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ABSTRACT
In survival data analysis the interval censoring problem has been usually treated via maximum likelihood

inferences. In order to make use of a simpler expression of the likelihood function, standard methods

suppose that conditions producing censoring do not affect the survival process. This paper is about

formal conditions that ensure the validity of such a simplified likelihood. We state different notions

of noninformative censoring appeared in the literature and we define the analogous constant–sum

condition derived in the context of right censoring. We prove that the simplified likelihood produces

correct inferences when these conditions hold. We discuss the identifiability of the distribution function

of the failure time based on interval–censored data and we study the testability of the constant–sum

condition.

RESUM
En l’anàlisi de la supervivència el problema de les dades censurades en un interval es tracta, usualment,

via l’estimació per màxima versemblança. Amb l’objectiu d’utilitzar una expressió simplificada de la

funció de versemblança, els mètodes estàndards suposen que les condicions que produeixen la censura

no afecten el temps de fallada. En aquest article formalitzem les condicions que asseguren la validesa

d’aquesta versemblança simplificada. Aix́ı, precisem diferents condicions de censura no informativa i

definim una condició de suma constant anàloga a la derivada en el context de censura per la dreta.

També demostrem que les inferències obtingudes amb la versemblança simplificada són correctes quan

aquestes condicions són certes. Finalment, tractem la identificabilitat de la funció distribució del temps

de fallada a partir de la informació observada i estudiem la possibilitat de contrastar el compliment de

la condició de suma constant.
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RESUMEN
En análisis de la supervivencia el problema de los datos censurados en un intervalo se trata, habit-

ualmente, mediante la estimación por máxima verosimilitud. Con el objetivo de utilizar una expresión

simplificada de la función de verosimilitud, los métodos estándar suponen que las condiciones que pro-

ducen la censura no afectan el tiempo de fallo. En este art́ıculo formalizamos las condiciones que

aseguran la validez de esta verosimilitud simplificada. Aśı, precisamos diferentes condiciones de censura

no informativa i definimos una condición de suma constante análoga a la derivada en el contexto de

censura por la derecha. También demostramos que las inferencias obtenidas con la verosimilitud sim-

plificada són correctas cuando estas condiciones son ciertas. Finalmente, tratamos la identificabilidad

de la función de distribución del tiempo de fallo a partir de la información observada y estudiamos la

posibilidad de contrastar el complimiento de la condición de suma constante.

1 Introduction

Interval censoring mechanisms arise when the event of interest cannot be directly observed

and it is only known to have occurred during a random interval of time. This type of censored

data has been extensively analyzed during the last years. Inference methods are mainly based

on what we will refer to as the simplified likelihood, that is, the likelihood we would obtain if

the censoring intervals were fixed in advance and we ignore the randomness of the intervals.

Turnbull (1976), Groneboom and Wellner (1992) and Shick and Yu (2000) among other authors

approach the estimation of the distribution function via this simplified likelihood. In this

paper we discuss different conditions under which such likelihood–based inferences are correct.

Williams and Lagakos (1977) in the context of right censoring and Betensky (2000) in the

context of current status data addressed the same problem. Sufficient conditions for the

appropriateness of the simplified likelihood with interval–censored data are introduced in the

papers of Self and Grossman (1986) and Gómez et al. (2003). In a more general censoring

framework, Heitjan and Rubin (1991), Heitjan (1993) and Gill et al. (1997) develop and

characterize a closely related concept, the so called coarsening at random conditions. This

paper surveys different definitions of the noninformative condition for interval–censored data,

introduces the notion of the constant–sum model and justifies the validity of the simplified

likelihood that has been widely used.

The remain of the paper is organized as follows. Section 2 introduces the notation, different

noninformative censoring conditions and states their equivalences. In Section 3 we generalize

the constant–sum condition, as introduced by Williams and Lagakos (1977), in the context of

right–censoring. We distinguish between this condition that ensure that the inference process

can omit the randomness of the intervals and noninformative conditions that ensure that the
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censoring mechanism cannot affect the event time. We state the relationship between these

two concepts. Section 4 revises known censoring models and reduces the general concepts of

the previous section to the underlying model. In Section 5 we consider whether it is possible

to test either the constant–sum condition or the noninformative condition based on observable
data.

2 Terminology and Noninformative models

Let T be the random variable of interest. In our setting T is a positive random variable

representing the time until the occurrence of a certain event E with unknown right-continuous

distribution function W (t) = Prob{T ≤ t}. Data is said to be interval–censored when the

time to E is unknown and instead we observe a time interval bL,Rc where L is the last

observed time before the event E has occurred and R indicates the first time the event E has
been observed. We use the bL,Rc notation to indicate an interval that can be closed, open or

half open depending on the interval censoring model. For example, Peto (1973) and Turnbull

(1976) consider closed intervals [L, R], while Groeneboom and Wellner (1992) suppose half

open intervals (L,R] and Yu et al. (2000) define a mixed interval–censored scheme that

involves open, closed and half open intervals. In each of these situations, we are in fact

formally observing a random censoring vector (L,R), such that T ∈ bL,Rc with probability 1.

