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We prove the existence of infinitely many symmetric periodic orbits for a regular-
ized rhomboidal five-body problem with four small masses placed at the vertices of
a rhombus centered in the fifth mass. The main tool for proving the existence of
such periodic orbits is the analytic continuation method of Poincaré together with
the symmetries of the problem. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2378617�

I. INTRODUCTION

In this paper we consider a particular case of the planar five-body problem defined as follows.
We consider a mass m0=1 at the origin of coordinates with zero initial velocity, two small masses
m1=m2=��1 with initial positions and velocities on the x axis symmetric with respect to the
origin, and two small masses m3=m4=��2 with initial positions and velocities on the y axis also
symmetric with respect to the origin �see Fig. 1�. Our five-body problem consists of describing the
motion of the five masses under their mutual Newtonian gravitational attraction. Due to the
symmetry of the initial conditions and velocities, the four small bodies form a rhombus with center
at m0 at any time and the mass m0 remains at rest at the origin. The description of the motion of
this five-body problem is called the rhomboidal five-body problem.

Although this is a five-body problem it can be formulated as a Hamiltonian system of two
degrees of freedom, one is the distance x�0 of m1 to the origin and the other is the distance y
�0 of m3 to the origin �the distances of m2 and m4 to the origin are obtained by symmetry�. The
system has three singularities, the triple collision between m0, m1, and m2, the triple collision
between m0, m3, and m4, and the total collision of the five bodies. Due to the symmetries doing a
double Levi-Civita transformation we regularize both triple collisions.

When �=0 the problem is reduced to two collision two-body problems, the collision two-
body problem with m0 and m1 and the collision two-body problem with m0 and m3. Note that if we
take into account the five bodies, then really for �=0 we have instead of the binary collisions m0

with m1, and m0 with m3, the triple collisions m0, m1, and m2, and m0, m3, and m4. Since the
solutions of the collision two-body problem are known we can compute the periodic solutions of
the regularized system for �=0 in a fixed energy level h�0. The objective of this paper is to
prove that the symmetric periodic orbits of the regularized rhomboidal five-body problem for �
=0 can be continued to symmetric periodic orbits of the regularized rhomboidal five-body problem
for ��0 sufficiently small. The main tool for proving this result is the classical analytic continu-
ation method of Poincaré.
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The paper is structured as follows. In Sec. II we give the equations of motion of the rhom-
boidal five-body problem and we apply a double Levi-Civita transformation to regularize the triple
collision between m0, m1, and m2 and the triple collision between m0, m3, and m4. Notice that the
total collision of the five bodies is not regularized. In Sec. III we analyze the discrete symmetries
of the regularized problem. In particular we see that there are three different symmetries that
provide symmetric periodic solutions of the problem. We characterize these symmetric periodic
solutions, and the double symmetric periodic solutions which are the main objective of this work.
In Sec. IV we compute the periodic solutions of the regularized rhomboidal five-body problem for
�=0 and in particular we analyze the double symmetric periodic solutions. Finally in Sec. V we
apply the analytic continuation method of Poincaré to continue the double symmetric periodic
orbits of the regularized rhomboidal five-body problem for �=0 to double-symmetric periodic
orbits of the regularized rhomboidal five-body problem for ��0 sufficiently small.

II. EQUATIONS OF MOTION FOR THE RHOMBOIDAL FIVE-BODY PROBLEM

We consider five point particles with masses m0=1, m1=m2=��1, m3=m4=��2, positions
q0= �0,0�, q1= �x ,0�, q2= �−x ,0�, q3= �0,y�, and q4= �0,−y�, respectively, and velocities v0

= �0,0�, v1= �vx ,0�, v2= �−vx ,0�, v3= �0,vy�, and v4= �0,−vy�, respectively �see Fig. 1�. Our five-
body problem consist of describing the motion of these particles under their mutual Newtonian
gravitational attraction. We note that due to the symmetry of the problem the mass m0 is at rest at
the origin and the motion of the masses m1 and m2 �respectively, m3 and m4� is confined to the x
axis �respectively, y axis�. Since the configuration of the four bodies in motion is always a
rhombus with center at m0, we call the five-body problem the rhomboidal five-body problem.

Without loss of generality we can assume that the gravitational constant is G=1. Then the
kinetic energy of the rhomboidal five-body problem is

T = ��1ẋ2 + ��2ẏ2,

where the dot denotes derivative with respect to the time t and the potential energy is

U = −
��1�4 + ��1�

2x
−

��2�4 + ��2�
2y

−
4�2�1�2

�x2 + y2
.

