
HAL Id: hal-00001525
https://hal.archives-ouvertes.fr/hal-00001525v2

Submitted on 7 May 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Approximation Algorithms for Scheduling
Malleable Tasks

Grégory Mounié, Christophe Rapine, Denis Trystram

To cite this version:
Grégory Mounié, Christophe Rapine, Denis Trystram. Efficient Approximation Algorithms for
Scheduling Malleable Tasks. 1999, pp.23-32. �hal-00001525v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50515453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00001525v2
https://hal.archives-ouvertes.fr

Efficient Approximation Algorithms for Scheduling Malleable Tasks

Gregory Mounie, Christophe Rapine and Denis Trystram
IMAG, Domaine Universitaire BP 53

38041 Grenoble cedex, France�
Gregory.Mounie, Christophe.Rapine, Denis.Trystram � @imag.fr

��������	�
���
A malleable task is a computational unit which may be executed
on any arbitrary number of processors, its execution time depend-
ing on the amount of resources allotted to it. According to the
standard behavior of parallel applications, we assume that the mal-
leable tasks are monotonic, i.e. that the execution time is decreas-
ing with the number of processors while the computational work
increases. This paper presents a new approach for scheduling a set
of independent malleable tasks which leads to a worst case guar-
antee of � � for the minimization of the parallel execution time, or
makespan. It improves all other existing practical results includ-
ing the two-phases method introduced by Turek et al. The main
idea is to transfer the difficulty of a two phases method from the
scheduling part to the allotment selection. We show how to formu-
late this last problem as a knapsack optimization problem. Then,
the scheduling problem is solved by a dual-approximation which
leads to a simple structure of two consecutive shelves.

� ��� ��	������������� �
Until recently, the standard communication model for scheduling
the tasks of a parallel program has been the delay model introduced
by Rayward-Smith [16] for UET-UCT task graphs (unit execution
times and unit communication times). In this model, the commu-
nications between tasks allocated to different processors are con-
sidered explicitly by the transmission time of a message between
them. The communication times between tasks within the same
processor are neglected. The general scheduling problem is known
to be NP-hard in the strong sense [16]. However, efficient heuris-
tics have been developed for coarse grain computations, i.e. when
communication times are smaller than computation times. Unfor-
tunately, this hypothesis is not often valid in practice. Only a few
results have been obtained under the delay model for large commu-
nication times. A good alternative to take into account the com-

munications is to consider the malleable tasks model where the
communication times are considered implicitly by a function rep-
resenting the parallel execution time with the penalty due to the
management of the parallelism. As detailed later, this function will
be considered as monotonic, i.e. decreasing with the number of
processors, at least until a certain threshold. More formally, a mal-
leable task is a computational unit which may be executed in par-
allel with a running time depending on the number of processors
allotted to it. Some authors recently used this model for paralleliz-
ing actual applications. We are currently developing such a code
for the simulation of the circulations in the Atlantic Ocean [3]. In
this paper, we are interested in scheduling a set of � independent
malleable tasks on a multiprocessor system composed by � identi-
cal processors. Our main contribution is to propose a new efficient
heuristic for the case of independent malleable tasks with a perfor-
mance guarantee of � � . This bound improves all existing practical
results for solving this problem.

Several methods have been proposed for the scheduling of mal-
leable tasks. Considering the processors as a continuous resource,
Prasanna et al. [14, 15] developed an approach based on optimal
control theory leading to optimal solution for general task graphs
but with an identical particular speedup function for the tasks. How-
ever, the discrete problem remains NP-hard, even for independent
tasks, as a generalization of the classical multiprocessors schedul-
ing problem [7]. Jansen & Porkolab [10] proposed a fully approx-
imable scheme based on an Integer Linear Programming formula-
tion for scheduling independent malleable tasks. Although linear
in the number of tasks the complexity of the scheme is quite large,
regardless the accuracy of the approximation, due to an exponential
factor in the number of processors. Thus, even if the result has an
important theoretical interest, the heuristic can not really be used in
practice.

We are interested in efficient, low complexity, heuristics with
good performance guarantee. Most existing works are based on a
two-phases approach proposed by Turek, Wolf and Yu [18]. The
basic idea is to select in a first step an allotment (the number of
processors allotted to each task), and then solve the resulting non-
malleable scheduling problem. As far as the makespan criterion
is concerned, this latter problem is identical to a � -dimensional
strip-packing problem [2, 5]. It is clear that applying an approx-
imation of guarantee � for the non-malleable problem on the al-
lotment of an optimal solution provides the same guarantee � for
the malleable problem. Turek, Wolf and Yu established the elegant
result that the allotment selection can be done in polynomial time:
any � -approximation algorithm of complexity �! #"� #��$%�'&(& for the
non-malleable problem can be adapted into a � -approximation al-
gorithm of complexity �) #�'�*"� #�+$%�,&(& for the malleable problem.

Ludwig [12] improved the complexity of the allotment selection.
Based on this result and on the 2-dimensional strip-packing algo-
rithm of guarantee � proposed � for � -dimensional strip-packing by
Steinberg [17], he presented an heuristic of guarantee � for the mal-
leable scheduling problem. This is the best efficient solution known
at this time. Note that this solution considers any speedup function.
Again, our solution needs the monotonic assumption which is quite
reasonable in Parallel Processing.