A model for interval–censored data is determined by the joint distribution, FL,R,T , between

the random variable T and the observables (L, R), under the constraint that

P (T ∈ bL,Rc) =
∫ ∫ ∫

{(l,r,t):t∈bl,rc}
dFL,R,T (l, r, t) = 1.

The marginal laws of the survival time and the observables are characterized, respectively, by

dW (t) =
∫ ∫

{(l,r):t∈bl,rc}
dFL,R,T (l, r, t)

and

dFL,R(l, r) =
∫

{t:t∈bl,rc}
dFL,R,T (l, r, t) = P (L ∈ dl, R ∈ dr, T ∈ bl, rc). (1)

Expression (1) is the contribution to the likelihood of an individual with observed interval bl, rc.
The goal of this paper is to define conditions under which this contribution can be reduced to

P (T ∈ bl, rc). This probability is what we refer as simplified likelihood.
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We introduce three possible definitions for noninformativeness of the interval censoring mech-

anism in theorem 2.1. The first characterization has been proposed in Self and Grossman

(1986). Gómez et al. (2003) uses the second definition to derive the simplified likelihood

while the third definition follows from the coarsening at random notion used in Heitjan and

Rubin (1991), Heitjan (1993) and Gill et al. (1997).

Theorem 2.1 The following properties define the noninformative condition and are equivalent:

(a) The conditional distribution of T given L and R satisfies

dFT |L,R(t|l, r) =
dW (t)

P (T ∈ bl, rc) 1{t:t∈bl,rc}(t)

that is, censoring in bl, rc provides the same information as T being in bl, rc.

(b) The conditional distribution of L and R given T satisfies that

dFL,R|T (l, r|t) =
dFL,R(l, r)

P (T ∈ bl, rc) 1{(l,r):t∈bl,rc}(l, r) (2)

that is, the observables (l, r) are not influenced by the specific value of T in bl, rc.

(c) The conditional distribution of L and R given T satisfies that

dFL,R|T (l, r|t) = dFL,R|T (l, r|t′) on {(l, r) : t ∈ bl, rc and t′ ∈ bl, rc}

that is, two specific values of T that are consistent with the observables always provide

the same information.

Proof:

(a) implies (b):

If dFT |L,R(t|l, r) =
dW (t)

P (T ∈ bl, rc) 1{t:t∈bl,rc}(t), then for any (l, r, t) such that t ∈ bl, rc,

following the usual rules for conditional distributions, we have

dFL,R|T (l, r|t) =
dFL,R,T (l, r, t)

dW (t)
=

dFT |L,R(t|l, r)dFL,R(l, r)
dW (t)
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=
dW (t)dFL,R(l, r)

P (T ∈ bl, rc)dW (t)
=

dFL,R(l, r)
P (T ∈ bl, rc)

(b) implies (c):

If dFL,R|T (l, r|t) =
dFL,R(l, r)

P (T ∈ bl, rc) 1{(l,r):t∈bl,rc}(l, r), then clearly

dFL,R(l, r)
P (T ∈ bl, rc) 1{(l,r):t∈bl,rc}(l, r) =

dFL,R(l, r)
P (T ∈ bl, rc) 1{(l,r):t′∈bl,rc}(l, r)

on {(l, r) : t ∈ bl, rc and t′ ∈ bl, rc}

(c) implies (a):

If dFL,R|T (l, r|t) = dFL,R|T (l, r|t′) on {(l, r) : t ∈ bl, rc and t′ ∈ bl, rc}, then for any fixed

(l, r, t) such that t ∈ bl, rc

dFL,R(l, r) =
∫

{s:s∈bl,rc}
dFL,R,T (l, r, s) =

∫

{s∈bl,rc}
dFL,R|T (l, r|s)dW (s)

=
∫

{s∈bl,rc}
dFL,R|T (l, r|t)dW (s) = dFL,R|T (l, r|t)P (T ∈ bl, rc)

Then, if we use this last equality and we follow the usual rules for conditional distributions, we

have

dFT |L,R(t|l, r) =
dFL,R,T (l, r, t)

dFL,R(l, r)
=

dFL,R|T (l, r|t) dW (t)
dFL,R|T (l, r|t) P (T ∈ bl, rc) =

dW (t)
P (T ∈ bl, rc)

¦

3 Constant–sum models

The definition of the constant–sum condition extends Williams and Lagakos’s one in the context

of right censoring (1977). The analogous condition proposed here is based on the marginal

laws of the censoring model, W and FL,R.

Definition 3.1 A censoring model is constant–sum if and only if the following equation holds

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
P (T ∈ bl, rc) = 1 for any t > 0 such that dW (t) 6= 0. (3)
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Theorem 3.2 If a censoring model is constant–sum, then the simplified likelihood given by

P (T ∈ bl, rc) is a proper basis for inferences.

