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Abstract. It is well known the relationship between source separation and blind 
deconvolution: If a filtered version of an unknown i.i.d. signal is observed, tem-
poral independence between samples can be used to retrieve the original signal, 
in the same manner as spatial independence is used for source separation. In 
this paper we propose the use of a Genetic Algorithm (GA) to blindly invert 
linear channels. The use of GA is justified in the case of  small number of sam-
ples, where other gradient-like methods fails because of poor estimation of sta-
tistics. 

1 Introduction 

The problem of source separation may be formulated as the recovering of a set of 
unknown independent signals from the observations of mixtures of them without any 
prior information about either the sources or the mixture [1, 2]. The strategy used in 
this kind of problems is based on obtaining signals as independent as possible at the 
output of the system. In the bibliography multiple algorithms are proposed for solving 
the problem of source separation in instantaneous linear mixtures, from neural net-
works based methods [3], cumulants or moments methods [4, 5], geometric methods 
[6] or information theoretic methods [7]. In real world situations, however, the major-
ity of mixtures can not be modeled as instantaneous and/or linear. This is the case of 
convolutive mixtures, where the effect of channel from source to sensor is modeled 
by a filter [8]. 

A particular case of blind separation is the case of blind deconvolution, which is 
presented in figure 1. Development of this framework is presented in the following 
section. 
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Fig. 1. Block diagram of the convolution system and blind deconvolution system. Both filter h 
and signal s(t) on the convolution process are unknown. 

This paper proposes the use of Genetic Algorithms (GA) for the blind inversion of 
the (linear) channel. The theoretic framework for using source separation techniques 
in the case of blind deconvolution is presented in [9]. There, a quasi-nonparametric 
gradient approach is used, minimizing the mutual information of the output as a cost 
function to deal with the problem. A parametric approach can be found in [10]. The 
aim of the paper is to present a different optimization procedure to solve the problem, 
even if a small number of samples is available. In this case, gradient-like algorithms 
fail because of poor estimation of statistics. Our method is shown to be useful in this 
case, where other methods can not be used. This paper is organized as follows. Sec-
tion 2 describes the linear model and presents the basic equations. Section 3 explains 
the Genetic Algorithm for blind deconvolution. Finally, section 4 presents the ex-
periments showing the performance of the method. 

2 Model and system equations 

2.1   Model 

We suppose that the input of the system S={s(t)} is an unknown non-Gaussian in-
dependent and identically distributed (i.i.d.) process, and that subsystem h is a linear 
filter, unknown and invertible. We would like to estimate s(t) by only observing the 
system output. This implies the blind estimation of the inverse structure composed of 
a linear filter w. Let s and e be the vectors of infinite dimension, whose t-th entries are 
s(t) or e(t), respectively. The unknown input-output transfer can be written as: 

se H=  (1) 

where:  
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is an infinite dimension Toeplitz matrix which represents the action of the filter h to 
the signal s(t). The matrix H is non-singular provided that the filter h is invertible, i.e. 
satisfies ( ) ( ) ( ) ( ) ( )tthththth δ== −− 11 ** , where δ(t) is the Dirac impulse. The infinite 
dimension of vectors and matrix is due to the lack of assumption on the filter order. If 
the filter h is a finite impulse response (FIR) filter of order Nh, the matrix dimension 
can be reduced to the size Nh. In practice, because infinite-dimension equations are 
not tractable, we have to choose a pertinent (finite) value for Nh. 

2.2   Summary of equations 

From figure 1, we can write the mutual information of the output of the filter w us-
ing the notion of entropy rates of stochastic processes as:  
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where τ is arbitrary due to the stationary assumption. The input signal S={s(t)} is an 
unknown non-Gaussian i.i.d. process, Y={y(t)} is the output process and y denotes a 
vector of infinite dimension whose t-th entry is y(t). We shall notice that I(Y) is al-
ways positive and vanishes when Y is i.i.d.  

