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ABSTRACT

Survival analysis is used in different fields to analyze the elapsed time between two events. What

distinguishes survival analysis from other areas in statistics is that data are usually censored. Interval

censoring arises when the occurrence of the final event of interest cannot be exactly observed and the

failure time is only known to lie in an interval. A more complex censoring scheme is found when both

initial and final times are interval–censored. This situation is referred as double censoring. In this paper

we provide a formal description of a parametric Bayesian method for the analysis of interval–censored

and doubly–censored data and clear guidelines for its practical use. The proposed methodology is

illustrated with data from a cohort of hemophilia patients who were infected with HIV in the early

1980’s.

RESUM

L’Anàlisi de la supervivència s’utilitza en diferents camps per analitzar el temps transcorregut entre

dos esdeveniments. El que distingeix l’anàlisi de la supervivència d’altres àrees de l’estad́ıstica és que

les dades normalment estan censurades. La censura en un interval apareix quan l’esdeveniment final

d’interès no és directament observable i només se sap que el temps de fallada està en un interval

concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps

final estan censurats en un interval. Aquesta situació s’anomena doble censura. En aquest article

donem una descripció formal d’un mètode bayesià paramètric per a l’anàlisi de dades censurades en un

interval i dades doblement censurades aix́ı com unes indicacions clares de la seva utilització pràctica.

La metodologia proposada s’ilustra amb dades d’una cohort de pacients hemof́ılics que es varen infectar

amb el virus VIH a principis dels anys 1980’s.

RESUMEN

El análisis de la supervivencia se utiliza en diferentes campos para analizar el tiempo transcurrido entre

dos sucesos. Lo que distingue el análisis de la supervivencia de otras áreas de la estad́ıstica es que

los datos normalmente están censurados. La censura en un intervalo aparece cuando el suceso final de

interés no es directamente observable y sólo se sabe que el tiempo de fallo está en un intervalo concreto.

Un esquema de censura más complejo todav́ıa aparece cuando tanto el tiempo inicial como el tiempo

final están censurados en un intervalo. Esta situación se denomina doble censura. En este articulo
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damos una descripción formal de un método bayesiano paramétrico para el análisis de datos censurados

en un intervalo y datos doblemente censurados aśı como unas indicaciones claras de su utilización

práctica. La metodoloǵıa propuesta se ilustra con datos de una cohorte de pacientes hemof́ılicos que

se infectaron con el virus VIH a principios de los años 1980.

1 Introduction

Survival or time to event analysis is the term used to describe the methodologies for analyzing

duration times between two events. To determine the survival times it is necessary to define

two time points: the origin time corresponding to the time at which an original event occurs

and the failure time corresponding to the time at which the final event occurs. A common

problem in many time-to-event studies is that the occurrence of the final event of interest

cannot be exactly observed and the failure time is only known to lie in an interval. For each

individual i we observe an interval [X i
L, X

i
R] that contains the survival time X i which is said

to be interval–censored. This happens, for instance, in longitudinal studies where patients

are monitored periodically and the event of interest is detectable only at specific times of

observation, for example, at the time of a medical examination.

A more complex censoring scheme is found when both initial and final times are interval–

censored. We refer to this situation as double censoring. Let X denote the initial time, Y

the final time and T = Y − X the elapsed time of interest. For an individual i we observe

the vector (X i
L, X

i
R, Y

i
L, Y

i
R) which means that P (X i ∈ [X i

L, X
i
R], Y

i ∈ [Y i
L, Y

i
R]) = 1. The

elapsed time T i is doubly–censored, in the origin and at the end. Figure 1 illustrates this kind

of censoring.

Xi
L Xi

R Y i
L Y i

R

Xi Zi

T i

• •

Xi Zi

+ + + +

Figure 1: Double censoring

In the context of HIV–AIDS studies X i is usually taken as the infection time of a patient which

is only known to lie between the time, X i
L, of the last negative antibody test and the time,

Xi
R, of the first positive antibody test. Y i is the time of the AIDS diagnosis which can be
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exactly observed, that is Y i
L = Y i

R, or can be right–censored, Y i
R = +∞, for those patients

which at the end of the study have not developed the disease. The elapsed time between X i

and Y i, that is T i = Y i −X i, is the AIDS latency time.