The Lagrangian of the problem is given by L=T−U. By the Legendre transformation �see, for
instance, Refs. 1–3� the Hamiltonian of the problem is

H =
px

2

4��1
+

py
2

4��2
−

��1�4 + ��1�
2x

−
��2�4 + ��2�

2y
−

4�2�1�2

�x2 + y2
,

where px and py are the conjugate momenta. The equations of motion associated to the Hamil-
tonian H are

ẋ =
px

2��1
, ṗx = −

��1�4 + ��1�
2x2 −

4�2�1�2x

�x2 + y2�3/2 ,

FIG. 1. The rhomboidal five-body problem.
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ẏ =
py

2��2
, ṗy = −

��2�4 + ��2�
2y2 −

4�2�1�2y

�x2 + y2�3/2 . �1�

Doing the rescaling of the variables x=�2X, y=�2Y, and t=�3T, and denoting the new
variables �X ,Y ,T� again by �x ,y , t� system �1� becomes

ẋ =
px

2�1
, ṗx = −

�1�4 + ��1�
2x2 −

4��1�2x

�x2 + y2�3/2 ,

ẏ =
py

2�2
, ṗy = −

�2�4 + ��2�
2y2 −

4��1�2y

�x2 + y2�3/2 . �2�

This system is also Hamiltonian with Hamiltonian

H =
px

2

4�1
+

py
2

4�2
−

�1�4 + ��1�
2x

−
�2�4 + ��2�

2y
−

4��1�2

�x2 + y2
,

We note that system �2� has three singularities: x=0, that corresponds to triple collision
between m0, m1, and m2, y=0 that corresponds to triple collision between m0, m3, and m4, and
finally x2+y2=0 that corresponds to the total collision of the five bodies. We regularize both triple
collisions applying a double Levi-Civita transformation �see Refs. 4–6�

x = �1
2, y = �2

2, px =
�1

2�1
, py =

�2

2�2
, dt = 4�1

2�2
2ds .

The regularized system of the rhomboidal five-body problem �2� on the level energy H=h for
some constant h is the Hamiltonian system

d�1

ds
=

�1�2
2

2�1
,

d�2

ds
=

�2�1
2

2�2
,

�3�
d�1

ds
= −

�1�2
2

2�2
+ 8h�1�2

2 + 4�2�4 + ��2��1 +
32��1�2�1�2

6

��1
4 + �2

4�3/2 ,

d�2

ds
= −

�2�1
2

2�1
+ 8h�1

2�2 + 4�1�4 + ��1��2 +
32��1�2�1

6�2

��1
4 + �2

4�3/2

with Hamiltonian

K =
�1

2�2
2

4�1
+

�2
2�1

2

4�2
− 2�2�4 + ��2��1

2 − 2�1�4 + ��1��2
2 − 4h�1

2�2
2 −

16��1�2�1
2�2

2

��1
4 + �2

4
,

and satisfying the energy relation K=0; i.e., H=h.
We note that system �3� is analytic with respect to its variables except when �1

4+�2
4=0 which

corresponds to the total collision.
The regularization of the triple collisions allows us to look for periodic orbits of the rhom-

boidal five-body problem containing triple collisions between m0, m1, and m2 and between m0 and
m3 and m4. Our aim is to find periodic orbits of the rhomboidal five-body problem �3� for ��0
sufficiently small, satisfying the energy relation K=0. In fact, we look only for symmetric periodic
orbits which are easier to study than the general periodic orbits.

122701-3 Periodic orbits of the rhomboidal five-body J. Math. Phys. 47, 122701 �2006�
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III. SYMMETRIES

It is easy to check that system �3� is invariant under the discrete symmetries

Id: ��1,�2,�1,�2,s� → ��1,�2,�1,�2,s� ,

S1: ��1,�2,�1,�2,s� → �− �1,�2,�1,− �2,− s� ,

S2: ��1,�2,�1,�2,s� → ��1,− �2,− �1,�2,− s� ,

S3: ��1,�2,�1,�2,s� → ��1,�2,− �1,− �2,− s� ,

S4: ��1,�2,�1,�2,s� → �− �1,− �2,− �1,− �2,s� ,

S5: ��1,�2,�1,�2,s� → �− �1,�2,− �1,�2,s� ,

S6: ��1,�2,�1,�2,s� → ��1,− �2,�1,− �2,s� ,

S7: ��1,�2,�1,�2,s� → �− �1,− �2,�1,�2,− s� .

The invariance under these symmetries means that if ��s�= ��1�s�, �2�s�, �1�s� ,�2�s�� is a
solution of system �3�, then also Si���s�� is a solution for i=1, . . . ,7. An orbit ��s� is called
Si-symmetric if Si���s��=��s�.