After some algebra, Equation (2) can be rewritten as [10]: 
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At this point we need to derive the optimization algorithm. One possibility is, for 
example, to use gradient-like algorithms, where the derivative of I(Y) with respect to 
the coefficients of w filter is needed. In our system, a canonical genetic algorithm will 
be used, avoiding the calculus of hard statistics. The method is presented in next 
section. 



3 Genetic Algorithm for Blind Deconvolution 

3.1   Justifying the use of a GA for blind deconvolution 

A genetic algorithm (GA hereinafter) is a search technique used in computer science 
to find approximate solutions to combinatorial optimization problems. GAs are a 
particular class of evolutionary algorithms that use techniques inspired by evolution-
ary biology such as inheritance, mutation, natural selection, and recombination (or 
crossover) [11].  
The process of blind deconvolution can be handled by a genetic algorithm which 
evolves individuals corresponding to different inverse filters and evaluate the esti-
mated solutions according to a measure of statistical independence. This is a problem 
of global optimization: minimizing or maximizing a real valued function ( )f x

G
 in the 

parameter space x P∈
G

. This particular type of problems is suitable to be solved by a 
genetic algorithm. GAs are designed to move the population away from local minima 
that a traditional hill climbing algorithm might get stuck in. They are also easily par-
allelizable and their evaluation function can be any that assigns to each individual a 
real value into a partially ordered set (poset). GAs have already been successfully 
applied to linear and post-nonlinear blind source separation [12]. 

3.2   GA characterization 

The operation of the basic genetic algorithm needs the following features to be com-
pletely characterized: 

− Encoding Scheme. The genes will represent the coefficients of the unknown de-
convolution filter W  (real coding). An initial decision must therefore be taken 
about the length of the inverse filter. 
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Fig. 2. Encoding scheme in a genetic algorithm for filter coefficients of linear blind deconvolu-
tion. The values of the variables stored in the chromosome are real numbers. 

− Initialization Procedure.  Coefficients of the deconvolution filter which form part 
of the chromosomes are randomly initialized. 



− Fitness Function. The key point in the performance of a GA is the definition of the 
fitness function. In this case, we propose several fitness functions related with 
maximizing independence between the values of the estimated signal y(t). Maxi-
mizing kurtosis absolute value is proposed as a first approach, followed by two 
cumulant-based expressions. Further details will be given in Section 3.2.1. 

− Genetic Operators. Typical crossover and mutation operators will be used for the 
manipulation of the current population in each iteration of the GA.  The crossover 
operator is “Simple One-point Crossover”. The mutation operator is “Non-
Uniform Mutation” [11]. This operator makes the exploration-exploitation trade-
off be more favorable to exploration in the early stages of the algorithm, while ex-
ploitation takes more importance when the solution given by the GA is closer to 
the optimal. 

− Parameter Set. Population size, number of generations, probability of mutation and 
crossover and other parameters relative to the genetic algorithm operation were 
chosen depending on the characteristics of the mixing problem.  Generally a popu-
lation of 80-100 individuals was used, stopping criteria was set between 60-100 it-
erations, crossover probability is 0.8 per chromosome and mutation probability is 
typically set between 0.05 and 0.08 per gene. 

3.2.1   Evaluation functions proposed 
One of the most remarkable advantages of genetic algorithms is its great flexibility 
for the application of new evaluation functions, being the only requirement that the 
evaluation function assigns a real value to each individual into a partially ordered set. 
Therefore, the evaluation function is extremely modular and independent from the 
rest of the GA. This ability will allow us to decide which evaluation function per-
forms better in each situation. Generally, we will look for an evaluation function 
which gives higher scores for those chromosomes representing estimations which 
maximize statistical independence. 
• Measuring nongaussianity by kurtosis. Absolute value of the kurtosis has been 

extensively used as a measure of nongaussianity in finding independent compo-
nents [13]. Kurtosis is simple to compute. In this paper we propose using the abso-
lute value of the normalized kurtosis as the first evaluation function: 
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 The evaluation function is directly derived from (5): 

