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ABSTRACT

Biometric system performance can be improved bynsed data fusion. Several kinds of
information can be fused in order to obtain a nmaweurate classification (identification or
verification) of an input sample. In this paper weesent a method for computing the
weights in a weighted sum fusion for score comliamat by means of a likelihood model.
The maximum likelihood estimation is set as a lir@a@gramming problem. The scores are
derived from a GMM classifier working on a diffeteieature extractor. Our experimental
results assesed the robustness of the systemnhdrohanges on time (different sessions)
and robustness in front a change of microphone. ifingrovements obtained were
significantly better (error bars of two standardid&ons) than a uniform weighted sum or a
uniform weighted product or the best single classifThe proposed method scales
computationaly with the number of scores to beifusl as the simplex method for linear
programming.

1. INTRODUCTION
Biometric recognition (Faundez-Zanuy, 2006) offarpromising approach for security
applications, with some advantages over the clalssiethods, which depend on
something you have (key, card, etc.), or sometlgmg know (password, PIN, etc.). A
nice property of biometric traits is that they drased on something you are or
something you do, so you do not need to remembghiaig neither to hold any token.
On the other hand, they have an important drawblaeg&ause if a person’s biometric
data is stolen, it is not possible to replace audez-Zanuy, 2004). Probably, these
drawbacks have slowed down the spread of use ohdirac recognition (Faundez-
Zanuy, 2005b). For those applications with a huswgrervisor (such as border entrance
control), this can be a minor problem, becauseopherator can check if the presented
biometric trait is original or fake. However, foemote applications such as internet,
some kind of liveliness detection and anti-replayack mechanisms should be
provided. Fortunately, speech offers a richer andewrange of possibilities when
compared with other biometric traits, such as fipget, iris, hand geometry, face, etc.
For instance, you can use a text-dependent sy$taon@iez-Zanuy and Monte-Moreno,
2005) and to ask the user for a specific speectesesa. Speaker recognition does not
offer the same robustness and precision than dilbenetric traits such as fingerprint
and iris. However, strong efforts are done to enhathe performance, due to its
particular set of characteristics that can perminenage some vulnerability attacks.
This paper is organized as follows: section twocdbss the different data levels for
fusion with special emphasis on the score levem&aoew strategies are presented for
data fusion. Section three is devoted to the ewpmrtal results, and section four
summarizes the main conclusions.

2. DATA FUSION

2.1 Introduction

Given a biometric system, such as that depictdjime 1, four main data fusion levels
can be defined: sensor, feature, score (also knasvropinion) and decision. The
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description of these levels is beyond the scopehis paper and can be found in
(Faundez-Zanuy, 2005a).
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Figure 1: General scheme of a biometric system

In this paper we will focus on the score level. sTkind of fusion is also known as
confidence level. Given a set of classifiers (mats)y it consists of the combination of
the scores provided by each matcher. The matckepjovides a distance measure or a
similarity measure between the input features hArdrodels stored on the database.

It is possible to combine several classifiers wogkiwith the same biometric
characteristic (unimodal systems) or to combinékht ones. In our case, it will be a
unimodal combination, where both classifiers shlaeesame input signal, as depicted in
figure 2. This scheme can be easily generalizedhfme than two matchers.

FEATURE MATCHING 1 score 1
EXTRACTION 1

? A Combined
FUSION score
DATA BASE 1 —>
MIC
A
FEATURE MATCHING 2
d EXTRACTION 2
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DATA BASE 2

Figure 2: General scheme for data fusion at score level.

2.2 Combination strategies

The score combination schemes for a given spealeibe done in several ways (see
kuncheva 2004). The most natural strategies forbooimg different scores, might be:
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1) Weighted sumO, =>" h.o,
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2) Weighted productO, = ﬁ(ojs)hj
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In this paper we propose a fusion method, wheresttees will be interpreted as
probabilities of an observation, given a modelthis paper for each observation we
will have a vector of N-scores, which will be thelpability of the identitiy of a speaker
for a set of N classifiers. The global likelihoach€tion will be the product of the all the
probabilities of the observations of all speakeherg each score will be weighted by a
factor h, that will be specific for a given score. The likelod function, of these