We note that �Id ,S1 , . . . ,S7� with the usual composition forms an abelian group isomorphic to
Z2	Z2	Z2. This discrete group of symmetries appeared in many Hamiltonian systems as, for
instance, the anisotropic Kepler problem,7 the Manev anisotropic problem,8 or the collinear three-
body problem.9

Using the uniqueness theorem of a solution of an ordinary differential system, it follows easily
that ��s� is a S1-symmetric solution if and only if ��s� intersects the plane �1=�2=0 at least in one
point. Now, it is clear that a periodic solution is S1-symmetric if and only if it has exactly two
intersection points with the plane �1=�2=0. So, clearly the half-period of such a S1-symmetric
periodic orbit is the time which the orbit needs for travel from one of the intersection points to the
other. Using similar arguments for the other symmetries, we obtain the following proposition.

Proposition 1: Let ��s�= ��1�s� ,�2�s� ,�1�s� ,�2�s�� be a solution of system �3�.

�a� If �1�s� and �2�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S1-symmetric periodic solution of period S.

�b� If �2�s� and �1�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S2-symmetric periodic solution of period S.

�c� If �1�s� and �2�s� are zero at s=s0 and at s=s0+S /2 but they are not simultaneously zero
at any value of s� �s0 ,s0+S /2�, then ��s� is a S3-symmetric periodic solution of period S.

Since in system �3� the total collision is not regularized, in our study we must avoid the orbits
of the rhomboidal five-body problem which start or end in total collision. In the variables that we
are working the total collision takes place when �1=�2=0. Therefore, the symmetries S4 and S7 are
not considered because their symmetric orbits present total collision. Due to the fact that S5=S1

�S3 and S6=S2 �S3, studying the symmetric periodic orbits with respect to S1, S2, and S3 we shall
get also the symmetric periodic orbits with respect to S5 and S6.

There could be periodic solutions of system �3� that are simultaneously S1- and S2-symmetric
periodic solutions. These periodic solutions will be called S12-symmetric periodic solutions. In a
similar way we can define the S13-symmetric periodic solutions and the S23-symmetric periodic
solutions. These kinds of symmetric periodic solutions are characterized in the following result.

122701-4 M. Corbera and J. Llibre J. Math. Phys. 47, 122701 �2006�
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Proposition 2: Let ��s�= ��1�s� ,�2�s� ,�1�s� ,�2�s�� be a solution of rhomboidal five-body prob-
lem �3�.

�a� The solution ��s� is a S12-symmetric periodic solution of period S if and only if either
�1�s0�=�2�s0�=0, and �2�s0+S /4�=�1�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �2�s�=�1�s�=0; or �2�s0�=�1�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �1�s�=�2�s�=0.

�b� The solution ��s� is a S13-symmetric periodic solution of period S if and only if either
�1�s0�=�2�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �1�s�=�2�s�=0; or �1�s0�=�2�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �1�s�=�2�s�=0.

�c� The solution ��s� is a S23-symmetric periodic solution of period S if and only if either
�2�s0�=�1�s0�=0, and �1�s0+S /4�=�2�s0+S /4�=0, and there is no s� �s0 ,s0+S /4� such
that �1�s�=�2�s�=0; or �1�s0�=�2�s0�=0, and �2�s0+S /4�=�1�s0+S /4�=0, and there is no
s� �s0 ,s0+S /4� such that �2�s�=�1�s�=0.

The next result shows that there are no symmetric periodic orbits with respect more than two
symmetries.

Proposition 3: There are no periodic solutions of the rhomboidal five-body problem �3�, which
are simultaneously Si-symmetric for i=1,2 ,3.

Proof: Assume that ��s� is a Si-symmetric periodic solution of period S for i=1,2 ,3. Then
there exist times s1, s2, and s3 with s1 ,s2 ,s3� �0,S /2� such that

�1�s1� = �2�s1� = 0, �2�s2� = �1�s2� = 0, �1�s3� = �2�s3� = 0.

We assume that s1=0. This is not restrictive because system �3� is autonomous, and consequently
the origin of time can be chosen arbitrarily. Then, since the orbit is in particular S12-symmetric,
from Proposition 2, s2=S /4. Similarly, since it is also S13-symmetric, again from Proposition 2,
s3=S /4. The fact that s2=s3 is a contradiction, so we have proved the result. �

IV. SYMMETRIC PERIODIC SOLUTIONS FOR �=0

For �=0 system �3� becomes

d�1

ds
=

�1�2
2

2�1
,

d�1

ds
= −

�1�2
2

2�2
+ 8h�1�2

2 + 16�2�1,

d�2

ds
=

�2�1
2

2�2
,

d�2

ds
= −

�2�1
2

2�1
+ 8h�1

2�2 + 16�1�2, �4�

and the Hamiltonian K goes over to

K =
�1

2�2
2

4�1
+

�2
2�1

2

4�2
− 8�2�1

2 − 8�1�2
2 − 4h�1

2�2
2.