Proof:

We first note that the full contribution to the likelihood given in equation (1) can be written
as

P (L ∈ dl, R ∈ dr, T ∈ bl, rc) = P (T ∈ bl, rc) · dK(l, r)

where
dK(l, r) = P (L ∈ dl, R ∈ dr| T ∈ bl, rc)

=
P (L ∈ dl, R ∈ dr, T ∈ bl, rc)

P (T ∈ bl, rc) =
dFL,R(l, r)

P (T ∈ bl, rc) .

Thus, any likelihood–based inference will only be based on the distribution function W and

the conditional measure K subject to the constraints: (i) W is a distribution function, (ii)

dK ≥ 0 and (iii) ∫ ∫

{0≤l≤r}
P (T ∈ bl, rc)dK(l, r) = 1

which can be equivalently written as

∫ +∞

0

(∫ ∫

{(l,r):t∈bl,rc}
dK(l, r)

)
dW (t) = 1.

Therefore, if condition (iii) does not impose additional parametric relations between W and

dK, then inferences based on the simplified likelihood will be valid, at least concerning the

survival time distribution. If we assume a constant–sum model then the following equality

∫ ∫

{(l,r):t∈bl,rc}
dK(l, r) = 1 for any t > 0 such that dW (t) 6= 0

holds, which in turn implies that there is no constrain between W and dK in condition (iii)

and the theorem follows.

¦
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The following two propositions prove that the noninformative condition is a sufficient but not

necessary condition for a model to be constant–sum. In this sense, the second proposition

shows that the constant–sum notion expresses in terms of marginal laws the restriction on the

conditional laws expressed by the noninformative notion.

Proposition 3.3 If a censoring model is noninformative then the model is constant-sum.

Proof:

Indeed, for any t > 0 such that dW (t) 6= 0, it follows from equation (2) that

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
P (T ∈ bl, rc) =

∫ ∫

{(l,r):t∈bl,rc}
dFL,R|T (l, r|t) = 1

and, consequently, the constant–sum condition holds.

¦

Proposition 3.4 If a censoring model, FL1,R1,T1 , satisfies the constant– sum condition, then

it always exists a noninformative model, FL2,R2,T2 , such that W2 = W1 and FL2,R2 = FL1,R1 .

Proof:

Define FL2,R2,T2 by

dFL2,R2,T2(l, r, t) =
dW1(t)dFL1,R1(l, r)

P (T1 ∈ bl, rc) ,

which defines a probability measure such that T ∈ bL,Rc with probability one,

∫ ∫ ∫

{(l,r,t):t∈bl,rc}
dFL2,R2,T2(l, r, t)

=
∫ +∞

0
dW1(t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL1,R1(l, r)
P (T1 ∈ bl, rc)

)
=

∫ +∞

0
dW1(t) = 1.

Furthermore, for any t > 0

dW2(t) =
∫ ∫

{(l,r):t∈bl,rc}
dFL2,R2,T2(l, r, t)
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= dW1(t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL1,R1(l, r)
P (T1 ∈ bl, rc)

)
= dW1(t)

and for any (l, r) such that 0 ≤ l ≤ r

dFL2,R2(l, r) =
∫

{t:t∈bl,rc}
dFL2,R2,T2(l, r, t) =

= dFL1,R1(l, r)

(∫

{t:t∈bl,rc}

dW1(t)
P (T1 ∈ bl, rc)

)
= dFL1,R1(l, r).

Finally, it follows that FL2,R2|T2
satisfies equation (2) for any (l, r, t) such that t ∈ bl, rc and

dW2(t) 6= 0,

dFL2,R2|T2
(l, r|t) =

dFL2,R2,T2(l, r, t)
dW2(t)

=
dW1(t)dFL1,R1(l, r)
P (T1 ∈ bl, rc)dW2(t)

=
dFL2,R2(l, r)
P (T2 ∈ bl, rc) .

¦

For the sake of completeness, it is interesting to remark that for any t > 0 the constant–sum

condition can be expressed as

∫ ∫

{(l,r):t∈bl,rc}

dW (t)
P (T ∈ bl, rc) dFL,R(l, r) = dW (t). (4)

Equation (4) is the well-known self–consistent equation which is the basis of the nonparametric

maximum likelihood estimation of W , see Turnbull (1976) or Gómez et al. (2003).

4 Examples

We discuss the meaning of the noninformative and constant–sum conditions for the particular

cases of right–censored data, double–censored data and interval–censored data case k. The

results for right–censored data and interval–censored data case 1 are similar to those in Williams

and Lagakos (1977) and Betensky (2000), respectively.
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Example 4.1 (Right censoring) Right censored-data arise when the event of interest can

only be observed if the survival time does not exceed the value of a positive random censoring

variable, C. The observed data for an individual is traditionally expressed by the pair (X, δ)

where X = min(T,C) and δ = 1{T≤C}. Using interval censoring notation, the vector of

observables is,

(L,R) = (T, T ) · δ + (C, +∞) · (1− δ)

and the observed intervals are defined as

bl, rc =
{

[l, r] if l = r
(l, r) if r = +∞.