We also adopt a two phases approach, but contrary to the method
of Turek et al. where the complexity basically comes from the
scheduling phase, which is a

���
-hard problem, we concentrate

on the first phase, the allotment selection, polynomial in Turek’s
approach. More precisely, we propose to select an allotment such
that we do not have to solve a general strip-packing instance, but a
simpler one where better performance guarantees can be ensured.
Our second idea is that scheduling (or packing) tasks executed on
one processor is “easier” than scheduling parallel tasks, i.e. better
guarantees can be obtained. Based on this two ideas we propose
mainly two approaches depending on an instance parameter ��� .
If this parameter happens to be small, we show in section 3 that
list scheduling algorithms perform quite well. In fact our allot-
ment selection ensures a relatively small number of parallel tasks
to schedule, while sequential tasks are easily managed. In the case
of a large instance parameter � � , we decide to fix the structure of
the scheduling we want to obtain. The allotment selection is then
reformulated as a Knapsack optimization problem.

The paper is organized as follows: some basic assumptions and
simple notations are presented in section 2. In particular, the mono-
tonic assumptions will be presented and discussed. Section 3 aims
to describe the list scheduling approach and its performance anal-
ysis. Finally, we present the most original part of the heuristics,
based on a Knapsack approximation for the allotment selection.

� � 	
	�� �� � �
�	(��	 �
The model of computation is such that a processor can compute
only one task at a time. We assume also that the number of pro-
cessors allocated to a task is constant during all its execution. We
search for non-preemptive and contiguous � schedules; their perfor-
mance guarantee are established in respect to an optimal solution,
possibly preemptive and not contiguous. We consider an instance
composed of � malleable tasks ��� � $������ $������ to be scheduled on� identical processors. The execution time of the malleable task��� when allotted to � processors will be denoted by ���! " . Its com-
putational area is as usual the time space product ��� �! " .

�$#�� % � � �*� � � � �
���� ��'&������ � �
In this paper, we assume that the tasks are monotonic, namely al-
locating more processors to a task decreases its execution time and
increases its computational area. From the parallel computing point
of view, this monotonic assumptions may be interpreted by the
well-known Brent’s lemma [4]. It states that the execution of mal-
leable tasks achieves some speedups, but not super-linear speedups.
Due to cache effects or the scheduling anomalies described by Gra-
ham [8], this behavior can not be asserted for all the applications.
However, it is a quite reasonable hypothesis, expected for most ac-
tual parallel applications, mainly due to the communication over-
head. In the following we will use the notion of dual approximation
algorithm described in section 2.2. Let (be a real number. Since)

Although better asymptotic performanceguarantees exist [1], this bound of * con-
stitutes the best currently known absolute performance guarantee.+

The processors alloted to a task have consecutive indices, which limits the com-
munication overhead inside a task.

we will “guess” the value of the optimal makespan, we introduce
the minimal number of processors (denoted �-,�) for executing task��� in time less than (. We now state two fundamental properties
which are two direct consequences of the monotonic hypothesis.

Property 1 If ��,� exists, then � �! "�. /�0 " . /�1 �"�. / (.

This property is immediate simply writing the decreasing of the
computational area. Indeed we have � ,� � �! " . /'2 �� ,�4365 &�� �7 " . / 1 � .
Notice simply that by definition of ��,� we have � �7 " . / 1 � 0 (.

Property 2 Assume that a schedule of length lower than (exists.
Then for any allotment 89� such that 8��;:<��,� for any = , we have> ���? � 8 � � �! @ / : �A(
If a schedule of length lower than (exists, clearly any task �B� is
allocated to at least �-,� processors. Due to the monotony of the
computational area, the allotment using the 8C� ’s has a total area
lower than the one of the � � ’s. However this last area is bounded
by �D(, since the makespan of the schedule does not exceed (.

�$#�� E ��
��
�&�&�	��GF �H
������ �
���I*�*	(� �KJ-
We use in this paper the dual approximation methods introduced
by Hochbaum & Shmoys [9]. Given a real number (, a dual � -
approximation:

- either delivers a schedule of length at most �L(,
- or conclude that no schedule of length lower than (exists.

By dichotomic search, a � -dual approximation of time complexity�) #"+ #�*&(& can be converted into a � 5NM � 1�O & -approximation of
complexity �! QP "� #�*&(& for any integer P .