The Hamiltonian H for �=0 can be written as

H = H1�x,px� + H2�y,py� = � px
2

4�1
−

2�1

x
	 + � py

2

4�2
−

2�2

y
	 .

We note that H1�x , px� and H2�y , py� are two fist integrals of the nonregularized problem, so they
are constant along the solutions in the intervals between two consecutive zeros of x and y.

The flow of the rhomboidal five-body problem on the energy level H=h for some constant h
is obtained from the flow of the Hamiltonian H1�x , px� on the energy level H1=h1 and the flow of
the Hamiltonian H2�y , py� on the energy level H2=h2 with h=h1+h2.

The Hamiltonian H1�x , px� in the Levi-Civita coordinates ��1 ,�1� is given by

122701-5 Periodic orbits of the rhomboidal five-body J. Math. Phys. 47, 122701 �2006�
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H1 =
�1

2

16�1�1
2 −

2�1

�1
2 = h1,

and the Hamiltonian H2�y , py� in the Levi-Civita coordinates ��2 ,�2� is

H2 =
�2

2

16�2�2
2 −

2�2

�2
2 = h2.

Let ��1 ,�2 ,�1 ,�2� be a solution of system �4� satisfying the energy relation K=0 �i.e., H=h�,
we define a new time variable 
 as follows:

d


ds
= �2

2, or equivalently
dt

d

= 4�1

2. �5�

The Hamiltonian K in the new time variable 
 can be written as

K1 =
1

�2
2K =

�1
2

4�1
− 8�1 − 4h1�1

2 + � �2
2

4�2�2
2 −

8�2

�2
2 − 4h2	�1

2 =
�1

2

4�1
− 8�1 − 4h1�1

2.

Then �1 ,�1 satisfy the system of differential equations associated to the Hamiltonian K1

d�1

d

=

�1

2�1
,

d�1

d

= 8h1�1. �6�

We are only interested in the periodic solutions of system �6�. Thus we must consider only
negative values of h1. Then, fixed h1�0, system �6� can be integrated directly and the solution
��1�
� ,�1�
�� of system �6� with initial conditions

�1�0� = �10
* , �1�0� = �10

* , �7�

is

�1�
� = �10
* cos�w1
� +

�10
*

2w1�1
sin�w1
� , �1�
� = �10

* cos�w1
� − 2w1�1�10
* sin�w1
� , �8�

where w1=2�−h1 /�1.
We note that the solution �8� is a periodic solution of system �6� with period 
̄=2� /w1. Since

we are interested in the periodic solution �8� satisfying the energy relation K1=0, by Eq. �5�, its
period in the real time t is given by

T1�h1,�1� = 

0


̄

4�1
2�
�d
 = 4��−

�1

h1
	3/2

.

Now we introduce a new time � with

d�

ds
= �1

2, or equivalently
dt

d�
= 4�2

2. �9�

Then �2 ,�2 are functions of the new time � via the Hamiltonian system

d�2

d�
=

�2

2�2
,

d�2

d�
= 8h2�2, �10�

with Hamiltonian
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K2 =
1

�1
2K =

�2
2

4�2
− 8�2 − 4h2�2

2.

Moreover, fixed h2�0, the solution ��2��� ,�1���� of system �10� with initial conditions

�2�0� = �20
* , �2�0� = �20

* , �11�

is given by

�2��� = �20
* cos�w2�� +

�20
*

2w2�2
sin�w2�� , �2��� = �20

* cos�w2�� − 2w2�2�20
* sin�w2�� , �12�

where w2=2�−h2 /�2.
The solution �12� is periodic of period �̄=2� /w2. Moreover, if the solution �12� satisfies the

energy relation K2=0, then, by Eq. �9�, the period of the solution �12� in the real time t is given by

T2�h2,�2� = 

0

�̄

4�2
2���d� = 4��−

�2

h2
	3/2

.

Proposition 4: Let ��1�
� ,�1�
�� be a periodic solution of system �6�, for a fixed h1�0, with
initial conditions �7� and period 
̄=2� /w1 that satisfies K1=0. Let ��2��� ,�2���� be the periodic
solution of system �10�, for a fixed h2�0, with initial conditions �11� and period �̄=2� /w2 that
satisfies K2=0. Assume that h=h1+h2, and that 
�s� and ��s� are given by Eqs. �5� and �9�,
respectively, where we choose 
�0�=��0�=0. Suppose that there is no s�R such that �1�
�s��
=�2���s��=0. Then the following statements hold:

�a� ��s�= ��1�
�s�� ,�2���s�� ,�1�
�s�� ,�2���s�� is a solution of system �4� with initial condi-
tions �1�0�=�10

* , �2�0�=�20
* , �1�0�=�10

* , and �2�0�=�20
* that satisfies K=0.

