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Abstract. This paper proposes a very fast method for blindly initial-
izing a nonlinear mapping which transforms a sum of random variables.
The method provides a surprisingly good approximation even when the
basic assumption is not fully satisfied. The method can been used success-
fully for initializing nonlinearity in post-nonlinear mixtures or in Wiener
system inversion, for improving algorithm speed and convergence.

1 Introduction

Blind Separation of independent sources (BSS) is a basic problem in signal pro-
cessing, which has been considered intensively in the last fifteen years, mainly
for linear (instantaneous as well as convolutive) mixtures. More recently, a few
researchers [1–10] addressed the problem of source separation in nonlinear mix-
tures, whose observations are e = f(s). Especially Taleb and Jutten [8] have
studied a special and realistic case of nonlinear mixtures, called post nonlin-
ear (PNL) mixtures which are separable. As shown in Figure 1, this two-stage
system consists of a linear mixing matrix, followed by componentwise nonlinear
distortions. It then provides the mixing observations:

ei(t) = fi(
∑

j

aijsj(t)) (1)

where sj(t) are the independent sources, ei(t) is the i-th observation, aij denotes
the entries of the unknown mixing matrix A, and fi is the unknown nonlinear
mapping on the component i.
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Fig. 1. The mixing-separating system for PNL mixtures.

h f(·)-- -s(t) x(t) e(t)

Fig. 2. A Wiener system consists of a filter followed by a distortion

The problem of blind inversion of Wiener systems (Fig. 2) is equivalent to
the source separation problem in PNL mixtures [11]. Its output writes as

e(t) = f(
∑

k

h(k)s(t− k)) (2)

where s(t) is the independent and identically distributed (iid) input, e(t) is
the observation, h(k) denotes the entries of the unknown filter H and f is the
unknown nonlinear mapping, assumed invertible and memoryless.

Blind separation or inversion of the above models requires first to estimate
the inverse of the nonlinear mapping, and then to inverse the linear part. This
can be done by minimizing the mutual information of the inversion structure
output. However, it leads to slow and cost consuming algorithms, since the two
parts are in cascade and optimized with the same criterion.

In this paper, we propose a simple, very fast and efficient method for roughly
estimating the inverse of the nonlinear mapping. Section 2 explains the prin-
ciples. Section 3 proposes two classes of algorithms and section 4 shows some
experimental results where one use this method for initializing blind inversion
algorithms and improving its speed.

2 Principles

2.1 The basic assumption

In the model (1), consider the signal just before the nonlinear mapping. For
the i-th component in the PNL mixture, The signal xi(t) =

∑
j aijsj(t) is a

weighted sum of random variables. According to the Central Limit Theorem, Xi

tends toward a Gaussian random variable. The nonlinear mapping fi changes
the distribution, and consequently we can assume that the random variable
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Fe(·) Φ−1(·)-- -e(t) z(t) ≈ x(t)

Fig. 3. The inversion system

Ei = fi(Xi) is far from Gaussian. Then, we propose to estimate the inverse of
fi, as the nonlinear mapping gi which enforces the random variable Zi = gi(Ei)
to be Gaussian.

Similarly, in the Wiener systems the filtered signal x(t) =
∑

k h(k)s(t − k),
just before the nonlinearity, is a weighted sum of random variables. According
to the Central Limit Theorem, the random variable X, associated to x(t), tends
to be a Gaussian random variable. Of course, the vicinity to a Gaussian variable
depends on the filter, but X is closer to a Gaussian distribution than the distri-
bution of the original source S. We then propose to approximate the inverse of
f(·) by the function g(·) such that g(E) is Gaussian.

In the next section, since the two problems are very similar, we cancel the
index i for simplifying the notations.

2.2 Cumulative density function

The simplest approach for computing gi is based on the property of the cumu-
lative density function. Consider the random variable E, and denote FE(u) its
cumulative density function:

FE(u) = Pr(E < u) (3)

where Pr() denotes the probability.
The random variable U = FE(E) is then uniformly distributed in [0, 1].

Denoting Φ(u) the Gaussian cumulative density function, which transforms a
unit variance Gaussian variable in a uniform random variable in [0, 1], it is clear
that Φ−1(U) is a unit variance Gaussian random variable.

Then, a simple approximation of the inverse g of the nonlinear mapping f is:

ĝ = Φ−1 ◦ FE (4)

2.3 Maximization of Shannon entropy

Consider now the Shannon entropy of the unit variance random variable Z

H(Z) =
∫
−logpZ(u)pZ(u)du (5)

where pZ(u) denotes the probability density function.
Since, for unit variance random variable, the Shannon entropy H(Z) is max-

imum if Z is Gaussian [12], then g can be estimated so that H(Z) = H(g(E))
is maximum (under the constrain of unit variance).
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3 Algorithms

Using the previous results, one can propose two simple algorithms for the rough
estimation of the inverse of the nonlinear mapping f . The first algorithm (see
Fig. 3) is based on the formula (4) derived in Subsection 2.2. The Matlab code
is very simple and very fast.