R S � ���UT���JG	 ����� � � I �4��I*�*	(� �KJ- �
In a two phases approach for the malleable scheduling (MS) prob-
lem, we have both to select an allotment and to solve the result-
ing non malleable scheduling problem (NMS) problem where the
number of processors allocated to any task is fixed. As far as the
makespan criterion is considered, the NMS problem is equivalent
to a � -dimensional strip-packing problem. Hence, to improve the
guarantee of � of Ludwig [12], it seems necessary to improve the
absolute performance guarantee of the strip-packing. However, un-
der the monotonic hypothesis, we show that the allotment selection
can be done in such a way we do not have to solve a general in-
stance of the strip-packing problem, but a simpler one, for which
list scheduling algorithms perform quite well. Graham & John-
son [6] proved a general performance guarantee of �WV for any list
scheduling algorithm for a set of independent tasks sharing V dif-
ferent resources. It leads to a worst case performance of � for the
NMS problem, since the processors are the only (discrete) resource
of the system. To improve this guarantee, we propose below a sim-
ple dual algorithm of guarantee � 3 �WX #� M�5 & .
R$#�� %
����Y	
*����	 S ��� � �4��I � 	(� ��J� #
Without loss of generality assume that a schedule of length lower
than 5 exists for the malleable instance. Then the following two
phases malleable list algorithm builds up a schedule of length at
most � 3 �WX #� MZ5 & . Fig. 1 depicts the topical structure.

[Allotment: Select for any task ��� its minimal number of pro-
cessors ��� to assert an execution time lower than � 3 �\ �^] �Q_ .[Scheduling: Apply a list algorithm to the resulting non-malleable
instance ordered by decreasing value of the sequential exe-
cution times.

���������	��
���

���������	��
���

�

�

Figure 1: A malleable list schedule. The parallel tasks are repre-
sented in dark grey.

Theorem 1 The Malleable List Algorithm is a � 3 ��] � dual ap-
proximation for the MS problem.

Proof. The proof is based on the property that the parallel tasks, i.e.
the tasks alloted to � or more processors, are all executed in paral-
lel at time � in the schedule. This property meets our philosophy of
avoiding a general strip-packing instance, as the remaining tasks of
the instance constitute a classical multiprocessor scheduling prob-
lem of sequential tasks. Let � be the total area of the parallel tasks
of the allotment, and ��� the sum of their number of processors.
Notice that these tasks are scheduled first in the algorithm. Due to
property 1 any parallel task has an execution time strictly greater
than 543 ��] � . Thus � 0 543 ��^] � &(��� . Moreover property 2
implies that � 2 � . It results that ����� � M 5 . Thus the set
of the parallel tasks needs at most the whole resources for their
execution. We denote by ��� � 3 ��� the remaining number
of unoccupied processors after their allocation. Only sequential
tasks remain to schedule, the scheduling algorithm is identical to
the well-known LPT [8] heuristic. Consider the allocation of a se-
quential task � of duration � . We establish that � finishes before
time � 3 ��] � . To avoid trivial cases, we can assume that at least �
sequential tasks have yet been allocated. We write the area � under
the form #� 3 � & 3 V , with V': #� 3 � &�X #� M 5 & . Then the
total area of the sequential tasks is bounded by � M V . Let � be the
starting time of � . We write then the conservation of the sequential
task area, using the LPT rules. We both have ��� M � : � M V (all �
processors are fully occupied until time �) and �� M 5 &�� : � M V (at
least � sequential tasks have been allocated before �). It implies
that:

� M � : � M V
� M 5 3 5

� &�� : � M V
�

� �
� MZ5

Since V : #� 3 �*&�X #� M 5 & , we obtain:

� M � : � �� M 5 &
�� #� M 5 &

� �
� M 5 : � �

� M 5
which proves that � finishes before time � 3 ��] � . �
Notice that if the number of processors is at most , the algorithm
has a performance guarantee lower than � � . To extent this result,
we detail in the next section another list scheduling algorithm.

R$#�� ! JG	 �
 � � � ���
�� � �����
��YI*�*	(����J�
Consider an instance of the MS problem and assume that it admits
a schedule of length at most (, we take without loss of generality
equal to 5 . Our goal is to construct a � � dual approximation for

a given real number �#"%$ � X'& $ 5 $. Compared to the previous mal-
leable list algorithm, a more natural approach is to select for any
task the minimal number of processors, (called the canonical num-
ber) such that its execution does not exceed 5 . Notice that in the
optimal scheduling each task is executed on at least its canonical
number of processors. In addition, the decreasing actual execution
time of the tasks is a more natural ordering of the list than their
sequential length. We consider the following dual algorithm:

Canonical List Algorithm. Assume that a schedule of length lower
than 5 exists for the considered malleable instance.

[Allotment: Select for any task �-� its canonical number of
processors ��� defined as the minimal number of processors
to assert an execution time lower than 5 .

[Scheduling: Apply a list scheduling algorithm to the result-
ing non-malleable instance ordered by decreasing value of
the execution times �
�! " / .

In case of tie between the processors, the task is scheduled to the
leftmost ones, if starting at time � , and to the rightmost otherwise.
This convention asserts the contiguous nature of the schedule. To
get a guarantee � � for any real number �(")$ � X�& $ 5 $ we will need
an additional hypothesis. By the way to avoid the complexity of a
general strip-packing problem, the scheduling structure of the par-
allel tasks, i.e. the tasks allocated to � or more processors in the
allotment, must remain simple. Typically we hope for a 2-shelves
like structure for these tasks. More precisely we call first level the
set of tasks allocated at time � ; the second level corresponds to the
tasks scheduled on top of a task of the first level, see fig 2. We
would like to get the following property, for some ��"%$ � X'& $ 5 $:
Property 3 In the schedule any task of the first two levels finishes
before time � � .