Kurteval ( ) ( )w kurt y=  (6) 

where y  is the signal obtained after applying the filter w to the observation x . 
• Measuring mutual information through approximation by cumulants. As it is well-

known, kurtosis is very sensitive to outliers. Therefore we propose a different 
evaluation function. Using Edgewoth expansion, an approximation of mutual in-



formation can be reached using cumulants (higher-order statistics), as proposed in 
[14]: 
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stant. 
 The proposed evaluation function splits the estimated signal y in a set of 
equal-size chunks. Subsequently, it approximates mutual information between the 
pieces of the signal according to equation (7). As mutual information must be 
minimal for the estimated source under the assumption of statistical independence, 
and the evaluation function is attempted to be maximized by the GA, the evalua-
tion function for a given chromosome in this case will be: 
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where y  is the signal obtained after applying the filter W to the observation x  and 

iy  is the i-th chunk from estimation y. 
• Measuring negentropy through approximation by cumulants. Negentropy is a non-

egative measure of nongaussianity. Finally, using again higher-order cumulants 
and the Gram-Charlier polynomial expansion, gives  the approximation: 

{ } { } 223 41 1J( ) 3
12 48

y E y E y ≈ + −   (9) 

The evaluation function is just equivalent to the approximation of negentropy, as 
the maximum values should give good estimations: 

NEGeval ( ) J( )W y=  (10) 

where y  is the signal obtained after applying the filter W to the observation x . 

4 Experimental Results 

Finally, in order to verify the effectiveness of the proposed algorithm, some experi-
mental results using uniform random sources are presented. In all the experiments, the 
source signal is an uniform random source with zero mean and unit variance. As the 
performance criterion, we have used the output Signal to the Noise Ratio (SNR) 
measured in decibels. 

In the first experiment, the (unknown) filter is the low-pass filter ( ) 15.01 −+= zZH . 
Then, the proposed algorithm is used to obtain the inverse system. The parameters of 
the algorithm are: T = 5000 (number of observed samples), p = 7 (order of inverse 



filter), crossover probability was set to 0.8, mutation probability 0.075, population 
size is 80, and the stopping criterion is 100 generations. 

In the second experiment, we diminish the number of available samples. Here, the 
problem is more difficult due to the lack of information. Parameters of the algorithm 
are set to: T = 1000 (number of observed samples), p = 5 (order of inverse filter), and 
we used the same parameters for the genetic part of the algorithm as in the first ex-
periment. Figure 2 (center) shows the coefficients of the filters W(Z)  and WH(Z) 
respectively when applying IMeval .   
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Fig. 2. On the top line, the inverse filter coefficients. Down figures represent coefficients of the 
convolution between filters W(Z) and H(Z). From left to right: filter coefficients gicen by the 
GA using Kurteval  with an observed signal of 2000 samples,  IMeval  with 1000 samples, and  

Negeval  with 500 samples. Note that in some of the estimated filters, a delay due to the inde-
terminacies may appear. 

In the last experiment, we reduced the number of available to T=500. The rest of 
the parameters remain the same as in the former simulations.  

Figure 3 summarizes the results of the experiments in terms of crosstalk (left) and 
computational time (right). These experiments show that although the number of 
samples are low, the algorithm has been capable of estimating the inverse system. 
Crosstalk between the estimation and the source is situated between 20-30dB, de-
pending on the length of the signal and the contrast function applied. When compared 
to a typical deconvolution gradient descent algorithm, the GA presents a better per-
formance as the number of samples in the observed signal decreases. 

5 Conclusion 

A GA algorithm is presented for blind inversion of channels. The use of this tech-
nique is justified here because of the small number of samples. In this situation, gra-
dient-like algorithm fails because it is very difficult to obtain a good estimation of 
statistics (score function, pdf, etc.). Optimization using GA avoids these calculations 
and gives us good results for inverting the unknown filter. Future research should 
extend the idea to Wiener systems (linear filter plus nonlinear function), where a 
Hammerstein structure can be used and all the parameters should be found by these 
optimization techniques.   
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Fig. 3. Crosstalk and time comparison of the proposed GA using the three different evaluation 
functions and a gradient descent algorithm. 
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