The analysis of interval–censored and doubly–censored data has been mainly approached

through nonparametric frequentist methods. One of the first papers approaching the interval–

censored situation is due to Peto (1973) who proposes a method based on maximizing the

log–likelihood by a suitable constrained Newton–Raphson programmed search. Few years later,

Turnbull (1976) approaches the more general problem of the analysis of arbitrarily grouped,

censored and truncated data and derives an algorithm to obtain the nonparametric estimator

of the distribution function. The paper by Finkelstein (1986) proposes a test for covariate

effects. A more recent approach to nonparametric estimation under interval censoring can be

found in Gentleman and Geyer (1994). For the nonparametric analysis of doubly–censored

data we find DeGruttola and Lagakos (1989), Gómez and Lagakos (1994) and Gómez and

Calle (1999), between others, which extend Turnbull’s algorithm to double censoring.

Interval–censoring has also been approached nonparametrically from a Bayesian perspective.

See, for example, Doss (1994), Sinha and Dey (1997), Gómez et alt. (2000), Calle and Gómez

(2001a) and the book on Bayesian survival analysis by Ibrahim, Chen and Sinha (2001). The

Bayesian approach provides a direct probabilistic interpretation of the posterior distribution

and allows the incorporation of prior beliefs about the distribution function. The reason why

Bayesian methods had not been widely used in survival analysis until the last few years is

because, for realistic models, the posterior distribution under censoring is extremely difficult to

obtain directly. The development of new numerical algorithms, such as Markov chain Monte

Carlo algorithms, which allow to obtain a sample from the posterior of interest has opened the

door to the use of Bayesian methods to survival analysis.

Frequentist parametric methods have not been widely used in survival analysis, mainly because

this approach depends on the model assumptions which are difficult to check under censoring.

However, sometimes their use is indicated by the nature of the problem in study or suggested

by a previous similar situation. Lindsey (1998) justifies the benefits of parametric models

for analyzing interval–censored data. Lindsey and Ryan (1998) provide a useful tutorial of

both parametric and nonparametric methods. On the contrary, Bayesian parametric methods

through Markov Chain Monte Carlo methods have become a very used approach for the analysis

of complex hierarchical models, see for instance, Stang and Huerta (2000). However, most

of the applications involve right censoring and there is a need for a more general formulation

of the methology under interval censoring. As we will illustrate in the paper, this approach is

specially appropriate to deal with doubly–censored data. The goal of this paper is to provide

a formal description of a sampling–based method for the analysis of interval–censored and

doubly–censored data and to give clear guidelines for its practical use. We hope that this will

contribute to make the parametric Bayesian approach an interesting alternative for the analysis
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of this kind of censoring.

The rest of the paper is organized as follows: In section 2 we introduce the notation for interval–

censored data and propose a methodology to analyze this kind of censoring. In section 3 we

extend the former approach to deal with doubly–censored data. The proposed method is

illustrated in section 4 with data from De Gruttola and Lagakos (1989) corresponding to a

cohort of hemophilia patients who were infected with HIV in the early 1980’s.

2 Inference from interval–censored data

Let X be the random variable of interest. In our setting X is a positive random variable

representing the time until the occurrence of a certain event E with right-continuous distri-

bution function W (x; θX) = Prob{X ≤ x} and density function w(x; θX), with unknown

θX . In a study of n items or individuals, their potential times to E , namely, X1, . . . , Xn, are

unknown and instead we observe intervals that contain the unobserved values of X1, . . . , Xn.

Let D = {[X i
L, X

i
R], 1 ≤ i ≤ n} be the interval–censored survival data where X i

L is the

last observed time for the ith individual before the event E has occurred and X i
R indicates the

first time the event E has been observed. We are in fact formally observing random censoring

vectors (X i
L, X

i
R), i = 1, . . . , n, coming from a joint density function, f[XL,XR](l, r; γ), such

that X i
L ≤ X i ≤ X i

R with probability 1.