We show in appendix that there exists a constant �+* depending
only of � such that for any number of processors � 2 � * the
property 3 is verified by the scheduling. For ��� � � X � , this min-
imal number of processors is precisely , , i.e. the first value of �
for which the guarantee of the previous malleable list algorithm be-
comes greater than � � . However to assert this property a given real� must satisfy the additional hypothesis � � : ��� . � � represents
a peculiar area depending only on the canonical allotment of the
instance. To define the quantity � � assume that the tasks are in-
dexed by decreasing value of their canonical execution time ���7 " / .
We adopt the following definition:

Definition 1 If P is the minimal index such that
> O�H? � � � 2 � , we

define the canonical � -area � � as:

� � �
O-
�H? �

���� � �! " / 3 � O "/.& M � � O "'.

To visualize this area, imagine an execution of the canonical
list algorithm on an unbounded number of processors. � � then
corresponds to the (fractional) area computed by the first � pro-
cessors. Since under the hypothesis on � � the property 3 holds,
we can focus on the tasks scheduled outside the first two levels.
The lemma 1 shows that these tasks are “small” sequential task,
and complete before � X � :

Lemma 1 Any task that is not scheduled in the first two levels is
sequential, with an execution time lower than 5 X � , and finishes be-
fore time � X � .

Proof. The proof of the sequential nature of the task are quite sim-
ple arguments of work conservation, and have been put in appendix.
We present here the proof that such a sequential task � , of execu-
tion time �N: 5 X � , completes before time � X � . To be able to use
an argument on the surface of the schedule, we need to bound quite
precisely its different idle periods. Since outside the first two levels
tasks are sequential and scheduled as soon as possible, idle time
can appear only between these two levels, like between two stairs
badly adjusted, as depicted in figure 2. Consider an connected idle

First level

Second level

�

��� "

���

�
�	�

Figure 2: The idle areas in the schedule

area � occuring on a set of �� contiguous processors
� �

. The im-
portant point is that only one task � � " can upper delimit this idle
area, see fig 2. This task belongs to the second level and is executed
at least on � � M 5 processors, involving (property 1) an execution
time � � " greater than ���X ��� M65 & 0 5 X � . Let denote by � � the
total area computed by the processors of

� �
. We particularize the

idle area � that may happen on the last processors. Indeed if � is
different from � , the processors of

� �
compute on the first level

tasks of height at least � � " . It involves that � � 2 �C� � "���� 2 �� .
For the last idle area � , we can only assert that any processor

of
���

compute on the first level tasks of height at least � , the length
of the current task to schedule. Hence we get � � 2 � � " M ��&H��� .
Nevertheless task � � " can not complete before time �W� � " since it
lays on a task of the first level greater than it. It results that � � is
also greater than �C� � " � � 3 � . Noticing that the area of � is lower
than � � � , otherwise � could be executed inside this area, we get
the following bound:

� � 2������ � �C� � " 3 � $�� � " M �
� � � 2 � � 3 �
Consider now the total area of the scheduling, and let � � $9� ��� ,�� ,� �] � ��� be the different idle areas. Clearly the sets

� � / are two
by two disjoint and their union is a strict subset of the processors.
The task � being sequential, it is allocated to the less loaded pro-
cessor. Let � be its starting time in the schedule; by definition any
processor computes at least an area � in the schedule. Since we es-
tablished that the execution time � of � is lower than 5 X � , to prove
the lemma we just need to show that necessarily � : 5 . Writing
down the area of the schedule we have:

� 2
�-
��? �

� � / M � � M #� 3
�-
��? �

�� / 3 � � & � M �

Using � � M � 2 � � and � � / 2 � � / , we get:

� 3
�-
��? �

��� / 2 #� 3
�] �-
�H? �

��� / & �

Since not all processors can have an idle period, the quantity � 3> ���? � ��� / is strictly positive, which implies that � is lower than 5 .
It involves that � completes in the schedule before time � X � . �

From property 3 and lemma 1, we can summarize the results of
this part with the following theorem:

Theorem 2 For any instance admitting an optimal schedule with
makespan lower than 5 on � 2 , processors, such that the canon-
ical � -area � � is lower than � � X � � , the canonical list algo-
rithm delivers a schedule of length at most � � , in time complexity�) #������� �,& .
 � � 	"!$# �*	� ���
 ��� � � �%# �KJ�	 �
��'&�
���� �*�� 	 � � &�	������Y	�
The idea of this section is to focus on the allotment selection prob-
lem rather than on the scheduling part. Consider an instance of
the MS problem for which a schedule of length at most 5 exists
on � processors. We consider a real number � "%$ �� $ 5 $. If the
area � � defined in the canonical allotment is small enough, i.e.��� : �] *� � , then for a value of � sufficiently large, the list
algorithm of the previous section provides a schedule of makespan
lower than 5�M � . We propose in this section a new scheduling algo-
rithm in the case where the condition on ��� is not fulfilled, which
also delivers a solution of length at most 5 M � . Our basic idea is
to impose the solution to have a very simple scheduling structure,
namely composed by two shelves of length 5 and � . In other words,
instead of looking for one general scheduling, i.e. solving a strip-
packing problem, we will split the instance in two subsets of tasks,
each one admitting a “trivial” scheduling of length lower than 5
and � respectively. The complexity of the two phases algorithms is
then taken back from the scheduling phases to the choice of such a
partition of the tasks. We will show in the following that this choice
can be naturally formulated as a Knapsack optimization problem.
First, we will precisely describe the structure of the scheduling we
want to obtain.