probabilities can be understood as either a weiglpeduct of probabilities, or a
weighted sum of logarithms of probabilities.
The strategy for computing thig parameters that weight the different scores can be

done by several methods, the first and most simptht be the brute force method,
which would consist on exploring the space of galssiecognition rates for all possible
combinations of a set of discrete values of thegimang parameters. The problem with
this method is that it scales exponentially wite tumber of scores, and therefore is it
only has sense for a small values of the numbescofes to be merged (i.e. N=2,3).
Another possibility might be the use of a leastasga method for the estimation of the
weighting parameters, without considering a liketid model, i.e. considering the
observations as a probability of an observatioemia model. The use of a least squares

method will assign to positive examples the targgtie O®°® =+1, and negative

examples targe0®*. = -1. The advantage of a least squares estimation is that it might

take into account the possible correlations (positive or negdieta)een scores. This
method was taken into consideration at the begining of the prdgetthad several
problems: a- the introduction of restrictions on the set of paeamit, was artificial,

so the set of equations had to be solved as a nonlinear convexzapbn problem
(Boyd and Vandenberghe, 2004), b- the natural way of settitpéist squares problem
was as a discriminative estimation (i.e positive and negative@gajnwhich gave rise

a a inconsistent system of equationfhe use of a discriminative model was was
discarded because the set of equations to be solved by the leasissgethodah= b
(where A is a matrix data, and b, is the target vector, which’'s valtees1) was
inconsistent, probably due to the fact that the use of negatarames made that a
fraction of similar items of the training data were assigned to diffdedrdls. The
problem of identifying the subset of the training data thatdgigla consistent set of
equations was not tried, because of the combinatorial nature ofdblkemp. Note that
even the use of suboptimal methods for estimating subsets stiehfasward selection
(see Bishop 1995) yields a quadratical cost with the number of eesuwpich makes
the problem computationally unfeasible.

An alternative to the use of negative examples is the use ahdakdlimodel, which
solves a different kind of problem. l.e. the computing the $epavameters that
maximizes the likelihood of the combined set of scores for all theakers
simultaneously. Note that only positive samples are used.

On the other hand, the use of a likelihood model, with ttrednction of restrictions on
the weightsh,, gave naturaly a set of equations that were equivalent to a linear

programming problem.

! The inconsistency test is given by the simplexatm (see Bertsimas 1997)



The fusion process will be done by means of the followingehod

o

where P, (x) is the probability of the sample given the model for the speakgrand
the parameterlzatlop The weighting parametet; weights the contribution of the

parameterizationj to the global likelihood. This parameter is specific of the
parameterization and independent of the speaker. The number parametarnpkad ©f
speakesis M. The total number of speakers is denoted by S.

The goal is to find the values that maximize the likelihood (1) in a geometrical

simplex, i.e.Simplex= {( h - p)oo® |Z h=1 and e 0, D} A simplex constraint was

selected, in order to restrict the pOSSIb|e valuesh,ofbecause of the fact that the

estimates are found by maximizing the likelihood function (hjictvcan be unbounded
for negative values ofy, or can give rounding errors far >>1. Another reason for

selecting a solution in a simplex, is that the optimiza@gorithm will allocate a
limited ‘budget’ of probability between the different scores, andetbes the scores
that contribute marginally to the correct fusion will be givew Malues ofh; (notice

that h, =0 makes irrelevant a parameterization), while the rest of the probdhitityet

will be allocated to the parameterizations that contribute maketoorrect fusion.
The function to be maximized (1) can be set for a given speakera log-likelihood
function,

M N
h=argm ;'Zlhj Ir( Igvj()g))j

i=l j=
g 2)
subjet to ,Z:;hj !

h 20

Our objective is to find a the vectbithat maximizes simulatenously the likelihood for
each speaker. We decided to express the optimization problera vagiriction on each
speaker in order to control a common margin, so that each speakenawd a
likelihood at least as high as the value of a positive thresiddice that if the
objective function in (2) had a sum for all speakers, we would@eatble to control the
likelihood of the worst speaker. Therefore we introduced a new varidbtd us the
common positive threshold for the likelihoods of all speakers;ciwive will denote as
0, and the result of the optimization process will be the valug plus the values of h
that are compatible with the restriccions.