�b� If h1= �p /q�2/3�1h2 /�2 for some p ,q�N coprime, then ��s� is a periodic solution of system
�4�.

�c� Assume that s�t� is given by the inverse function of t=�0
s4�1

2�
��2
2�
�d
. Under the hypoth-

eses of statement �b�, the period and the quarter of the period of the periodic solution ��s�
using the different times t, 
, �, and s is given in Table I.

Proof: Statement �a� follows easily from the definitions of ��1�
� ,�1�
�� and ��2��� ,�2����
together with the definitions of 
�s� and ��s�.

We have seen that, in the time t, ��1�
� ,�1�
�� and ��2��� ,�2���� are periodic solutions of
periods T1�h1 ,�1� and T2�h2 ,�2�, respectively. Thus, in order to have a periodic solution of system
�4� we need that

pT1�h1,�1� = qT2�h2,�2� , �13�

for some p ,q�N coprime. Solving Eq. �13� with respect to h1, we get that h1= �p /q�2/3�1h2 /�2.
So, statement �b� is proved.

Now we see that the time t=T /4 corresponds to the time 
=
* /4. In a similar way we can see
that the time t=T /4 corresponds to the time �=�* /4 and s=S* /4.

TABLE I. Period of ��s�.

Time t Time 
 Time � Time s

T= pT1�h1 ,�1�=qT2�h2 ,�2� 
*= p
̄ �*=q�̄ S*=s�T�
T /4 
* /4 �* /4 S* /4
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We note that system �6� is invariant under the symmetry ��1 ,�1 ,
�→ �−�1 ,�1, −
�. This
means that �1�
�=−�1�−
�. So �1

2�
� is an even function. On the other hand, it is easy to see that
�1

2�
� is a periodic function of period 
̄ /2. Then, from Eq. �5�, we have that

T1 = 

0


̄

4�1
2�
�d
 = 2


0


̄/2

4�1
2�
�d
 = 4


0


̄/4

4�1
2�
�d
 .

Moreover, it is clear that



0


̄/4

4�1
2�
�d
 = 



̄/4


̄/2

4�1
2�
�d
 =

T1

4
.

Consequently

t�
*/4� = 

0

p
̄/4

4�1
2�
�d
 = p


0


̄/4

4�1
2�
�d
 = p

T1

4
=

T

4
.

Therefore, the time t=T /4 corresponds to 
=
* /4. In short, statement �c� is proved. �

We remark that the number p in Proposition 4 represents the number of triple collisions
between m0, m1, and m2 during a period, whereas q represents the number of triple collisions
between m0, m3, and m4.

We are interested in symmetric periodic solutions of system �4� satisfying the energy relation
K=0 with h=h1+h2. In the next proposition we give initial conditions for those symmetric peri-
odic solutions.

Proposition 5: The following statements hold:

�a� If p and q are odd, then the solution ��s� given by Proposition 4 with initial conditions

either �10
* = 0, �20

* = �− 2�2/h2, �10
* = 4�2�1, �20

* = 0;

or �10
* = �− 2�1/h1, �20

* = 0, �10
* = 0, �20

* = 4�2�2;

is a S12-symmetric periodic solution.
�b� If p is odd and q is even, then the solution ��s� given by Proposition 4 with initial

conditions

either �10
* = 0, �20

* = �− 2�2/h2, �10
* = 4�2�1, �20

* = 0;

or �10
* = �− 2�1/h1, �20

* = �− 2�2/h2, �10
* = 0, �20

* = 0;

is a S13-symmetric periodic solution.
�c� If p is even and q is odd, then the solution ��s� given by Proposition 4 with initial

conditions

either �10
* = �− 2�1/h1, �20

* = 0, �10
* = 0, �20

* = 4�2�2;

or �10
* = �− 2�1/h1, �20

* = �− 2�2/h2, �10
* = 0, �20

* = 0;

is a S23-symmetric periodic solution.

Proof: Solving K1=0 and K2=0 for the initial conditions of the S12-symmetric periodic orbits
given in Proposition 2�a� we get the initial conditions of statement �a�. In these initial conditions
we have only considered the positive determination in the squareroots due to the fact that the
Levi-Civita transformation duplicates the orbits. The proof follows from the evaluation of the
solution ��s�= ��1�
�s�� ,�2���s�� ,�1�
�s�� ,�2���s�� with these initial conditions at times s=0 and
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s=S* /4. We note that by Table I ��S* /4�= ��1�p
̄ /4� ,�2�q�̄ /4� ,�1�p
̄ /4� ,�2�q�̄ /4��. This com-
pletes the proof of statement �a�. The other statements follow similarly. �

V. CONTINUATION OF SYMMETRIC PERIODIC SOLUTIONS

In this section using the continuation method of Poincaré �see, for instance, Ref. 10� we shall
continue the symmetric periodic orbits of the rhomboidal five-body problem �3� from �=0 to
symmetric periodic orbits of system �3� for ��0 sufficiently small.