 #�� ! JG	 ����JG	 ����� � � I � � 	(� �� � 	
	
Recall that ��� denotes the canonical number of processors of task� � , defined as the minimal amount of resources needed by � � to be
executed in time lower than 5 . Basically we want a two shelves
structure, with a first shelf of length at most 5 and a second shelf
of length at most � , cf fig. 4. The tasks whose canonical execu-
tion time is greater than � play, here, a particular role, since they
require strictly more processors than their canonical number to be
allocated in the second shelf. To obtain a reasonable scheduling
structure we also particularize the “small” tasks with a canonical
execution time lower than 5 X � , by allocating them to the shelves
using a one dimensional packing algorithm, for instance the First
Fit algorithm [11]. Notice that due to property 1, these small tasks
are sequential, and thus using a one-dimensional packing algorithm
makes sense. Hence we partition the tasks into � subsets (� , (� and() (cf fig. 3), each one associated with an integer value * � as de-
fined below:

(� ���9� �,+ � �7 " / 0 �;� with * � �
>.-) � � 3 �

(� ���9� �,+ � �7 " / "0/ �� $ � $�� with * � �
> - + � �() ���9� �,+ � �7 " / � �� � with *1) �3242 5 $5() &

�)
� +

���

� �

� +�)�

�

��� *
�

	 + 	
�)��
Work area :

Figure 3: The initial canonical allocation

In this definition, 242 Q(�$5(& refers to the number of processors
needed by the First Fit algorithm to pack a set of tasks (under
a time deadline (. Although better approximation algorithms are
known for the one-dimensional packing problem, we just need the
immediate property that if 242 Q(�$ (& 0 5 then the total amount of
instructions

> - �
� of (is greater than ,� 242 Q(�$5(& .With these notations we can build a schedule with a makespan
lower than 5 , but using � M * � M * � M *1) processors, see figure 3.
By definition the area of the schedule on the � first processors
is equal to �-� . By analogy with the * ’s, we write respectively the
canonical area of (� , (� and () as � � M V � , V � and V) . We consider
now the following scheduling structure, we called a ��� -schedule:
for a task ��� , we denote by 89� its minimal number of processors
needed for its execution to be lower than � . Notice that if ��� does
not belong to (� , we simply have 8 � � � � by definition of (� and() . A schedule is then a ��� -schedule if:[The first shelf only contains tasks of (� allotted to their canon-

ical number of processors.
[Any task ��� of the second shelf is allocated to 89� processors;

tasks of () are allocated to the shelf using the First Fit algo-
rithm.

In other word we decide to consider the schedules where all the
tasks of (� and () are allocated in the second shelf. We denote
by � � � * � the number of processors needed to schedule the tasks
of (� , and by �) � 242 #� $5() & the analogous quantity for () , as
depicted in figure 4. We set � � � � 3 � � 3 ��) the number of
idle remaining processors in the second shelf after (� and () have
been allocated. A ��� -schedule is clearly entirely defined by the
subset � of (� not scheduled in the first shelf. For the schedule to
be feasible this subset � must both have the sum of its ��� ’s greater
than * � , and the sum of its 8�� ’s lower than � � , which ensures that
the other tasks of (� can be scheduled in the first shelf, while the
tasks of � , (� and () can be scheduled all together in the second
shelf. We hence introduce the set � *�� �

-)
defined by �+"�� *

iff: -
� ��� 2 * � and

-
� 8��$: � 3 � � 3 �)

Clearly there exists a bijection between the ��� -schedules and the
set � * . Our problem consists in proving that the set � * is not
empty, i.e. that the problem instance admits a ��� -schedule, and
in finding one of its element. Before reformulating the search of
an element of � * as a Knapsack problem, we introduce the notion
of inefficiency factor, which permits us to keep a control on the
optimal solution.

� + ���

�

�

�

� �
�����)

� +

�)

Figure 4: An example of ��� -schedule

 #�� � � 	�� � ��	 � � �"!
��� � 	
The inefficiency factor represents the factor of expansion of the
total area of a set of tasks while using parallel resources. We take
the canonical area of the tasks as the reference, since any task in the
schedule, and in the optimal one, is allotted at least to its canonical
number of processors. For a task ��� allocated to # processors, we
define its inefficiency factor $ �7 % as $ �7 % �&#�� �7 % X �� � � �! " / & . In the
following we will denote for short by ' � �<� � � �! " / the canonical
area of task ��� . More generally for a set of tasks ��� � $������ $ � O �
allotted respectively to # � $������%$
O processors, we set:

$)(+*) , , ,H * .�- �
O-
� #��Q�
�7 % / X

O-
� '�� �

O-
��? �

$��! % / '��
' � M ����� M ' O

This inefficiency factor allows us to characterize our instance (.
Consider an optimal solution . , whose makespan is hence by hy-
pothesis lower than 5 . In this schedule any task is alloted to at least
its canonical number of processors to complete before time 5 . It
involves that not all the tasks of (� can be scheduled on different
processors if * � happens to be strictly positive, since they would
need in this situation at least � M * � processors. Notice that for
two tasks to be scheduled to the same processor, at least one of
them must have an execution time lower than 5 X � in . .