This problem can be expressed in a convex optimization framework (Bogd
Vandenberghe, 2004) as:



max DeltaWeightd
subjet to 3)

WhereA is a matriz of xS xN with the following structure:
A:[Al R ASJT
and eachA® is a submatrix ofNIxN) composed by’ =|n(F;,j (X))- The optimization

variable is5 ande is a column vector of dimensioM&S). The restrictions on the
function to be maximized (2) is that simultaneously for pdlakers, the weighted scores

of every utterance of speaker ihj In(R, (%)) will have a higher value than the
j=1

variable to be maximizefl. This variable is weighted in the objective function by a

parameter that we will denote as Delta weight, which can be seercale dastor over

the log probabilities, which will work as a trade-off in the [giex ihj =1 generated by
j=1

h,. Low values of the delta weight will give solutions near tagicenter (center of

N
mass) of the simple®_h, =1, while high values will give solutions near a vertex of the

j=1
simplex. This value might be seen as a prior overthset of values, in the sense that
low values of the Delta weight, will yield a solution more @sd uniform, while high
values of the Delta weight will give a sparse solution allocatingt of the probability
mass to a reduced number of scores. As will be seen in sectjaghe8&is a trade-off in
the performance of the classifier, which can be controlled by means pataiseter.
This optimization problem is solved by means of the simplgorithnf (Bertsimas
and Tsitsiklis, 1997).

The problem (3) can be expressed as a standard linear programming problem

min f'x
subjet to (4)
AX< b
AEqX: beq
Ib<x<ub

where A is the matrix of log probabilities, which was defined in (3) and
f,x,b,h,,lb,uband A are vectors defined as:

% The simplex algorithm for solving the linear pragming problem, should not be confused with the
geometrical simplex, which is a constraint on theameters to be estimated.
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x=[h, b, h,=9]
b=[0--0]

b, =[]’ (5)
Ib=[0---0"

ub=[1--1"

i
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The method we propose has several computational advantages, perbapsst
interesting is that thaveragecase running time for the simplex algorithm for linear
programming. Although some examples can be contructed whernenghle)s algorithm
can take an exponential time with the number of constraints, tla rime, is a
polinomial of the number of contraints, which makes the solugjoite inexpensive
from the computational point of view (Bertsimas 1997).

3. EXPERIMENTAL RESULTS

3.1 Database

The Gaudi database (Ortega et al., 2000; Satue and Faundez-Za8uwa9®riginally
designed in order to measure the performances under different controlkitoosn
language, interval session, microphone. The corpus is composed by

e 49 speakers.

* 4 sessions with different tasks: isolated numbers, connectedensimead text,
conversational speech, etc. ...).

* For each session, the utterances have been acquired in two lan{Caigésn
and Spanish) and simultaneously with different microphones asilzkzsan
table 1.

Table 1 The microphones used for the Gaudi database.

MIC1 | SONY ECM 66B| lavalier unidirectional electret{ 0 cm from the speaker)

MIC2 | AKG D40S dynamic cardioick30 cm from the speaker)

MIC3 | AKG C420 head-mounted (low-cost microphone)

In this contribution, the training protocol consists ofngsione reading text of an
average duration of one minute (using session 1 and MIC1). Camgdhe tests, we
use 5 phonologically balanced utterances (Spanish) identical faeapeakers through
the scenarios M3 to M6. We focus on the third first sessiorsdiffierent microphones
(cf. table 2) The number of tests for genuine users is 49x5=245do1seasion and the
average score is estimated under 49x5x6=1470 tests.



Table 2. Different sessions and microphones notation.

Scenario Session Microphone
M1 1 MIC1
M2 1 MIC2
M3 2 MIC1
M4 2 MIC2
M5 3 MIC1
M6 3 MIC3

The speech signal has been down-sampled to 8 kHz, pre-emphagiaefirdi order
filter whose transfer function is H(z)=1-0.95and normalized between -1,+1 (for
cumulant estimation). A 30ms Hamming window is used, aadtierlapping between
adjacent frames is 2/3. A parameterized vector of order 16 was computedcfo
feature extraction method.