We suppose that censoring occurs noninformatively in the sense that for any x, l, r such that

l ≤ x ≤ r, the conditional density of X given XL and XR, f[X|XL,XR](x|l, r; θX , γ), satisfies

f[X|XL,XR](x | l, r; θX , γ) =
w(x; θX)

W (r; θX)−W (l−; θX)
, (1)

where we defineW (t−) = lim∆→0+ W (t−∆). This noninformative censoring condition means

that the only information provided by the censoring interval [X i
L, X

i
R] of an individual about

the distribution of X i is that the interval contains X i.
It can be proved (Gómez et alt., 2001) that if censoring occurs noninformatively and if the

law governing XL and XR does not involve any of the parameters of interest, we can base our

inferences on the likelihood function L(θX |D) given by

L(θX |D) =
n

∏

i=1

∫ Xi

R

Xi

L

w(u; θX) du.

By means of Bayes theorem and after assuming a prior distribution p(θX) for θX , the posterior

distribution of θX is given by:

p(θX |D) =
L(θX |D) · p(θX)

∫

L(θX |D) · p(θX) dθX

.
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Usually the integral in the denominator is analytically intractable and does not admit an

explicit solution. As an alternative we propose sampling–based method, in particular, the

Gibbs sampler (Gelfand an Smith, 1990) to obtain a sample from the posterior distribution

of interest, p(θX |D). As suggested by Smith and Roberts (1993), the Gibbs sampler is a

very useful method in problems involving incomplete or censored data. The unobserved data

X1, . . . , Xn are reintroduced in the model as further unknowns and this leads in general to more

tractable situations. This strategy of introducing additional or latent variables in the model

is also called the data augmentation algorithm (Tanner and Wong, 1987). The vector of

interest is now (X1, . . . , Xn, θX) and its posterior distribution can be obtained by performing

the Gibbs algorithm. This method consists in sampling iteratively from the full conditional

distributions, that is the conditional distribution of each variable given all the rest. In this case

we have:

1. The conditional distribution of each censored time given the other survival times, the

parameter vector and the observed censoring intervals:

p(X i|X1, . . . , Xi−1, Xi+1, . . . , Xn, θX ,D), for each i = 1, . . . , n, and

2. the conditional distribution of the parameter vector given the survival times and the

observed censoring intervals:

p(θX |X
1, . . . , Xn,D).

In the first step each censored observation X i is imputed from its full conditional distribution.

In the second step the parameter θX is updated based on the complete imputed sample.

In the following two propositions we state how these conditional distributions can be simplified

by using the noninformative censoring condition (1).

Proposition 1 The full conditional distribution for X i, that is

p(X i|X1, . . . , Xi−1, Xi+1, . . . , Xn, θX ,D), is the prior distribution for X, w(x; θX), truncated

in the interval [X i
L, X

i
R].

Proof. Using the fact thatX1, . . . , Xn are i.i.d., the full conditional distribution forX i reduces

to p(X i | θX , X
i
L, X

i
R). From the noninformative condition (1) this conditional distribution is

given by

p(X i = x | θX , X
i
L, X

i
R) =

w(x; θX)

W (X i
R; θX)−W (X i

R−; θX)
· 1{X i

L ≤ x ≤ X i
R},

which is the prior distribution for X, w(x; θX), truncated in the interval [X i
L, X

i
R].

Proposition 2 The full conditional distribution for θX , that is p(θX |X
1, . . . , Xn,D), is equal

to p(θX |X
1, . . . , Xn)
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Proof. This result follows directly from the noninformative condition which implies that θX is

conditionally independent of the censoring intervals given the complete sample X1, . . . , Xn.

This scheme can be extended to a regression model with covariates z1, . . . , zk related to θX

through the link function θX = g(zi, βX). We assume a prior distribution p(βX |θ0) for βX

and p(θ0) for the hyperparameter θ0.

The Gibbs sampling algorithm to obtain the posterior distribution of βX is then given by the

successive iteration of the following steps:

Gibbs sampling algorithm for interval censoring

1. Impute a value X i sampled from w(x; θX) truncated in the interval [X i
L, X

i
R].