Definition 2 We denote by / the set of tasks of (� executed in time
less than 5 X � in an optimal schedule of reference . , and by $)0 its
inefficiency factor in . .

Our idea is to bound this quantity $10 according to � and the
canonical areas of the sets (� , (� and () . Recall that we have
written respectively this three canonical areas as � � M V � , V � andV) . By definition � � � � M V � M V � M V) . Due to the previous
arguments, the sum of the canonical number of processors � � on /
must be greater than * � . We denote by 2 and 3 respectively the
canonical area of / and its actual area in the schedule. In addition
let � and 42 be respectively the canonical area of the instance and
of the complementary set of / . By definition we have 2 M 42(��� .
The makespan of schedule . being lower than 5 , the monotony
implies that 42 M 3 : � . By definition of the inefficiency factor
we also have: $50#�63 X72 : #� 3 � M 2�&�X
2 . This expression is

a decreasing function of 2 . However, for . to be feasible, we must
have 2 2 V � . Hence we get:

$ 0 : � 3 � M V �V � : � 3 ��� 3 V � 3 V)
V �

Since we assume that ��� 2 5�M � &�X � � , we can bound $ 0 by the
following expression:

$ 0 : 5 3 ��&(� 3 �CV � 3 �WV)
�WV � #�R ! �*	� �-��
������ �
��)
�� �
�&��
 �%& &�	������Y	�

Recall that our goal is to exhibit a ��� -schedule for the malleable
instance, or equivalently to show that the set � * is not empty and
to find one of its element. Consider the following optimization
problem:

 � & : Find � � (� with
>�� 8�� : � 3 � � 3 �) $

maximizing
> � � � �

Clearly if � *����� , an optimal solution of � & belongs to it. The
problem � & is a well-known Knapsack problem: given � items,
each of one with a weight 	 � and a profit
 � , and a knapsack with
a total weight capacity � , find a subset of the tasks which can be
contained by the knapsack and with the maximal profit. This prob-
lem is

���
-hard [7], hence solving it in an exact way seems to be

unrealistic if
� �� ���

. However the Knapsack is not a
���

-hard
problem in the strong sense: it admits [13] a pseudo-polynomial
algorithm that solves it exactly in time complexity �! #��� & . For
our problem, � plays the part of the weight capacity � . Hence for
“reasonable” values of the number of processors, an element of � *
can be found solving exactly � & in time �) #�*�'& . Nevertheless
if the different time values � �7 % & %�? � � are given by functions of
size bounded in �! ��� � �'& , the instance of the malleable problem
is of size �! #����� � �'& , which makes the search of a solution of � *
exponential if � happens to belong to �) ����� �'& . Notice that the
assumption �� � does not “simplify” the malleable problem,
contrary to the classical model where each task can be schedule
only on one processor at a time. For this reason we propose a poly-
nomial search algorithm of an element of � * whatever the size of
the instance, based on the fully approximation scheme of the Knap-
sack problem rather than on its pseudo-polynomial algorithm.

 # �4&�&�	��GF �H
 ��	 ���B� ������� � �%#���JG	�� �
�&���
��%& & 	�������	G
To obtain a solution of problem � & in polynomial time, we use
the fully approximable scheme [13] for the Knapsack problem: for
any � 0 � , a solution within a factor 5 M � & of the optimal weight
value can be found in time complexity �) #�) X�� & . Unfortunately
what we are interested in is to find an element of � * , and we have
no guarantee that an approximate solution of � & belongs to this
set, contrary to the optimal solution. For this reason we introduce
a second (dual) Knapsack problem:

 � � & : Find � � (� with
> � ��� 2 * � $

minimizing
> � 8��
�

Our basic idea is that, for a real number � * sufficiently small and
depending only on � , a 5 M � *& -approximation either of � & or � � & will deliver a solution belonging to � * . At this point we need
to take advantage of the assumption that a schedule of length lower
than 5 exists for the instance. This is done after introducing a sub-
set � * of � * which uses the inefficiency factor $10 of the optimal
solution. Recall that ' � denotes the canonical area � � � � " / of task��� ; in the same way we denote �K� its work area when executed on8K� processors.

Definition 3 We define � * as the set of elements � of � * satisfying
the additional condition:

-
� ���$: $ 0

-
� '��

Basically the elements of � * are reasonable guests to belong to
the set / of the tasks of the optimal scheduling executed in time
less than 5 X � . We now state the following lemma:

Lemma 2 For all � 2 � � 3'5 , if ��*����� , then a solution � "�� *
can be found in time �) � ���� & , where � * is a strictly positive real
number depending only on � .