3.2 Feature extraction

Sate-of-the-art feature extraction methods are based on the MFCC (Mekrhegqu
Cepstral Coding) or the LPCC (Linear Predictive Cesptral Codinggsd short-term
features are currently used in GMM based speaker recognition sygiésreative
features have been investigated resulting on different approachesrstomés consist
of the development of short-term features (as LPCC or MFCC) suck asdlof signal
decomposition methods (Wavelet, Independent Component Anjal@sgiger techniques
aim to exploit other levels of representation such as phoneticogcosdiolectal,
dialogic or semantic (Faundez-Zanuy and Monte-Moreno, 2005).eTteesgures are
extracted from long-term physical traits and are usually fused \ehtraditional
spectral features (short-terms).

In this contribution, we propose to evaluate additional short-features that can also
be combined with the MFCC/LPCC ones. These features are extractedh&olof-
residue.

3.2.1 Feature Extraction from the Residue

Speech signals are assumed to result from the excitation of thetramtadccording to
the source-filter model. Following the LPC analysis framework, ¥bcal tract is
associated to the filter (LPC coefficients) and the excitation to theusdssdynal. The
LP analysis consists of the estimation of LPC coefficients mymizing the prediction

error. The predicted sample results from a linear combination gb fFeest samples (
Atal and Hanauer, 1971):

§n) = —ZakS(n- k) ©

The LPC coefficients yaare related to the vocal tract and should also partly capture
speaker-dependent information. Indeed, derived features from thesecieatsfi
namely the Linear Predictive Cepstral Coding (LPCC), are intenselgt in speaker
recognition tasks. The parameter(filter's order) plays a major role for instance in



speech recognition tasks best scores are obtained with 12th drdexas in speaker
recognition the most used order is 16.

Within the traditional LP analysis, the residual is obtainedHhey error between the
current and the predicted samples:
r(n) =s(n-¥n

(7)
Theoretically, the residual is uncorrelated to the speech signat andelated to the
excitation which is speaker-dependent. These features are knownres faiures.
However, recent works on non-linear speech processing have shaivtnéhsource-
filter model is not suitable for the speech production modelliragiiBez et al. 2002;
Kubin, 1995). Different phenomena occur during the production atieaton-linear and
chaotic. From these investigations on non-linear processingzamassume that there
is a dependency between the speech signal and the residual.

Several investigations have been carried out for the use of this resaudhe
improvement of speaker recognition systems (Thevenaz and H@§b, EFaundez and
Rodriguez, 1998; Mary et al.20 04; Yegnanaraya, 2001; Mabaeleal,. 2006; Zheng
et al. 2006). Thevenaz and Hugli (Thevenaz P. and HU@B)1&ploit the theoretical
orthogonality between two models respectively the filter (i.eL®@ coefficients) and
the residue. Their results confirm the complimentary of these represestdor
speaker verification. Neural networks have been also tested for the ehaeadicin of
the LP residual (Mary et al,. 2004). In (Mahadeva et al,. 200@)p-associative neural
networks are used for the characterisation of the linear residue shbeythat speaker
recognition systems can reach efficient rates by using only residusaideat

In this contribution, we propose to exploit the fact that thsidue conveys all
information that are not modelled by the LPC filter (cf. equatioAgse informations
are modelled by two techniques: temporal and frequential. Thedpptoach attempts
to model the residual signal by an Auto-Regressive (AR) metié the second one is
based on a filter bank based model.

Temporal approach:
The temporal approach is based on an Auto-Regressive (AR) modelld®tesidue:

Yo,
r(n)= —Zakr(n -k)
k=1 (8)

Wherer andp respectively represent the LP-residue and the filter's order.

Auto-regressive coefficients (i.e. LPC features) are not directly usedp@ech
applications. LPCC features obtained from the LPC by a cepstral tnawagion are
prefered due to their decorellation properties suitable for diagonaicesatbhased
models (GMMs). Thex, coefficients are transformed on cepstral oppesmilarly to the
LPC-LPCC transformation. The obtained cepstral features are termRdSsS-LPCC



since they are obtained from a cepstral transformation of an AR nmgdeflthe LPC
residue.

