mental results, that are presented in Section 5. Finally,
conclusions are presented in Section 6.

2 EXPERIMENTAL DATA

In the course of a clinical study, mutlichannel EEG
recordings (Deltamed EEG machine) were recorded
from 33 elderly patients affected by Alzheimer’s dis-
ease and followed clinically (labeled AD set) and

from 39 age-matched controls (labeled Control set),
with electrodes located on 19 sites according to
the 10-20 international system. This database was
recorded in normal routine. Reference electrodes
were placed between Fz and Cz, and between Cz and
Pz. The sampling frequency was 256 Hz, with band-
pass filter 0.17-100 Hz. Three periods of 5 seconds
were selected in a ”rest eyes-closed” condition for
each patients. In selecting these three independent
sessions, an artifact rejection procedure was used to
help minimize the artifact effect.

3 ICA AND BSS

3.1 Procedure

At the first stage, we apply principal component
analysis (PCA) to perform dimensionality reduction.
At the second stage, an ICA algorithm is implemented
to perform BSS. The estimated output signalyt are as-
sumed to be the source signals of interest up certain
scaling and permutation ambiguity.

In addition, if we are only interested in denoising
or getting rid of specific component, we can set that
specific output signal (sayyi) to zero while keeping
other components intact, and apply back projection
procedure to recover the original scene. In our ex-
periments, in ranking the output components, we al-
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ways select the one that has the least absolute kurtosis
value (i.e., the one close to Gaussian by assuming zero
kurtosis statistic for Gaussian signal, positive kurtosis
statistic for super-Gaussian signal, and negative kur-
tosis for sub-Gaussian signal).

3.2 Selection of candidate algorithms

For comparison, we have selected seven representa-
tive ICA algorithms. The selection criteria of them
are based on several factors: (i) computationally effi-
ciency; (ii) robustness; (iii) fewer degree of freedom
(such as the choices of learning rate parameter, non-
linearity, or number of iterations); (iv) preference to
batch method.

Specifically, the following seven ICA/BSS algo-
rithms are among some of most popular BSS meth-
ods in the literature: AMUSE, SOBI, JADE, Pearson-
ICA, Thin-ICA, CCA-BSS and TFD-BSS.

The detailed description of algorithms are ne-
glected here; for relevant references, see (Cichocki
and Amari, 2002). All of algorithms are implemented
in MATLAB, some of them are available for down-
load from the original contributors (Cichocki et al., ).

For each algorithm, we have varied the number of
independent components (namely,n), from 3 to 10, to
extract the resultant uncorrelated or independent com-
ponents.

4 PERFORMANCE EVALUATION

In signal detection/classification theory, a receiver op-
erating characteristic (ROC) is a graphical plot of the
sensitivity vs (1-specificity) for a binary classifier sys-
tem as its discrimination threshold is varied. The
ROC can also be represented equivalently by plotting
the fraction of true positives (TP) vs the fraction of
true negatives (TN). Nowadays, the usage of ROC has
become a common measure to evaluate the discrimi-
nation ability of the feature or classifier. Roughly, the
discrimination ability or performance is measured by
the area value underneath the ROC curve, the greater
the value, the better is the performance (with 1 denot-
ing perfect classification, and 0.5 denoting pure ran-
dom guess).

Since the primary purpose here is to evaluate the
features extracted from different ICA algorithms, we
have focused on the comparison between ICA algo-
rithms and the choice of number of independent com-
ponents. In order to obtain the baseline, we choose
two simple yet popular linear classifiers—the linear
discriminant analysis (LDA) and linear perceptron.

In calculating the ROC score, we have employed the
leave-one-out (LOO) procedure.

The features we use to feed the linear classifier are
the power values extracted from different frequency
bands (θ,α,β, andγ). The ROC score is first calcu-
lated by using raw EEG data without any ICA pre-
processing; this ROC score is regarded as a base-
line for further comparison. For ICA feature extrac-
tion, we conduct the procedures of dimensionality re-
duction, source separation, component rejection, fol-
lowed by backward projection. For each algorithm,
we calculate their ROC score by varying the number
of independent components from 3 to 10. Note that
all the discrimination tasks are binary classification:
AD against control subjects.

5 EXPERIMENTAL RESULTS

First, we calculated the ROC score for all ICA al-
gorithm with varying number of independent compo-
nents. All algorithms follow the similar-shape trend:
compared to baseline , there is a positive gain in high-
frequency bands using ICA; while for low-frequency
bands, there is no need for using ICA because of their
negative gains. In fact, the result is consistent with
what was expected: since the SNR is poor in high-
frequency bands, eliminating the independent compo-
nent with the least absolute value of kurtosis would
lead to a gain in SNR; consequently, the ROC score
or its gain is greater.

Next, the comparison was conducted on three in-
dividual 5-second sessions’ EEG recordings. By av-
eraging these three independent data set, we also ob-
tain the performance comparison. It can be seen from
these results that for all independent data sets, the
performance depends on the choice of the ICA algo-
rithm as well as the choice of components. On the
other hand, it is also obvious that by using ICA algo-
rithms for feature extraction, it is possible to boost the
ROC score performance (w.r.t. the baseline) around
0.7467−0.6193

0.6193 = 20.6% (data set 1), 15.6% (data set 2),
and 10.2% (data set 3), assuming the best ICA al-
gorithm (with optimum number of IC) is employed.
This improvement is quite significant. The averaged
ROC score against the number of independent com-
ponents is plotted in Figure 1.