Thus, the joint distribution function for L,R, T is given by:

dFL,R,T (l, r, t) =





P (C ≥ t, T ∈ dt) if l = t = r
P (C ∈ dl, T ∈ dt) if l < t and r = +∞
0 otherwise.

In this setting, the noninformative and the constant–sum conditions become, respectively,

P (C ∈ dl|T = t) = P (C ∈ dl|T > l) for any t > l > 0

and

P (C ≥ t|T = t) +
∫ t−

0
P (C ∈ dl|T > l) = 1 for any t > 0.

The proofs are postponed to appendix A. If we assume the usual independence between the

variables T and C, then both conditions are clearly satisfied.

Example 4.2 (Double censoring) Data is said to be double–censored when the event of

interest can only be observed inside the window [C1, C2], where C1 and C2 are positive random

variables and C1 < C2 (Chang and Yang, 1987). The observed data for an individual is of the

form (X, δ, γ) where δ = 1{T<C1}, γ = 1{T≤C2} and X = C1·δ+T ·(1−δ)·γ+C2·(1−δ)·(1−γ).

In the interval censoring framework, the vector of observables can be expressed as

(L,R) = (0, C1) · δ + (T, T ) · (1− δ) · γ + (C2, +∞) · (1− δ) · (1− γ)
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and intervals are defined as

bl, rc =





[l, r) if l = 0
[l, r] if l = r
(l, r) if r = +∞.

In this model the joint probability law of the survival and the observables is given by,

dFL,R,T (l, r, t) =





P (C1 ∈ dr, T ∈ dt) if l = 0 and t < r
P (C1 ≤ t, C2 ≥ t, T ∈ dt) if l = t = r
P (C2 ∈ dl, T ∈ dt) if l < t and r = +∞
0 otherwise.

Under a double censoring setup the noninformative condition is expressed through the following

two equalities:

• P (C1 ∈ dr|T = t) = P (C1 ∈ dr|T < r) for any 0 < t < r

• P (C2 ∈ dl|T = t) = P (C2 ∈ dl|T > l) for any t > l > 0.

Furthermore, the constant–sum condition reduces to

∫ +∞

t
P (C1 ∈ dr|T < r) + P (C1 ≤ t, C2 ≥ t|T = t)

+
∫ t−

0
P (C2 ∈ dl|T > l) = 1.

We observe again that independence between T and (C1, C2) implies both conditions. Details

on the computations are given in appendix B.

Example 4.3 (Interval–censored data, case k) This interval censoring scheme has been

largely studied, specially the case 1 and case 2 (Groeneboom and Wellner, 1992; Schick

and Yu, 2000). In the interval–censored model, case 1 or current status data, the event is

only known to be larger or smaller than an observed monitoring time. The interval–censored

model, case 2, consider two monitoring times, X1 and X2 with X1 < X2, where it is only

possible to determine whether the event of interest occurs before the first monitoring time

(T ≤ X1), between the two monitoring times (X1 < T ≤ X2), or after the last monitoring
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time (T > X2). Although interval censoring case 2 looks like the double censoring model, it is

fundamentally different because the value of T is unknown inside the window (X1, X2]. The

general case k model consider k positive random monitoring times, X1 ≤ · · · ≤ Xk, such that

the event of interest can only be determined to have occurred before, between or after that

times. The vector of observables is

(L,R) = (0, X1)1{T≤X1} +
k∑

j=2

{
(Xj−1, Xj)1{Xj−1<T≤Xj}

}
+ (Xk, +∞)1{T>Xk}.

Thus, the intervals are defined as,

bl, rc =
{

(l, r) if r = +∞.
(l, r] otherwise

The joint distribution function for L,R, T is expressed as

dFL,R,T (l, r, t) =





P (X1 ∈ dr, T ∈ dt) if l = 0 and t ≤ r
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈ dr, T ∈ dt) if 0< l <t ≤ r<+∞

P (Xk ∈ dl, T ∈ dt) if l < t and r = +∞
0 otherwise.

In this model, as it is shown in appendix C, the noninformative condition can be written as,

• P (X1 ∈ dr|T = t) = P (X1 ∈ dr|T ≤ r) for any 0 < t ≤ r

•
k∑

j=2

P (Xj−1∈ dl,Xj∈ dr|T = t)=
k∑

j=2

P (Xj−1∈ dl, Xj∈ dr|l < T ≤ r)

for any 0 < l < t ≤ r

• P (Xk ∈ dl|T = t) = P (Xk ∈ dl|T > l) for any t > l > 0.