A second algorithm, based on the result on Subsection 2.3, consists in ad-
justing a nonlinear mapping g so that the Shannon’s entropy of z is maximum
under the constraint Ez2 = 1 (see [10] for a similar work). We can parametrize
the nonlinear function g, for example by means of neural networks (multylayer
perceptron), as showed in Fig. 4.

Fig. 4. Multilayer perceptron

A gradient approach can be easily derived for adjusting vector parameters
[h,b,w], in order to optimize the cost function J = maxh,b,w(H(Z)). Although
the second idea is still quite simple, it leads to an algorithm which is much more
complicated and longer to converge than the previous one.

Hence, in the following, we only give experimental results with the simplest
and more efficient algorithm based on (4).

4 Experimental results

4.1 Protocol

In order to test the algorithm, we made experiments, using source signals with
different kurtosis.

Mixing of variables can be done according to either linear mixtures A or linear
filtering h. For simplicity, we only report results with linear filtering according
to (2), but similar results are obtained with (1) [13].
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Ten different filters (low-pass, high-pass or band-pass) have been used for
providing filtered signals with various distributions. Then, we apply the non-
linearity f . We check, as expected by theory, that the algorithm is completely
independent of f since, ∀f the function Φ−1 ◦ FE ◦ f transforms the random
variable X to a Gaussian variable Z. If the compensation of the nonlinearity
was perfect, the function Φ−1 ◦FE ◦f should be the identity function. Of course,
it can be rigorously true, only if X is Gaussian.

For testing the algorithm of PNL source separation, we did some experiments
for mixtures of two uniformly distributed random sources. The method used is
the algorithm proposed by Taleb and Jutten [8], denoted TJ. The mixing system
is composed of:

A =
[

1 0.4
0.7 1

]
(6)

f1(x) = f2(x) = 0.1x + tanh(10x) (7)

This mixture leads to the joint distribution showed in Fig. 5, where the
effect of the nonlinearities is clearly visible (left). In the same figure we can
see the scatter plot after the initialization of nonlinear functions g (center) and
the scatter plot of the initialized outputs y, where the signals are decorrelated
(right). It is easy to see qualitatively the initialization provides an estimation
y(t) which is a mixture, simpler than e(t).
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Fig. 5. Scatter plot of the observed signals (left), of the signals after initializing non-
linear functions g (center) and of the decorrelated output signals (right).

Despite hard nonlinearities (0.05x+ tanh(10x)) are used in the experiments,
the results obtained with the TJ method are satisfactory. The initialization pro-
cess increases the convergence speed of the algorithm, and sometimes gives a
better result in terms of output SNR (Fig. 6).

4.2 Results

The performance index ε of the compensation will be simply the mean square
error4:

ε = EX [‖(Φ−1 ◦ FE ◦ f)(X)−X‖2] (8)
4 For computing ε, x(t) and z(t) = (Φ−1 ◦ FE ◦ f)(x(t)) have to be normalized
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Fig. 6. SNR evolution for TJ algorithm with initialization process(solid line) and with-
out (dashed line).

which measures the divergence between Φ−1 ◦ FE ◦ f and the linear function x.
Fig. 7 shows the performance index versus the kurtosis of the filtered signals

X, obtained with the different sources and filters. One can remark that the
performance is maximum when the signal kurtosis is close to zero, i.e. X is close
to a Gaussian, and vanishes as the kurtosis moves away from zero.

As a result, the efficacy of the method is only related on the distribution of
X, just before the nonlinearity f : closer to the Gaussian the distribution, closer
to zero the error ε.

In Fig. 8 and 9 we show an example of good and poor compensation of the
nonlinear function. The good compensation corresponds to 0.0238 kurtosis and
the poor case to −1.2631.

5 Conclusion

In this paper, we propose a very simple and fast method for blindly approxi-
mating nonlinear mapping. The method is based on the assumption that the
input variable of the nonlinear mapping is Gaussian due to mixture or filtering.
The results show the method is robust enough to the Gaussian assumption. In
the worst case (see Fig. 9), it leads to a rough approximation of the nonlinear
mapping which can be used as initialization value for enhancing BSS or Wiener
algorithms.
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Fig. 7. Performance index ε versus kurtosis
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Fig. 8. Best case nonlinear function compensation
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Fig. 9. Worst case nonlinear function compensation
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