Frequential approach:

Contrary to the previous approach, in this section, we describe @mitegjuyprocessing
of the residual signal r(n). This approach was originally proposddaypakawa and al.
(Hayakawa et al, 1997} and called by them the Power Difference of Spe&rdbband
(PDSS). They tested it on a speaker identification problem, the F&H€atures gave a
rate of 66.9% and the combination with LPCC features gave 99%9498:8the LPCC
alone).

The R-PDSS features are obtained by the following steps :
* Calculate the LP-residual r.

» Fast Fourier Transform of the residual using zero padding in ordactease
the frequency resolution: S=|fft(residde)|

e Group the power spectrum into M sub-bands.

e Calculate the ratio of the geometric to the arithmetic mean of thesrpow

spectrum of the" sub-band and subtract it to 1:
1

o

k=L,

1y ©)
N 2SW)

i k=L,

R-PDSSi) =1-

WhereN; = H; - L; +1 is the number of sample number of frequency points in"the
sub-bandL; andH; are respectively the lower and upper frequency limits of'thsub-
band. The same bandwidth is used for all the sub-bands.

Cepstrum analysis of the residual has been also investigagpe@ch recognition (He
et al., 1996): filter bank analysis of the one-sided auto-correlafitime residuat plus
a cepstral transformation. The obtained features named as RCEP (R€sfds@lm)
present some linguistic information and in combination to tRE€C improves the
recognition rates.

3.3 FeaturelLinearization

Communications channel can be modeled as a linear filter, in a siropkestor as a
Wiener system (linear filter followed by a nonlinear invertible fuorgti Many research
have been done in the identification and/or the inversion of linearnandnear
systems. These works assume that both the input and the ofitihne distortion are
available (Prakriya and Hatzinakos, 1985); they are based on higleeriopdt/output



cross-correlation (Bellings and Fakhouri, 1978) bispectrum estimdfilikias and
Petropulu, 1993; Nikias and Raghuveer, 1987) or on thécappn of the Bussgang
and Prices theorems (Boer, 1976; Jacoviti et al., 1987) folinean systems with
Gaussian inputs.

s(t) h e(t)

— f(.)

eV y (1)

— e X8y YO

Figure 3: The unknown nonlinear convolution system (top) #Breproposed inversion structure (bottom)

However, in real world situations one often does not have atzdbg input. In this
case, blind identification becomes the only way to solve thderob

One of the main sources of degradation in speaker recognitibe rmismatch between
training and testing conditions. This is due because in afdke situations we can not
control the channel effects over the speech signal. It means thpatrimaeters extracted
in the recognition stage can be modified for the channel effects andacae that
system fails to recognize an authorized speaker.

In order to minimize the channel effects, we try to homogenigetiannel effects by
means of a linearization effect. Other strategies can be found in (SsédsCand
Faundez-Zanuy, 2006).

We use a homogenization method inspired on recent advances in sepacation of
nonlinear mixtures (see (Sole-Casals et al, 2002; Taleb and J8h, Tlaleb et al.,
2001; for details) . Based on the inversion of Wiener systemsost-Nonlinear
mixtures in BSS/ICA context, we propose to Gaussianize thectpsignal before to
extract the parameters as is done in (Sole-Casals et al, 2005).

3.3.1 Cumulative density function

The simplest approach for computing gi is based on the pyopérthe cumulative
density function (cdf). Consider the random varialile and denote its cdf

F. =Pr{E <u), wherePr{ ) denotes the probability. The random variable F, (E)

is then uniformly distributed in [0, 1]. Denoting b®(u) the Gaussian cdf, which
transforms a unit variance Gaussian variable into a uniform random eaingl, 1], it

is clear that ®*(u) is a unit variance Gaussian random variable. Then, a simple
Gaussianization procedure (see figure 2) is to apply this direct dhgbhovided we
have the functiorﬂ)‘l( ) by using the following nonlinear mapping:

g=0"°F, (10)

10
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Figure 4: The system Gaussianization for a speech sigftalThe first block consists in estimating the
cumulative density function (cdf) of the observednal and the second block is the inverse of the
Gaussian cdf.