Proof. Consider a real number � 0 � . We denote respectively by*�� and � ��� the optimal value of the objective functions of � & and � � & . If we have *�� 2 5 M � &5* � , clearly a 5 M � & -approximation
of � & provides an element of � * . Otherwise assume that we have*��+� 5 M � &5* � . Our idea is to show that in this case we have
� ��� : � � X 54M � & , which ensures that a 54M � & -approximation
of � � & delivers an element of � * . Since we suppose that � * is
not empty, we can choose one of its element � . Because of the
optimality of * � we have:

* � : -
� � � : * � � 5 M � &5* �

To get a majoration of � ��� , notice that for any subset of tasks of (� ,
and in particular for � , we have

> � '�� : > � ��� and *�
> � 8�� :> � � � . Using the fact that � " � * , and hence

> � � � :�$ 0 > � ' � ,
we get:

-
� 8���� $ 0 �

�
-
� ��� : $ 0 �

� 5 M � &5* �
Clearly � belongs to the space of solutions of � � & . Reporting the
majoration of $ 0 established in section 4.2, and using the fact that�%* � :ZV � , we get:

� ��� � 5^M � & 5 3 ��&(� 3 �WV � 3 �CV)
� �

The function "+ #� &�� 5 3 ��&�X � � is decreasing and equals to 5
for ��"! # 1 �� . For a sufficiently small constant � * 0 � , we can
impose that "� #��& 5 M � * & � : 5 . Hence for any �4:�� * we have:

 5 M � &+� ��� � � 3 � 5^M � * & �
� � V � M V) &

To conclude, we explicit the relation between ��� and V9� . For the
set (� we clearly have �� � � � V � : � � � . For the set () we also
have the relation �GX ���) � V) : � �) if �) 0 5 due to the packing
properties. Hence, we have �WV � X �L� 0 � � X ��� 0 � � and �CV)KX �L� 0�) X � 0 �) , which gives:

 5^M � &+� ��� � � 3 � � 3 �) � � �
which is the desired majoration. Notice that in case where �)4: 5 ,
choosing � * such that "� #��& 5 M � * & � : � 1 �� instead of 5 allows
us to conclude in the same way. �

For � 2 � � 3 5 , and � 2 , , it imposes a value of $ * :
�L� ���� , which gives a complexity multiplying factor only of �L� 5 in
the approximation of the knapsack problem.

 #�� � F � ����	 � � 	 �%#�
 ����� � ��JG	 ���-��	
In order to conclude that our algorithm based on the Knapsack is a
� � -approximation for any instance of the malleable problem sat-
isfying � � 0 !)� � , we have to establish the existence of a ��� -
schedule for such an instance. In the previous section we showed
indeed that if a ��� -schedule exists, solving the Knapsack problem � & finds an element of the set � * . We will prove in the following
that for any value of � 2 � � 365 , the set � * � � * has at least
one element, except in some particular simple cases detailed below,
which allows us to use the approximation scheme of section 4.4.

Trivial solutions. We start by particularizing some “trivial” solu-
tions; basically it may happen that picking up one task of (� , all the
other tasks (of (� , (� and ()) can be scheduled in the first shelf,
while this task enters the second shelf, i.e. requires at most � pro-
cessors to be executed in time less than � . We introduce 4� * as the

� �� +

�

�)

�

��� �

� /

� + � �

Figure 5: An example of a “trivial” solution of 4� * .

set of such tasks of (� . Hence � � " (� belongs to 4� * if it fulfills
the two following conditions:

� � 2 * � M * � M *1) and 8 � : � �
In addition we add to 4� * all the one element sets belonging to � * .
Clearly if 4� * is not empty, one of its elements can be found in lin-
ear time in a preliminary phases of the algorithm, leading directly
to a schedule of makespan at most 5 M � .

2K-schedule solutions. Consider now, once again, the subset / of
tasks of (� executed in time less than 5 X � in an optimal schedule
. . We denote by � the sum of the canonical number of processors
of the tasks of / , and 8 the analogous quantity when individually
alloted to 8�� processors. Our goal is to show that for � 2 � � 3 5 ,
either a subset of / belongs to � * , either one of its elements is
a trivial solution of 4� * . As noticed in section 4.2, we must have� 2 * � for . to be feasible. By definition we also have

>
0 � � :

$ 0 > 0 ' � . Hence if 8 happens to be smaller than � 3 � � 3 ��) ,
we can conclude that / belongs to � * . This is certainly the case if
the quantity 3 � >

0 � � is bounded by *
� #� 3 � � 3 �) & ; indeed

for any task � � " / its number of processors 8 � is greater than � ,
which implies that 3 0 >

0 *
� 8�� �

*
� 8 due to property 1.