From Table 1, several noteworthy observations
are in order:

• It seems that the optimum number of IC is 4, ob-
taining the highest mean ROC score (averaged
over all ICA algorithms) 0.6536, followed by
0.6447 (IC=6). Overall, it seems the optimal
range for the number of IC is between 4 to 7.
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Figure 1: Left: The mean ROC score gain (averaged over 3 data basesand the number of independent components; with 0 as
baseline) against frequency bands for 7 algorithms. Rigth: The averaged ROC score (over 3 data bases) comparison between
different ICA algorithms with varying number of independent components.

• By averaging different numbers of IC, it seems
the overall best ICA algorithms are Pearson-ICA
and JADE (averaged from 4 to 7 components), or
Thin-ICA and SOBI (averaged from 3 to 10 com-
ponents).

• Overall, JADE and SOBI seem to give quite con-
sistent performance for different number of com-
ponents.

In addition, we can also compare the correct clas-
sification rate between different ICA algorithms with
different setups. The results using LDA and linear
perceptron classifiers are summarized in Table 2.
Likewise, compared to the baseline correct classifi-
cation rate, the performance with appropriate ICA al-
gorithm give some more or less improvement.

6 CONCLUSION

In this work, we have proposed a measure or crite-
ria to compare several popular ICA algorithms in the
investigation of feature extraction of eeg signals in
discrimination of Alzheimer disease. As a powerful
signal processing tool used in the preprocessing step,
ICA was found useful in artifact rejection, improving
SNR, and noise reduction, all of which are important
for the feature selection at the later stage. The ICA
algorithms and the optimum choice of independent
components are extensively investigated using sim-
ple linear classifiers and LOO procedure for calculat-
ing the resultant ROC scores and correct classification
rate, both compared to their baselines.

It was found, in general, ICA algorithms are par-
ticularly useful for feature extraction in high fre-
quency bands, especially on high alpha and beta

ranges; where in low frequency bands, little gain has
been obtained compared to the baselines. This is more
or less anticipated, because EEG signals are usually
contaminated by noise at high frequency bands, but
are more resistant to noise at low frequency bands.
Moreover, the optimum number of selected compo-
nents seem to depend on the selected algorithms,
but overall observations seem to indicate the num-
ber should be in the range from 4 to 7. Interestingly,
this number is consistent with our early independent
investigations ( (Vialatte et al., 2005)). In terms of
overall average performance, it seem that the JADE,
SOBI, thinICA, and CCABSS algorithms give more
consistent and better results.
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Table 1: The ROC score comparison between ICA algorithms by averaging the results from three 5-second sessions. The
baseline value (without ICA) of ROC score is 0.63. The bold fonts indicatethe top two winners or the maximal two values in
each column.

no. IC AMUSE SOBI JADE Pearson-ICA Thin-ICA CCA-BSS TFBSS

3 0.5791 0.6358 0.5379 0.5618 0.5569 0.6255 0.5755

4 0.6496 0.6566 0.6729 0.6729 0.6506 0.6496 0.6234

5 0.6265 0.6154 0.6099 0.5983 0.6408 0.6182 0.6343

6 0.6299 0.6369 0.6654 0.6649 0.6457 0.6511 0.6193

7 0.5998 0.6346 0.6325 0.6485 0.6496 0.6097 0.6382

8 0.6263 0.6270 0.6317 0.6203 0.6475 0.6141 0.6213

9 0.6203 0.6094 0.6382 0.6123 0.6289 0.6250 0.6402

10 0.6327 0.6244 0.6265 0.6055 0.6348 0.6131 0.6244

average from{2,3,4,5} rows

0.6292 0.6210 0.6498 0.6544 0.6385 0.6094 0.6364

average from all rows

0.6205 0.6300 0.6269 0.6231 0.6318 0.6258 0.6221

Table 2: Classification results using leave-one-out procedure. The bold font indicate the maximum value in each column.

no. IC AMUSE SOBI JADE Pearson-ICA Thin-ICA CCA-BSS TFBSS

LDA baseline value (without ICA) 75%

3 65.2778 65.2778 65.2778 63.8889 62.5000 61.1111 62.5000

4 69.4444 73.6111 70.8333 69.4444 68.0556 69.4444 61.1111

5 68.0556 66.6667 77.7778 69.4444 75.0000 73.6111 69.4444

6 72.2222 72.2222 76.3889 75.0000 70.8333 77.7778 69.4444

7 68.0556 73.6111 70.8333 76.3889 72.2222 72.2222 72.2222

8 73.6111 76.3889 72.2222 73.6111 72.2222 70.8333 70.8333

9 76.3889 73.6111 68.0556 73.6111 76.3889 69.4444 70.8333

10 70.8333 75.0000 73.6111 72.2222 77.7778 72.2222 76.3889

linear perceptron baseline value (without ICA) 62.5%

3 59.7222 51.3889 54.1667 54.1667 45.8333 68.0556 54.1667

4 62.5000 70.8333 65.2778 70.8333 68.0556 56.9444 54.1667

5 59.7222 62.5000 56.9444 56.9444 68.0556 62.5000 62.5000

6 65.2778 62.5000 70.8333 65.2778 68.0556 65.2778 62.5000

7 59.7222 56.9444 65.2778 65.2778 62.5000 65.2778 65.2778

8 65.2778 62.5000 59.7222 59.7222 65.2778 65.2778 62.5000

9 62.5000 62.5000 70.8333 56.9444 68.0556 62.5000 62.5000

10 62.5000 62.5000 68.0556 59.7222 62.5000 65.2778 59.7222