We can also see that, for any t > 0 such that dW (t) 6= 0, the constant–sum equation is

∫ +∞

t−
P (X1 ∈ dr|T ≤ r) +

k∑

j=2

∫ t−

0

∫ +∞

t−
P (Xj−1 ∈ dl, Xj ∈ dr|l < T ≤ r)

+
∫ t−

0
P (Xk ∈ dl|T > l) = 1
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and furthermore (see proposition C.1), when T is continuous, it can be simplified to

P (X1 ∈ dt|T ≤ t) +
k∑

j=2

∫

{l:l∈[0,t)}
P (Xj−1 ∈ dl, Xj ∈ dt|l < T ≤ t)

=
k∑

j=2

∫

{r:r∈(t,+∞]}
P (Xj−1 ∈ dt,Xj ∈ dr|t < T ≤ r) + P (Xk ∈ dt|T > t)

Again, when the model satisfies the usual assumption of independence between the survival

time, T , and the monitoring times, (X1, . . . , Xk), all the above equations hold.

5 Identifiability and testability problems

In this section we discuss the identifiability of the distribution of the failure time, W , and the

testability of the constant–sum condition on the basis of the observables, FL,R.

Definition 5.1 Two interval censoring models, {FL1,R1,T1} and {FL2,R2,T2}, are said to be

indistinguishable if the marginal distribution of the observables is the same, that is, FL1,R1 =

FL2,R2 .

It is clear, see proposition D.1, that we might find two indistinguishable censoring models with

two different failure time distributions. Thus, the distribution of the failure time cannot be

identified on the basis of the observables unless we assume some kind of restriction on the
model.

We will show now that if we restrict to the class of indistinguishable constant–sum models,

then we can identify the probability of the failure time in the observable intervals. More

precisely, we can ensure, from the following theorem, that any constant–sum model in a class

of indistinguishable models has the same simplified likelihood.

Theorem 5.2 Let {FL,R,T1} and {FL,R,T2} be two indistinguishable constant–sum models

such that dW1 6= 0 if and only if dW2 6= 0 , then P (T1 ∈ bl, rc) = P (T2 ∈ bl, rc)
dFL,R almost surely .
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Proof:

If model {FL,R,T1} is constant–sum then

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
P (T1 ∈ bl, rc) = 1,

which implies that

∫ +∞

0
dW2(t)

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
P (T1 ∈ bl, rc) = 1

which in turn implies that

∫ ∫
P (T2 ∈ bl, rc)
P (T1 ∈ bl, rc)dFL,R(l, r) = 1.

Analogously, it is clear that starting with model {FL,R,T2} it follows that

∫ ∫
P (T1 ∈ bl, rc)
P (T2 ∈ bl, rc)dFL,R(l, r) = 1.

Thus, the two equations and lemma D.2 prove the statement of this theorem.

¦

Summarizing, the simplified likelihood produces wrong inferences and it is not identifiable

without the assumption of the constant–sum condition. Thus, it remains to look again at

equation (3) and study the testability of this property on the basis of the observables, FL,R.

Then, it follows that the only way to test the constant–sum property is to search for conditions

on the observables, FL,R, which ensure the existence of a distribution function, W̃ , that solves

the following equation

∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
PfW (bl, rc) = 1 for any t > 0 such that dW̃ (t) 6= 0. (5)

If such a solution exists, it is not possible to know from the observables, FL,R, whether the

model is constant–sum or not because we can always construct a constant–sum model that

is indistinguishable from the underlying model, see proposition D.3. On the other hand, if
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no solution exists, we clearly know from the observables, FL,R, that the underlying model is

neither constant–sum nor noninformative.

At this point, the question to answer is when equation (5) has solution. This is an open

problem though it is solved in two special cases, discrete data and current status data, see

examples below.

Example 5.3 (Discrete data) Let {FL,R,T } be a model such that L, R and T have the same

finite supports, then equation (5) has always solution and therefore in the discrete case it is

not possible to test the constant–sum condition. See proposition D.4 for the justification.

Example 5.4 (Current status data) In this example we study the problem of the testability

of the constant–sum condition in the interval censoring model case 1 and extent the results in

Betensky (2000). If we note by X the random monitoring time, then the vector of observables

in this model is,

(L,R) = (0, X)1{T≤X} + (X, +∞)1{T>X}

with probability law

dFL,R(l, r) = 1{0}(l)P (X ∈ dr, T ≤ r) + 1{+∞}(r)P (X ∈ dl, T > l)

If we suppose that T is continuous, see proposition C.1, the constant–sum condition reduces
to

dFL,R(0, t)
W (t)

=
dFL,R(t,+∞)

1−W (t)

or, equivalently,

W (t) =
dFL,R(0, t)

dFL,R(0, t) + dFL,R(t, +∞)
= P (T ≤ t|X = t)

Following Example 4.3, the noninformative condition can be written as,

P (X ∈ dx|T = t) =





P (X ∈ dx, T ≤ x)
W (x)

for any 0 < t ≤ x

P (X ∈ dx, T > x)
1−W (x)

for any t > x > 0
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This last expression together with the above constant–sum characterization, W (x) = P (T ≤
x|X = x), implies that

P (X ∈ dx|T = t) = P (X ∈ dx) for any x, t > 0

That is, in the case of current status data the noninformative condition is equivalent to the

independence of T and X.