A. The S12-symmetric periodic solutions

We denote by ��s ;0 ,�20,�10,0 ,��= ��1�s ;�20,�10,�� ,�2�s ;�20,�10,�� ,�1�s ;�20,�10,��,
�2�s ;�20,�10,��� the solution of �3�, for fixed values of �1�0, �2�0, and h�0, with initial
conditions �1�0�=0, �2�0�=�20, �1�0�=�10, and �2�0�=0. From Proposition 2�a�,
��s ;0 ,�20,�10,0 ,�� is a S12-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relationK=0 if and only if

�2�S/4;�20,�10,�� = 0, �1�S/4;�20,�10,�� = 0, K��20,�10,�� = 0.

We solve equation K��20,�10,��=0 with respect the variable �10 obtaining in this way

�10 = 2�2�1
�4 + ��1. �14�

So ��s ;0 ,�20,�10,0 ,�� is a S12-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relation K=0 if and only if

�2�S/4;�20,�� = 0, �1�S/4;�20,�� = 0. �15�

Notice that we have omitted the dependence with respect to �10, which is given by Eq. �14�.
Assume that p=2� +1, q=2k+1 for some � ,k�N� �0� and that h1

* and h2
* verify that h

=h1
*+h2

* and h1
*= �p /q�2/3�1h2

* /�2. By Propositions 4 and 5�a�, we see that S=S*=s�pT1�h1
*��

=s�qT2�h2
*��, �20=�20

* =�−2�2 /h2
*, is a solution of system �15� for �=0. This solution correspond to

the known S12-symmetric periodic solution ��s ;0 ,�20
* ,�10

* ,0 ,0� of system �3�, for �=0 where
�10

* =4�2�1. Our aim is to continue this solution of system �15� for �=0 to ��0 sufficiently
small.

Applying the implicit function theorem to system �15� in a neighborhood of the known
solution we have that if

�
��2

�s

��2

��20

��1

�s

��1

��20

��s=S*/4

�20=�20
*

�=0




� 0, �16�

then we can find unique analytic functions �20=�20���, S=S��� defined for ��0 sufficiently
small, such that

�i� �20�0�=�20
* , S�0�=S*,

�ii� ��s ;0 ,�20,�10,0 ,�� with �20=�20��� and �10 given by �14� is a S12-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

The derivatives ��2 /�s and ��1 /�s evaluated at s=S* /4, �20=�20
* and �=0 can be obtained

directly from system �3� for �=0 �i.e., system �4��, evaluating the right hand of the system at the
solution ��s ;0 ,�20

* ,�10
* ,0 ,0� at time s=S* /4. Then
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� ��2

�s
�s=S*/4

�20=�20
*

�=0

= � 1

2�2
�2�1

2�s=S*/4

�20=�20
*

�=0

=
4�− 1�k�2�2

h2
* �q

p
	2/3

� 0

and

� ��1

�s
�s=S*/4

�20=�20
*

�=0

= 
8h1
*�1�2

2
s=S*/4

�20=�20
*

�=0

= 0.

It only remains to compute the value of ��1 /��20 evaluated at s=S* /4, �20=�20
* , �=0. This

value is given by the derivative, evaluated at s=S* /4 and �20=�20
* , of the solution

�1�
�s� ;0 ,�20,�10
* ,0 ,0� with respect to �20, where �1�
�s� ;0 ,�20,�10

* ,0 ,0� is the solution of
system �4� with initial conditions �1�0�=0, �2�0�=�20, �1�0�=�10

* , and �2�0�=0 satisfying the
energy relation K=0 �see Proposition 4�a��. Then

� ��1�
�s�;0,�20,�10
* ,0,0�

��20
�s=S*/4

�20=�20
*

= � ��1

�


�
�s�
��20

+ � ��1

��20
	�s=S*/4

�20=�20
*

.

From Eqs. �5� and �9�, we have that the times 
 and � are related by

�1
2�
�d
 = �2

2���d� .

Integrating this equation over the solutions �8� and �12� with the corresponding initial conditions
and assuming that when 
�0�=��0�=0, we have that 
�s� and ��s� are related by the equation

4
�s�
w1

2 −
�20

2 ��s�
2

−
2 sin�2w1
�s��

w1
3 −

�20
2 sin�2w2��s��

4w2
= 0. �17�

Since ��s ;0 ,�20,�10
* ,0 ,0� must be a solution of system �4�, by Proposition 4 we have that K1

=0 and K2=0, so

w2 = 2�− h2/�2, with h2 = − 2�2/�20
2

and

w1 = 2�− h1/�1, with h1 = h − h2.