3.3.2 Maximization of Shannon entropy
Let pz(u) denote the probability density function of Z, the Shannon pytob the unit

variance random variable Z, defined by:

H(z) = [~log(p,(u))p, (u)du (11)

is maximum if Z is Gaussian (Cover and Thomas, 1991). Then, anothe
Gaussianization method can be obtained so tH4Z) is maximum (under the
constraint of unit variance).

3.3.3 Algorithms

Using the previous results, one can propose twaoridhgns for the linearization
(Gaussianization) of the speech signal. The figarghm is based on formula (10). The
Matlab code is very simple and very fast. A secalgdrithm, based on (11), consists of

adjusting a nonlinear mapping g so that the Shasnentropy of Z:g(E) is

maximum under the constraifz® =1. Although the second idea is still quite simpte, i
leads to an algorithm which is much more complidaa@d requires much iterations
before converging to an acceptable solution. Onctiv@rary, the algorithm based on
(10) provides an analytical solution without angrations. In the following, we only
consider this fast algorithm.

3.4 Classification

The classification system is based on standard seaudMixture Models (GMMs)
(Reynols and Rose, 1995). A Gaussian mixture derisita weighted sum oK
componenKt densities given by:

P(X/A) =D @iy, 5, (X) (12)

Where X is a d-dimensional vector, g(x) are the component denisities at the
mixture weights. Each component density is a datarGaussian function:

_ 1
g(#,z)(x)_(zn)dlzm

With mean vectonyk and covariance matriXy. The mixture weightsy satisfy the
following constraint:
K

2@, =1 (14)

The Gaussian Mixture Model is defined by the meactars, covariance matrices and
mixture weights. The set of parameters is groupedrapresented by:

e—l/2(x—/.1)T = (x-p) (13)

11



A=Wt Z,)  k=1..K.
Each speaker is modelled by a GMM with 32 mixtueesl diagonal covariance
matrices.

3.5 Normalization of the scores.

In the case of fusion it is usual to introduce anmadization of the scores, so that the
fusion is done on adimensional units, which behava statisticaly similar fashion. In
our case, there was no need of normalizing thamist measures. The set of classifiers
to be merged were homogeneous, and the only diiferewas due to the
parameterization. The margin of variation of theamwges was similar, as can be seen in
figure 5.

0.8

L
Jlol) by

1 1 1 1 1 1 1
1 2 3 4 5 7 8
Parametrization

-log Pi(x)

o

Figure 5: Box plot of the distances of all the utterancedeced by parametrizatiorThe parametrization
titles are shown in table 3.

Table 3. Coding of the parametrization

LPCC

LPCC_linearization

MFCC

MFCC_linearization

PDSS

PDSS linearization
SosResidualLPCC
SosResidualLPCC _linearization

OINO O[S [WIN [

3.6. Results of thelinear programming fusion

We have compared the fusion method based on Ipregraming with the computation
of the mean value of the classification resultseath parameterization. The fusion

12



method consisted on the linear combination of thgputs of the classifiers on two
cases: a- Thejhvere set to 1/N (i.e. uniform weighting of eaclors} b- The Thejh
computed by means of the linear programming method.

Another possibility was to compare the resultshaf fusion with the parameterization
(or a subset of parametrizations) that gave thé fessilts. The results did not show a
consistent behaviour. Some parametrizations wetterbi@ the sense of robustness in
front of a change of session, but had a bad pedonca when the microphone was
changed, and others degraded with a change of @phigne. In any case the fusion
method based on the linear programming method stemdly improved over the best
method alone. For comparisons purposes we willemtethie results of the two different
fusion methods with the recogntion results of taeametrization that globally gave the
best results, i.e. MFCC.

The experiments were designed in order to seeothgstness of the fusion method with
respect to either a change of session or a changecmophone. As reference we took
scenario M1 (see section 3.1), which consisted raining with session 1 and

microphone 1 and with four of the five phrases sewbgnizing with the left out phrase.
This was repeated for all the phrases, and thédtseme shown in figure 6.

In all figures, the error bars represent two stathdieviations, i.e. a confidence interval
of 95%.