2. Sample a new value of βX from its full conditional distribution p(βX |X
1, . . . , Xn, θ0)

and update the value of θX = g(zi, βX).

3. Sample a new value of θ0 from its full conditional distribution p(θ0|βX).

The successive implementation of these steps provides a sample of the vector of unknowns

(X1, . . . , Xn, βX , θ0) which, under weak conditions (Gelfand and Smith, 1990), converges to

its posterior distribution. Averages from these samples are used to estimate posterior quantities.

3 Inference from doubly–censored data

Let X and Y be the random variables corresponding to the chronological times of the initial

and final events, respectively. Define the duration time to be T = Z − X. We wish to

estimate the parameters of the density functions, w(x; θX) and f(t; θT ), of X and T under

the assumption that X and T are independent random variables. We assume that X and Y

are interval–censored in [XL, XR] and [YL, YR], respectively. For each subject i of a random

sample of size n the observable data are of the form D = {(X i
L, X

i
R, Y

i
L, Y

i
R), 1 ≤ i ≤ n}.

Under the assumption of a noninformative censoring (1), the joint likelihood is given by:

L(θX , θT |D) =
n

∏

i=1

∫ Xi

R

Xi

L

∫ Y i

R
−x

Y i

L
−x

f(t; θT ) w(x; θX) dt dx.

We assume in addition that there is a set of covariates z1, . . . , zk related to θX and to θT

through the link function θX = g(zi, βX) and θT = h(zi, βT ), respectively. The prior dis-

tribution for the regression parameters are p(βX |θ0) and p(βT |θ1) and p(θ0) and p(θ1) for
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the corresponding hyperparameters. As in the case of interval censoring, we introduce the

censoring times X i and T i, for i from 1 to n, as further latent variables.

The vector of interest is then (X1, . . . , Xn, T 1, . . . , Tn, θX , θT ). The Gibbs algorithm to

sample from its posterior distribution consists on sampling iteratively from the full conditional

distributions:

1. The conditional distribution of each censored initial time:

p(X i|X1, . . . , Xi−1, Xi+1, . . . , Xn, T 1, . . . , Tn, θX , θT ,D), for each i = 1, . . . , n;

2. The conditional distribution of each censored latency time:

p(T i|X1, . . . , Xn, T 1, . . . , T i−1, T i+1, . . . , Tn, θX , θT ,D), for each i = 1, . . . , n;

3. the conditional distribution of θX :

p(θX |X
1, . . . , Xn, T 1, . . . , Tn, θT ,D) and

4. the conditional distribution of θT :

p(θT |X
1, . . . , Xn, T 1, . . . , Tn, θX ,D).

In the first step each censored observation X i is imputed from its full conditional distribution.

In the second step the parameter θX is updated based on the complete imputed sample.

Using the assumption that X and T are independent and the same reasoning as in proposition

(1) it follows that:

Proposition 3 The full conditional distribution for X i is the prior distribution for X, w(x; θX),

truncated in the interval [X i
L, X

i
R].

To obtain the full conditional distribution of the doubly–censored latency time T i we use the

fact that, given X i, the variable T i is interval censored in [Y i
L − X i, Y i

R − X i]. Thus, as in

the previous result, it follows that:

Proposition 4 The full conditional distribution for T i is the prior distribution for T , f(t; θT ),

truncated in the interval [Y i
L −X i, Y i

R −X i].

It is also easy to prove that:

Proposition 5 The full conditional distributions for the parameter vectors θX and θT are equal

to p(θX |X
1, . . . , Xn) and p(θT |T

1, . . . , Tn), respectively.

The Gibbs sampler to obtain the posterior distribution of interest is then given by the successive

simulation from the following steps:
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Gibbs sampling algorithm for double censoring

1. Impute a value X i sampled from w(x; θX) truncated in the interval [X i
L, X

i
R].

2. Impute a value T i sampled from f(t; θT ) truncated in the interval [Y i
L −X i, Y i

R −X i].