Then derivating implicitly Eq. �17� with respect to �20 we obtain

� �
�s�
��20

�s=S*/4

�20=�20
*

=
�q

8�2�1
�3� p

q
	2/3

�1 + �2	 .

On the other hand, from systems �6� and �8� we have that

� ��1

�

�s=S*/4

�20=�20
*

= 
8h1�1
s=S*/4

�20=�20
*

= 8�− 1��+1�2�1� p

q
	1/3�−

h2
*

�2

and

� ��1

��20
�s=S*/4

�20=�20
*

= 2�− 1��ph2
*��q

p
	2/3�−

�2

h2
* .

Hence
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� ��1�
�s�;0,�20,�10
* ,0,0�

��20
�s=S*/4

�20=�20
*

= 3�− 1��+1��−
h2

*

�2
�p�1 + � p

q
	1/3

q�2	 .

So, this derivative is different from zero. Hence, the determinant �16� is not zero. In short, we have
proved the following result.

Theorem 6: Given �1�0, �2�0, h�0 and p and q odd positive integers, the S12-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=0, �2�0�=�−2�2 /h2

*, �1�0�=4�2�1, and �2�0�=0 where h2
*=h�2 / ��p /q�2/3�1+�2�, can be contin-

ued to a �-parameter family of S12-symmetric periodic orbits of the rhomboidal five-body problem
�3�for ��0 sufficiently small.

B. The S23-symmetric periodic solutions

We denote by ��s ;�10,�20,0 ,0 ,��= ��1�s ;�10,�20,�� ,�2�s ;�10,�20,�� ,�1�s ;�10,�20,��,
�2�s ;�10,�20,��� the solution of system �3�, for fixed values of �1�0, �2�0, and h�0, with
initial conditions �1�0�=�10, �2�0�=�20, �1�0�=0, and �2�0�=0. From Proposition 2�c�,
��s ;�10,�20,0 ,0 ,�� is a S23-symmetric periodic solution of the rhomboidal five-body problem
with period S satisfying the energy relation K=0 if and only if

�2�S/4;�10,�20,�� = 0, �1�S/4;�10,�20,�� = 0, K��10,�20,�� = 0.

We solve equation K��10,�20,��=0 with respect to the variable �20 obtaining in this way
�20=�20��10,��. In particular, �20��10,0�=�2�2�10/�−2�1−h�10

2 . So ��s ;�10,�20,0 ,0 ,�� is a
S23-symmetric periodic solution of the rhomboidal five-body problem with period S satisfying the
energy relation K=0 if and only if

�2�S/4;�10,�� = 0, �1�S/4;�10,�� = 0. �18�

Assume that p=2�, q=2k+1 for some ��N and k�N� �0� and that h1
* and h2

* verify that
h=h1

*+h2
* and h1

*= �p /q�2/3�1h2
* /�2. By Propositions 4 and 5�c�, we see that S=S*=s�pT1�h1

*��
=s�qT2�h2

*��, �10=�10
* =�−2�1 /h1

* is a solution of system �18� for �=0. This solution corresponds
to the known S23-symmetric periodic solution ��s ;�10

* ,�20
* ,0 ,0 ,0� of system �3�, for �=0 where

�20=�20
* =�−2�2 /h2

*. Our aim is to continue this solution of system �18� for �=0 to ��0 suffi-
ciently small.

Applying the implicit function theorem to system �18� in a neighborhood of the known
solution we have that if

�
��2

�s

��2

��10

��1

�s

��1

��10

��s=S*/4

�10=�10
*

�=0




� 0, �19�

then we can find unique analytic functions �10=�10���, S=S��� defined for ��0 sufficiently
small, such that

�i� �10�0�=�10
* , S�0�=S*,

�ii� ��s ;�10,�20,0 ,0 ,�� with �10=�10��� and �20=�20��10��� ,�� is a S23-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

Working as for the S12-symmetry we get that
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� ��2

�s
�s=S*/4

�10=�10
*

�=0

� 0, and � ��1

�s
�s=S*/4

�10=�10
*

�=0

= 0.

It only remains to compute the value of ��1 /��10 evaluated at s=S* /4, �10=�10
* , �=0. This value

is given by the derivative, evaluated at s=S* /4 and �10=�10
* , of the solution

�1�
�s� ;�10,�20,0 ,0 ,0� with respect to �10, where �1�
�s� ;�10,�20,0 ,0 ,0� is the solution of sys-
tem �4� with initial conditions �1�0�=�10, �2�0�=�20��10,0�, �1�0�=0, and �2�0�=0 satisfying the
energy relation K=0 �see Proposition 4�c��. Then

� ��1�
�s�;0,�10,�20,0,0,0�
��10

�s=S*/4

�10=�10
*

= � ��1

�


�
�s�
��10

+ � ��1

��10
	�s=S*/4

�10=�10
*

=
3�− 1��+1h2

*p��1

q�2
2 �p�1 + � p

q
	1/3

q�2	 ,

so this derivative is different from zero. Hence, the determinant �19� is not zero. In short, we have
proved the following result.