Notice that using the linear programming model iovess significantly the recognition

rate for the different test sentences in the refeeset up.

M1/ Dashed line: Linear programming / Dotted line: Mean value M1/ Dashed line: Linear programming / Dotted line: Mean value

100 \ 100

99.5 \ 9951 \ \

SN £ ool \\
g \

Figure 6: Reference results M1, for Delta weight : 1 (1&fg)(right)..

The Delta weight, as explained in section 2.2 adstthe flatness of the weighting
vector. The experiments showed that low valuesi@fdelta weight gave a near uniform
distribution of the weights, while high values, es#ed the weights that can be
understood as the most relevant. Notice that agréim@ng was not discriminative, the
parmetrization with the highest valugshould not be taken as the most discriminative,

13



but as the ones that contribute more to the likelth of the data given the model.
Figure 7 shows the values of thddr values of the Delta weight ={1,10}.

Figure7: Values of the ffor different values of the Delta weight: 1 (left) (right).

The first experiment of interest is the rubustnafsthe method with respect to a change
in the date of the recording (i.e. the sessionj,viathout changing the microphones,
which correspond to scenario M3 and M5. We comptitedveighting parameters dn

scenario M1, and tested with M3 and M5. In cas®8f which corresponds to session
2, the sentences 4 and 5 were not distinguishetljrasession M5, the use of a high
value of Delta weight, yields a significative impement. See figures 8 and 9.

M3 / ‘Dashed line: Linear programming / Dotted line: Mean value

" —— S
/}””{\\ /

jon rate (%)

68
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M3 / Dashed line: Linear programming / Dotted line: Mean value
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e A T —

Figure 8: Robustness of the method with respect to a chantfeeidate of the recording. Setting M3 for

Delta weights: 1 (left),10 (right).
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Figure 9: Robustness of the method with respect to a chamgee date of the recording. M5 for Delta
weights: 1 (left),10 (right).

The second experiment would be the robustnessomt to a change of microphone;
which is scenario M2, and a simultaneous changaiofophone and session scenarios
M4, and M6. We computed the weighting parametenhscenario M1, and tested on
scenarios M2, M4 and M6. It can be seen in figWethat in the case of M2 where the
recognition rates are already high, a near unifagighting is better in the sense that
the the use of a delta weight equal to one, gagenaistent improvement over all the
phrases, while a high value of the delta weightictvhs associated to a highly non
uniform weighting lowered the recognition rate. @e other hand as can be seen in
figure 11 and 12, where there is a the simultanebasge of session and microphone,
the method proposed in the paper, yields a comsisteprovement over a uniform
weighting of each score and the globally best patemation.

M2/ ‘Dashed line: Linear programming / Dotted line: Mean value M2/ Dashed line: Linear programming / Dotted line: Mean value
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=_ e T T
/ = - & S T =
A e = —— = e
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g =
£ S /
k| 2
2 § 2
&

Figure 10: Robustness of the method with respect to a chamtie microphone. Scenario M2 for Delta
weights: 1 (left),10 (right).
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phrase 1 H 3 4 5
phrase

Figure 11: Robustness of the method with respect to a simedtas change of microphone and session.
Scenario M4 for Delta weights: 1 (left),10 (right).

M6 / Dashed line: Linear programming / Dotted line: Mean value

M6 / ‘Dashed line: Linear programming / Dotted line: Mean value

on rate (%)

ogniti

gl
s
&

°

Figure 12: Robustness of the method with respect to a simettas change of microphone and session.
Scenario M6 for Delta weights: 1 (left),10 (right).

4. CONCLUSIONS

We have presented a fusion method for likelihoodlehof the different channels to be
fused. The method is based on a linear weightinfpetfog likelihood of the data given

a model, and the weighting paramaters are estimated geometrical simplex. The

algorithm for the maximum likelihood estimation thie weighting parameters was set
as a linear programming problem, with a free patarse The free parameter

determines the uniformity of the weighting vectdhe experiments showed that the
presented fusion method gives robustness in fréra change of microphone and a
change of session, i.e. the improvements weresstatily significative with respet to a

uniform weighting or to the best single parametraa
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