3. Sample a new value of βX from its full conditional distribution p(βX |X
1, . . . , Xn, θ0)

and update the value of θX = g(zi, βX).

4. Sample a new value of βT from its full conditional distribution p(βT |T
1, . . . , Tn, θ1) and

update the value of θT = h(zi, βT ).

5. Sample a new value of θ0 from its full conditional distribution p(θ0|βX).

6. Sample a new value of θ1 from its full conditional distribution p(θ1|βT ).

4 Illustration

4.1 Data description and notation

In the study of the chronological time of the HIV infection, De Gruttola and Lagakos (1989)

analyze a French cohort of hemophilia patients who were infected with HIV in the early 1980’s.

The cohort corresponds to 262 patients that were treated at the Hôpital Kremlin Bicêtre

and the Hôpital Coeur des Yvelines in France since 1978 and were at risk of infection from

the contaminated blood factor they received for their disease. Two group of patients were

distinguished: 105 patients in the heavily-treated group, that is those who received at least

1,000 µg/kg of blood factor for at least one year between 1982 and 1985, and 157 patients in

the lightly-treated group, corresponding to those patients who received less than 1,000 µg/kg

in each year. The comparison of the two treatment groups could allow an indirect evaluation

of the effects of different viral doses on the risk of infection and on the risk of AIDS once
infected. A complete description of this data set is given in De Gruttola and Lagakos (1989).

Since blood samples from these individuals were periodically collected and stored, they could

be retrospectively tested to determine a time interval during which the infection occurred.

The time of infection for these patients is then interval–censored, the infection is only known

to have occurred in the interval of time specified by the last negative and the first positive

assessment. Because the latency period between infection with HIV and the development of

AIDS can be very long, many of the hemophiliacs infected at that time still had not developed

AIDS by the end of the study. Hence, both the initiating and terminating events that determine

the latency period can be censored in the same individual.

The observations, based on a discretization of the time axis into 6-month intervals, are of the

form (zi, Xi
L, X

i
R, d

i, Y i
L, c

i). Covariate z indicates the treatment group. The value zi = 0
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corresponds to the heavily-treated grup and zi = 1 to the lightly-treated group. X i
L and

Xi
R are the chronological times of the patient’s last negative and first positive antibody test,

respectively, di stands for the infection indicator. For those individuals who developed AIDS,

ci = 1 and Y i
L denotes the chronological time of first clinical symptom of AIDS. For those

individuals who had not developed AIDS at the end of the study, ci = 0 and Y i
L is the time of

the last blood sample tested. The observed data can be divided into three groups according

to their censoring patterns.

1. The first group corresponds to those individuals with a right-censored infection time.

2. The second group corresponds to those individuals with an interval-censored infection

time and an observed AIDS diagnosis.

3. The last group corresponds to those individuals with an interval-censored infection time

and a right-censored AIDS diagnosis time.

These censoring schemes are outlined in the following diagram (Figure 2), where X i denotes

infection time and Y i AIDS diagnosis time.

Xi
L Xi

R Y i
L

Xi Y i

Xi
L Xi

R Y i
L = Y i

R

Xi Y i

Xi
L

Xi

1)

2)

3) + + +

+ + +

+

Figure 2: Different censoring schemes

4.2 Joint analysis of infection and latency times

We analyze the data assuming a log-normal model for both the time to HIV infection and

the latency time of AIDS. We have chosen the log-normal distribution because it is known to
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provide a good fit for long term survival times. Taking into account that T i givenX i is interval–

censored and that only individuals with an observed infection time (di = 1) contribute to the

latency inference process, the model assumptions and prior specifications can be expressed

through the following hierarchical model:

[Stage1] for (i in 1 : N){

Xi ∼ logN(µi
X , σ

2
X) truncated in [X i

L, X
i
R]

Xi
R = +∞ if di = 0

µi
X = β0 + β1 · z

i

if di = 1{

T i|Xi ∼ logN(µi
T , σ

2
T ) truncated in [Y i

L −X i,+∞) if ci = 0

T i = Y i
L −X i if ci = 1

µi
T = β2 + β3 · z

i

}

}

[Stage2] βk ∼ N(αk, σ
2
k) for k = 0, 1, 2, 3

σ2X ∼ IG(0.001, 0.001)