Theorem 7: Given �1�0, �2�0h�0, p even and q odd positive integers, the S23-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=�−2�1 /h1

*, �2�0�=�−2�2 /h2
*, �1�0�=0, and �2�0�=0, where h2

*=h�2 / ��p /q�2/3�1+�2�, h1
*

=h�p /q�2/3�1 / ��p /q�2/3�1+�2�, can be continued to a �-parameter family of S23-symmetric peri-
odic orbits of the rhomboidal five-body problem �3� for ��0 sufficiently small.

C. The S13-symmetric periodic solutions

Let ��s ;�10,�20,0 ,0 ,�� be the solution of system �3�, for fixed values of �1�0, �2�0, and
h�0, defined as in Sec. V B. From Proposition 2�b�, ��s ;�10,�20,0 ,0 ,�� is a S13-symmetric
periodic solution of the rhomboidal five-body problem with period S satisfying the energy relation
K=0 if and only if

�1�S/4;�10,�20,�� = 0, �2�S/4;�10,�20,�� = 0, K��10,�20,�� = 0.

Let �20=�20��10,�� be the function defined in Sec. V B. Then ��s ;�10,�20,0 ,0 ,�� is a
S13-symmetric periodic solution of the rhomboidal five-body problem with period S satisfying the
energy relation K=0 if and only if

�1�S/4;�10,�� = 0, �2�S/4;�10,�� = 0. �20�

Assume that p=2� +1, q=2k for some ��N� �0� and k�N and that h1
* and h2

* verify that
h=h1

*+h2
* and h1

*= �p /q�2/3�1h2
* /�2. By Propositions 4 and 5�b�, we see that S=S*=s�pT1�h1

*��
=s�qT2�h2

*��, �10=�10
* =�−2�1 /h1

* is a solution of system �20� for �=0. This solution correspond to
the known S13-symmetric periodic solution ��s ;�10

* ,�20
* ,0 ,0 ,0� of system �3�, for �=0 where

�20=�20
* =�−2�2 /h2

*. Our aim is to continue this solution of system �20� for �=0 to ��0 suffi-
ciently small.

Applying the implicit function theorem to system �20� in a neighborhood of the known
solution we have that if
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�
��1

�s

��1

��10

��2

�s

��2

��10

��s=S*/4

�10=�10
*

�=0




� 0, �21�

then we can find unique analytic functions �10=�10���, S=S��� defined for ��0 sufficiently
small, such that

�i� �10�0�=�10
* , S�0�=S*,

�ii� ��s ;�10,�20,0 ,0 ,�� with �10=�10��� and �20=�20��10��� ,�� is a S13-symmetric periodic
solution of system �3� with period S=S��� that satisfies the energy relation K=0.

Working as for the S12-symmetry we get that

� ��1

�s
�s=S*/4

�10=�10
*

�=0

� 0, and � ��2

�s
�s=S*/4

�10=�10
*

�=0

= 0.

It only remains to compute the value of ��2 /��10 evaluated at s=S* /4, �10=�10
* , �=0. This value

is given by the derivative, evaluated at s=S* /4 and �10=�10
* , of the solution

�2���s� ;�10,�20,0 ,0 ,0� with respect to �10, where �2���s� ;�10,�20,0 ,0 ,0� is the solution of system
�4� with initial conditions �1�0�=�10, �2�0�=�20��10,0�, �1�0�=0, and �2�0�=0 satisfying the en-
ergy relation K=0 �see Proposition 4�b��. Then

� ��2���s�;�10,�20,0,0,0�
��10

�s=S*/4

�10=�10
*

= � ��2

��

���s�
��10

+
��2

��10
	s=S*/4

�10=�10
*

=
�− 1�kh2�

�2
�p�1 + � p

q
	1/3

q�2�1 + 3�2�	 ,

so this derivative is different from zero. Hence, the determinant �21� is not zero. In short, we have
proved the following result.

Theorem 8: Given �1�0, �2�0, h�0, p odd and q even positive integers, the S13-symmetric
periodic solution of the rhomboidal five-body problem �3� for �=0 with initial conditions �1�0�
=�−2�1 /h1

*, �2�0�=�−2�2 /h2
*, �1�0�=0, and �2�0�=0 where h2

*=h�2 / ��p /q�2/3�1+�2�, h1
*

=h�p /q�2/3�1 / ��p /q�2/3�1+�2�, can be continued to a �-parameter family of S13-symmetric peri-
odic orbits of the rhomboidal five-body problem �3� for ��0 sufficiently small.
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