In this framework, equation (5) reduces to

W̃ (t) = P (T ≤ t|X = t)

and the existence of a solution is equivalent to the condition that P (T ≤ t|X = t) is a

distribution function. Rabinowitz (2000) proposes to test the constant–sum condition with a

rank statistic which detects decreasing trends on this probability.

Finally, as an illustration of a class of current status models which covers all different conditions

studied in this paper, we consider (T,X) to be in the family of two dimensional log–normal

distributions. In this class the joint density function of T and X is of the form:

f(t, x) =
exp(− 1

2(1−ρ2)

[
(ln(t)−µ1)2

σ2
1

− 2ρ(ln(t)−µ1)(ln(x)−µ2)
σ1σ2

+ (ln(x)−µ2)2

σ2
2

]
)

(2π)σ1σ2tx
√

1− ρ2

It can be shown that this class of models have the following characterizations:

• the model is noninformative if and only if ρ = 0,

• the model is constant–sum if and only if ρ = 0 or
{

ρ = 2σ1σ2

σ2
1+σ2

2
and µ1 = µ2 and σ1 < σ2

}
,

• equation (5) has solution if and only if ρ < σ2
σ1

.
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A Appendix

Proof of results in Example 4.1

The definition of the right censoring model, FL,R,T , implies that

dFL,R|T (l, r|t) =





P (C ≥ t|T = t) if l = t = r
P (C ∈ dl|T = t) if l < t and r = +∞
0 otherwise

and

dFL,R(l, r) =





P (C ≥ l, T ∈ dl) if l = r
P (C ∈ dl, T > l) if r = +∞
0 otherwise

Thus,

dFL,R(l, r)
P (T ∈ bl, rc) =





P (C ≥ l|T = l) if l = r
P (C ∈ dl|T > l) if r = +∞
0 otherwise

If we impose the second characterization of the noninformative condition, then the following

equations should be satisfied:

• If l = r = t, P (C ≥ t|T = t) = P (C ≥ l|T = l), but in this case the equality always

holds.

• If l < t and r = +∞, P (C ∈ dl|T = t) = P (C ∈ dl|T > l).

On the other hand, if we impose the constant–sum condition to the model, then for any t > 0
such that dW (t) 6= 0:

P (C ≥ t|T = t) +
∫

1(l,+∞)(t)P (C ∈ dl|T > l) = 1

and it follows that,

P (C ≥ t|T = t) +
∫ t−

0
P (C ∈ dl|T > l) = 1
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B Appendix

Proof of results in Example 4.2

The definition of the double censoring model, FL,R,T , implies that

dFL,R|T (l, r|t) =





P (C1 ∈ dr|T = t) if l = 0 and t < r
P (C1 ≤ t, C2 ≥ t|T = t) if l = t = r
P (C2 ∈ dl|T = t) if l < t and r = +∞
0 otherwise

and

dFL,R(l, r) =





P (C1 ∈ dr, T < r) if l = 0
P (C1 ≤ l, C2 ≥ l, T ∈ dl) if l = r
P (C2 ∈ dl, T > l) if r = +∞
0 otherwise

Thus,

dFL,R(l, r)
P (T ∈ bl, rc) =





P (C1 ∈ dr|T < r) if l = 0
P (C1 ≤ l, C2 ≥ l|T = l) if l = r
P (C2 ∈ dl|T > l) if r = +∞
0 otherwise

If we impose the second characterization of the noninformative condition, then the following

equations should be satisfied:

• If l = 0 and t < r, P (C1 ∈ dl|T = t) = P (C ∈ dr|T < r).

• If l = t = r, P (C1 ≤ t, C2 ≥ t|T = t) = P (C1 ≤ l, C2 ≥ l|T = l), but in this case the

equality always holds.

• If t > l and r = +∞, P (C2 ∈ dl|T = t) = P (C2 ∈ dl|T > l).

Furthermore, for any t > 0 such that dW (t) 6= 0, the constant–sum condition simplifies to:

∫
1[0,r)(t)P (C1 ∈ dr|T < r)

+P (C1 ≤ t, C2 ≥ t|T = t) +
∫

1(l,+∞)(t)P (C2 ∈ dl|T > l) = 1
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and, consequently,

∫ +∞

t
P (C1 ∈ dr|T < r) + P (C1 ≤ t, C2 ≥ t|T = t)

+
∫ t−

0
P (C2 ∈ dl|T > l) = 1

C Appendix

Proof of results in Example 4.3

The definition of the case k interval censoring model, FL,R,T , implies that

dFL,R|T (l, r|t) =





P (X1 ∈ dr|T = t) if l = 0 and t ≤ r
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈ dr|T = t) if 0< l <t ≤ r<+∞

P (Xk ∈ dl|T = t) if l < t and r = +∞
0 otherwise

and

dFL,R(l, r) =





P (X1 ∈ dr, T ≤ r) if l = 0
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈ dr, l < T ≤ r) if 0< l <r<+∞

P (Xk ∈ dl, T > l) if r = +∞
0 otherwise

Thus,

dFL,R(l, r)
P (T ∈ bl, rc) =





P (X1 ∈ dr|T ≤ r) if l = 0
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈ dr|l < T ≤ r) if 0< l <r<+∞

P (Xk ∈ dl|T > l) if r = +∞
0 otherwise

If we impose the second characterization of the noninformative condition, then the following

equations should be satisfied:

• If l = 0 and t ≤ r, P (X1 ∈ dr|T = t) = P (X1 ∈ dr|T ≤ r).
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• If 0 < l < t ≤ r < +∞,
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈ dr|T = t) =
k∑

j=2

P (Xj−1 ∈ dl, Xj ∈

dr|l < T ≤ r).