σ2T ∼ IG(0.001, 0.001)

[Stage3] αk ∼ N(0, 1.10−6) for k = 0, 1, 2, 3

σ2k ∼ IG(0.001, 0.001) for k = 0, 1, 2, 3

In stage 1 we specify the observational model: for each individual we assume a log-normal

model truncated in the corresponding censoring interval. The mean µi is assumed to be equal

to β0 for the heavily–treated group and equal to β0 + β1 for the lightly–treated group. The

normal prior distributions for these parameters are specified in stage 2 and an inverse gamma

distribution for the variance. In stage 3 we specify vague priors for the hyperparameters.

Now, to implement the proposed algorithm in section 3 we have to derive all the full conditional

distribution and perform the successive simulations. Alternatively, we have used the program

BUGS which stands as an acronym for Bayesian inference Using Gibbs Sampling and is a

very useful tool for the implementation of this algorithm. Given the model assumptions, this

program performs the Gibbs sampler by simulating from the full conditional distributions.

Further details of the program are given in Spiegelhalter et al.(1996). The code to specify this

model and to obtain the posterior distributions of the parameters is in the appendix.
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The Bayesian estimators were obtained through the implementation of the Gibbs sampling

scheme described above. We implemented 2000 iterations of the algorithm and discarded the

first 500 iterations. Convergence of the Gibbs sampler was established both graphically and

numerically using the program CODA (Best et al., 1995).

We have computed the sample mean and the 95% credible interval for each parameter in the

model. The results are given in Table 1. Figure 3 gives the posterior distribution of each
parameter.

Table 1: Posterior means together with the 95% credible intervals for parameters of interest

Parameter mean 95% credible interval

β0 2.426 (2.348, 2.502)

β1 0.231 (0.134, 0.334)

β2 2.787 (2.517, 3.109)

β3 0.468 (0.114, 0.845)

σX 0.363 (0.321, 0.413)

σT 0.916 (0.711, 1.172)

Using these results and the expression of the mean of a lognormal distribution (E(X) =

exp(µX + 0.5 · σ
2
X)), we obtain that the mean infection time for the heavily–treated group is

12.03 (which corresponds to 6 years) while for the lightly–treated group is 15.3 (approximately

7.6 years). In Figure 4 we have plotted the distribution functions of infection time for both

groups. We can observe that the lightly–treated group has larger infection times than the

heavily–treated group. The difference between the two groups becomes clear after the first 3
years.

The results for the latency times are as follows. Using as before the expression of the mean of a

lognormal distribution (E(T ) = exp(µT +0.5 ·σ
2
T )), we obtain that the mean latency time for

the heavily–treated group is 24.70 (which corresponds to 12 years) while for the lightly–treated

group is 39.45 (approximately 19 years). The estimated distribution curves of the latency times

for the two groups are plotted in Figure 5. From this plot The heavily-treated group seems to

have shorter latency times than the other group of patients. However, the interpretation of

these results must be done carefully because of the small number of patients who developed

AIDS.
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5 Discussion

We have detailed the methodology for a Bayesian analysis of interval–censored and doubly–

censored data. The use of Markov Chain Monte Carlo methods, such as the Gibbs sampler,

is shown to be very appropriate for these kind of censoring. Though much emphasis has

been placed on nonparametric or semiparametric models for censored data, parametric models

provides a useful framework for the analysis of complex models.

We have analyzed the data corresponding to the cohort of heamophiliacs using a log-normal

model for both the infection times and the latency times. The purpose of this analysis was

illustrative of the methology. For a more realistic analysis of the data it would be necessary to

check the model assumptions. The problem is that, as far as we know, model fitting test for

interval censoring or double censoring are not available in statistical packages. One possibility

is to use the Bayesian model selection method proposed by Sinha et alt. (1999) as a model

fitting test. Their methodology compares two alternative models. It could be used as a model

fitting test by comparing the parametric model with the nonparametric estimate given for

instance by Turnbull’s algorithm.