• If t > l and r = +∞, P (Xk ∈ dl|T = t) = P (Xk ∈ dl|T > l).

Furthermore, for any t > 0 such that dW (t) 6= 0, the constant–sum condition can be written
as: ∫

1(0,r](t)P (X1 ∈ dr|T ≤ r)

+
k∑

j=2

∫ ∫

(0,+∞)2
1(l,r](t)P (Xj−1 ∈ dl,Xj ∈ dr|l < T ≤ r)

+
∫

1(l,+∞)(t)P (Xk ∈ dl|T > l) = 1

and, consequently,

∫ +∞

t−
P (X1 ∈ dr|T ≤ r) +

k∑

j=2

∫ t−

0

∫ +∞

t−
P (Xj−1 ∈ dl, Xj ∈ dr|l < T ≤ r)

+
∫ t−

0
P (Xk ∈ dl|T > l) = 1

The following proposition simplifies the constant–sum equation when T is continuous.

Proposition C.1 If intervals cannot be singletons and T is a positive continuous random

variable with dW (t) 6= 0 for any t > 0, then the constant–sum condition is equivalent to the

following equality for any t > 0

∫

{l:l∈[0,t)}

dFL,R(l, t)
P (T ∈ (l, t])

=
∫

{r:r∈(t,+∞]}

dFL,R(t, r)
P (T ∈ (t, r])
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Proof:

We suppose that bl, rc = (l, r] without loss of generality because T is continuous and the

intervals cannot be singletons. If constant–sum condition holds and we define dK(l, r) =

dFL,R(l, r)
P (T ∈ bl, rc) , then for any t > 0 it follows that

1 =
∫

[0,t)

∫

[t,+∞]
dK(l, r)

This property implies that for any 0 < a < b < +∞
∫

[0,a)

∫

[a,+∞]
dK(l, r) =

∫

[0,b)

∫

[b,+∞]
dK(l, r)

⇐⇒
∫

[0,a)

∫

[a,b)
dK(l, r) +

∫

[0,a)

∫

[b,+∞]
dK(l, r)

=
∫

[0,a)

∫

[b,+∞]
dK(l, r) +

∫

[a,b)

∫

[b,+∞]
dK(l, r)

⇐⇒
∫

[0,a)

∫

[a,b)
dK(l, r) =

∫

[a,b)

∫

[b,+∞]
dK(l, r)

⇐⇒
∫

[0,a)

∫

[a,b)
dK(l, r) +

∫

[a,r)

∫

[a,b)
dK(l, r)

=
∫

[a,b)

∫

[b,+∞]
dK(l, r) +

∫

[a,b)

∫

(l,b)
dK(l, r)

⇐⇒
∫

[0,r)

∫

[a,b)
dK(l, r) =

∫

[a,b)

∫

(l,+∞]
dK(l, r)

⇐⇒
∫

[0,t)

∫

[a,b)
dK(l, t) =

∫

[a,b)

∫

(t,+∞]
dK(t, r)

Thus, we have proved that

∫

{l:l∈[0,t)}
dK(l, t) =

∫

{r:r∈(t,+∞]}
dK(t, r) for any interval [a, b).

Using a monotone class theorem this result extends to the σ-algebra on (0,+∞).
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Let us prove the reciprocal, that is, we suppose that for any t > 0

∫

{l:l∈[0,t)}
dK(l, t) =

∫

{r:r∈(t,+∞]}
dK(t, r)

Then, it follows, from the above equivalences, that for any 0 < a < b < +∞
∫

[0,a)

∫

[a,+∞]
dK(l, r) =

∫

[0,b)

∫

[b,+∞]
dK(l, r) = k ≤ 1

Thus, it means that

∫ +∞

0

(∫ ∫

{(l,r):t∈(l,r]}
dK(l, r)

)
dW (t) = k

and this equality is only possible if k = 1.

¦

D Appendix

Proof of results in Section 5

Proposition D.1 Let {FL1,R1,T1} be any model for interval–censored data with T1 being

continuous and dW1 6= 0 for any t > 0, then there always exists another indistinguishable

model with different failure time.

Proof:

Consider a set A such that 0 < P ((L1, R1) ∈ A) < 1 and define the following censoring

scheme,

FL2,R2 = FL1,R1

and

T2 =





T1 if (L1, R1) /∈ A

L1 + R1

2
if (L1, R1) ∈ A and R1 6= +∞

2L1 if (L1, R1) ∈ A and R1 = +∞
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We obtain a new model {FL2,R2,T2} where FL2,R2 = FL1,R1 and clearly W2 6= W1.

¦

Lemma D.2 Let µ be a probability measure and f a µ–measurable positive function such

that ∫
f dµ = 1 and

∫
1
f

dµ = 1

then f = 1 µ–almost surely.

Proof:

If we sum the two integrals, ∫ (
f +

1
f

)
dµ = 2

Then we can rewrite this result as,

∫ {(
f +

1
f

)
1{f 6=1} + 2 · 1{f=1}

}
dµ = 2

=⇒
∫ (

f +
1
f
− 2

)
1{f 6=1} dµ = 0

=⇒ µ(
(

f +
1
f
− 2

)
1{f 6=1} = 0) = 1 =⇒ µ(1{f 6=1} = 0) = 1

¦

Proposition D.3 Let {FL,R,T } be a censoring model and W̃ be a distribution function such

that ∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
PfW (bl, rc) = 1 for any t > 0 such that dW̃ (t) 6= 0

Then,

dFL1,R1,T1(l, r, t) =
dW̃ (t) dFL,R(l, r)

PfW (bl, rc)

defines a non–informative (constant–sum) censoring model which is indistinguishable from

{FL,R,T }.
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Proof:

This proof is analogous to the one in Proposition 3.4. First we prove that dFL1,R1,T1 defines

a probability measure such that T ∈ bL,Rc with probability one,

∫ ∫ ∫

{(l,r,t):t∈bl,rc}
dFL1,R1,T1(l, r, t)

=
∫ +∞

0
dW̃ (t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
PfW (bl, rc)

)
=

∫ +∞

0
dW̃ (t) = 1.

Then, we look at the marginal laws of the new censoring model,

dW1(t) =
∫ ∫

{(l,r):t∈bl,rc}
dFL1,R1,T1(l, r, t)

= dW̃ (t)

(∫ ∫

{(l,r):t∈bl,rc}

dFL1,R1(l, r)
PfW (bl, rc)

)
= dW̃ (t)

and

dFL1,R1(l, r) =
∫

{t:t∈bl,rc}
dFL1,R1,T1(l, r, t) =

= dFL,R(l, r)

(∫

{t:t∈bl,rc}

dW̃ (t)
PfW (bl, rc)

)
= dFL,R(l, r).

Thus, we have just showed that the censoring model FL1,R1,T1 is indistinguishable from FL,R,T .

It just remains to see that FL1,R1|T1
satisfies equation (2) for any (l, r, t) such that t ∈ bl, rc

and dW1(t) 6= 0,

dFL1,R1|T1
(l, r|t) =

dFL1,R1,T1(l, r, t)
dW1(t)

=
dW̃ (t) dFL,R(l, r)

PfW (bl, rc) dW̃ (t)
=

dFL,R(l, r)
PfW (bl, rc) =

dFL1,R1(l, r)
P (T1 ∈ bl, rc) .

¦

Proposition D.4 If {FL,R,T } is a censoring model such that L, R and T have the same finite

supports, then equation (5) has always solution.
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Proof:

Let I = {x1, . . . , xm} be the finite support of L, R and T . Consider the problem of maxi-

mization of

l(w) = l(w1, . . . , wm) =
∑

l,r∈I

ln(PW (bl, rc))dFL,R(l, r)

over wi = PW (xi) ≥ 0 with
m∑

i=1

wi = 1.

Notice that the directional derivative of this function di(w) which considers the effect of

increasing the ith component by a small positive amount ε and divides all the components by

1 + ε in order to keep the sum equal to 1 corresponds to

di(w) = lim
ε→0

∂

∂ε
l

(
w1

1 + ε
, . . . ,

wi + ε

1 + ε
, . . . ,

wm

1 + ε

)
=

=
∂l(w)
∂wi

−
m∑

j=1

wj
∂l(w)
∂wj

=
∑
l,r∈I

xi∈bl,rc

dFL,R(l, r)
PW (bl, rc) −

m∑

j=1

wj

∑
l,r∈I

xj∈bl,rc

dFL,R(l, r)
PW (bl, rc) =

=
∑
l,r∈I

xi∈bl,rc

dFL,R(l, r)
PW (bl, rc) −

∑

l,r∈I

dFL,R(l, r)
∑

j=1,...,m
xj∈bl,rc

wj

PW (bl, rc) =

=
∑
l,r∈I

xi∈bl,rc

dFL,R(l, r)
PW (bl, rc) −

∑

l,r∈I

dFL,R(l, r) =
∑
l,r∈I

xi∈bl,rc

dFL,R(l, r)
PW (bl, rc) − 1

Then the concavity of the function l(w) ensures a solution and the Kuhn–Tucker conditions

are necessary and sufficient for optimality, that is, w̃ is a maximum if and only if, for every i,

either di(w̃) = 0 or di(w̃) ≤ 0 when w̃i = 0. Henceforth, it is obvious that the maximum W̃

is a solution of equation (5).

¦
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