An alternative to complete parametric methods for the analysis of interval–censored data is

the Mixture of Dirichlet process model. This model allow a hierarchical model structure where

some components are treated parametrically while others are analyzed nonparametrically. The

paper by Calle and Gómez (2001b) follows this approach in the context of a linear regression

model where one covariate is interval–censored. Further research is needed in developing the

methodology to other regression models, such us the logistic regression model, or to allow the

response variable to be also censored.
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Calle, M.L. and Gómez, G. (2001a) Nonparametric Bayesian estimation from interval-censored

data using Monte Carlo methods. Journal of Statistical Planning and Inference 98,

73–87.
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A Program Code

Here we give the program code to analyzed the data described in section (4.2) with the program

BUGS. The program includes the log-normal distribution but we were not able to implement

it under interval censoring. For that reason we first transform the data with the logarithm

function and then use the normal distribution.

model log-normal; # name of the program

{

for(i in 1:149){ # Patients with interval--censored

# infection time and who have not

# developed AIDS at the end of the study.

logxl[i]<- log(xl[i]); # log transformation

logxr[i]<- log(xr[i]); # of the data

muX[i]<-beta0+beta1*z[i];

muT[i]<-beta2+beta3*z[i];

logX[i] ~ dnorm(muX[i],tauX) I(logxl[i],logxr[i]);

# truncated normal distribution

# in the interval [logxl, logxr]

X[i]<-exp(logX[i]);

tl[i]<-(yl[i]-X[i]);

logtl[i]<-log(tl[i]);

logT[i] ~ dnorm(muT[i],tauT) I(logtl[i],);

# truncated normal distribution

# in the interval [logtl, infinity)

}

for(i in 150:192){ # Patients with interval--censored

# infection time and who have developed

# AIDS at the end of the study.

logxl[i]<- log(xl[i]);

logxr[i]<- log(xr[i]);

muX[i]<-beta0+beta1*z[i];

Documents de Recerca c© 2002 Universitat de Vic 14



muT[i]<-beta2+beta3*z[i];

logX[i] ~ dnorm(muX[i],tauX) I(logxl[i],logxr[i]);

X[i]<-exp(logX[i]);

tl[i]<-(yl[i]-X[i]);

tr[i]<-(yl[i]-X[i])+1;

logtl[i]<-log(tl[i]);

logtr[i]<-log(tr[i]);

logT[i] ~ dnorm(muT[i],tauT) I(logtl[i],logtr[i]);

}

for(i in 193:262){# Patients with right--censored

# infection time

logxl[i]<- log(xl[i]);

muX[i]<-beta0+beta1*z[i];

logX[i] ~ dnorm(muX[i],tauX) I(logxl[i],);

}

beta0 ~ dnorm(alpha0,tau0); # Prior distributions

beta1~ dnorm(alpha1,tau1); # of the parameters of interest

beta2 ~ dnorm(alpha2,tau2);

beta3~ dnorm(alpha3,tau3);

sigmaX <- 1/sqrt(tauX);

tauX ~ dgamma(1.0E-3, 1.0E-3);

sigmaT <- 1/sqrt(tauT);

tauT ~ dgamma(1.0E-3, 1.0E-3);

alpha0 ~ dnorm(0, 1.0E-6); # Prior distributions

tau0~ dgamma(1.0E-3, 1.0E-3); # of the hyperparameters

alpha1 ~ dnorm(0, 1.0E-6);

tau1~ dgamma(1.0E-3, 1.0E-3);

alpha2 ~ dnorm(0, 1.0E-6);

tau2~ dgamma(1.0E-3, 1.0E-3);

alpha3 ~ dnorm(0, 1.0E-6);

tau3~ dgamma(1.0E-3, 1.0E-3);

}
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Figure 3: Posterior distribution of the model parameters: β0, β1, β2, β3, σX and σT
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Figure 4: Estimated cumulative distributions of times to HIV infection
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Figure 5: Estimated cumulative distributions of latency times to AIDS
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