Thus assume in the following that we have 3 0 *
� #� 3 � � 3�) & � 3	� . Once again the master piece of the proof is the “control”

of this optimal solution through its expansion factor $ 0 . Intuitively
a relatively important area of the tasks have been splashed in the
optimal schedule to be executed in time less that 5 X � . Since the
total canonical area of the instance is yet closed to � (recall that� � 0 5NM � &�X � �), a huge splashed area 3 involves a small
expansion factor $ 0 for the schedule . to be feasible. We use the
minoration 3 0 3
� to compute a more accurate upper bound for
$ 0 . From section 4.2 we have $ 0 :�� : �� 1 �] � . This function
is decreasing with 3 , and hence maximized for 3 � 3�� . Using
the different relations between the areas V � and their corresponding
number of processors, we get the majoration:

$ 0 : �
 #� � 3 5 &(� M �WV � 3 � #� 3 � � 3 ��)�&

This more accurate majoration of the inefficiency factor $)0 allows
to establish the following lemma 3, which states that if the canoni-
cal area of a subset of (� is bounded by � * � , then the condition on
the 8�� ’s is fulfilled:

Lemma 3 For all � 2 � � 3 5 and all set � � (� ,� >�� ' � : � * � 3 5> � � � :�$ 0 > � '���� - � 8K� : � 3 � � 3 �)

Proof. Consider a subset � satisfying the conditions of the lemma.
Since the relation

> � 8�� : � * $ 0 > � ��� holds, using the new ma-
joration we have explicited for $ 0 , we get:

-
� 8�� : �

�
�

 #� � 3 5 &(� M �CV � 3 � #��* � 3 5 & #� 3 � � 3 �) &

Noticing that �%* � : V � , we obtain the majoration
> � 8�� :� V � &+� � , where � V � & is defined by:

� V � &�� �
�

�WV � 3 �
 #� � 3 5 &(� M �CV � 3 �

This expression being an increasing function of V � , and V � being
bounded by � 1 *� � by our assumption on the area � � , we sim-
ply have to prove that (5 3 � &(� 3 ��&�X #��� 3 ��& is lower than
5 . Noticing that this expression is itself bounded by 5 3 ��&�X � for
any � 2 5 X � , the majoration holds if � verifies � � M � � 3 � 2 � .
one can check easily that the polynomial function � � M ��� 3 �
is positive for any real number greater than its root ��� � � � 3A5 . �

To conclude the proof of the existence of a ��� -schedule, we
define the series ��� �6/�� ���������4� � �����!� � where �N�] � is
obtained from � � removing the task of greatest inefficiency factor.
Notice that by construction the inefficiency factors $�" / form a non-
increasing series, and hence are all bounded by $!"$# �6$ 0 . It im-
plies that any set �N� fulfills the second conditions of lemma 3. No-
tice also that the canonical area of � � decreases with = , down to � .
Hence certainly one of the � � fulfills both conditions of lemma 3,
and reveals to be a good candidate to belong to � * . This is stated
by the following lemma:

Lemma 4 For all � 2 � � 3 5 , if the set of the trivial solutions 4� *
is empty, then it exits an index = such that � � " ��* .
Proof. We prove the reverse implication of the lemma. Hence
suppose that there does not exist any index in the series such that�4��" � * . Due to our previous remark, as a corollary of lemma 3,
it implies that the canonical area of any � � is either greater than

� � � � �
� �
���

���] ���� 1 � ��� � �
/

Figure 6: Representation of the series � � &�� .

� * � or lower than * � 3 5 . Let � be the last index such that the
area of � � is greater than � * � , and � � be the task removed from��� to ���] � . Necessarily ��� as a canonical area V�� greater than* � , which implies that its canonical number of processors is also
greater than * � . Hence to prove that ��� belongs to the set of the
trivial solutions 4� * , we just have to check that the minimal num-
ber 8�� to execute it in time less than � is lower than � . If 8	� 0 � �
then, by monotony, the corresponding execution area 3
� is greater
than � Q8 � 3 5 & 0 � � � . We use this majoration to determine once
more a new bound on $50 . We denote by 3�� and V�� the area and
canonical area of the set � �] � . Since the area of / is greater than
3 � M 3 � , we get:

3 � M 3 �
� 3 � M 3� M 3�� 2 $50 2 $ "�� � 3 � M 3 �

V�� M V��
As 3�� 0 � � � and �+� � � M V � M V � M V) , we have:

V � 2 �� 3 5� � M V � M V � M V) 3 � � � 3 � ��)
To show that � � " 4� * , we just need to prove that V � 2 * � M * � M*) , or equivalently that the expression �#�<V	� 3 * � M * � M *) &
is positive. We use the inequalities �%* � � V � , �� * � � V � and*
� ��)4:ZV) .) We obtain:

� 2 � � 3 5
� � 3 5� 3 5 &�V � 3 #� � M 5 &�V � 3 � V)

Due to our hypothesis on � � , we have V � M V � M V) : 5G3 ��&(� X � .
The coefficient of the factors shows that the second term of the
inequality is minimized taking V � � V � ��� and V) � 5G3 ��&(� X � .
We get:

� 2 �� 3 5� � 3 �
� 5 3 � &(� � �� 3 � &(�

For � 2 �CX � , this last expression is positive, which concludes the
proof of lemma 4. � Grouping the results of lemma 2 and lemma 4,
and taking � � � � 3 5 , we can state our final result:

Theorem 3 For any instance admitting an optimal schedule lower
than 5 , such that the canonical � -area ��� is greater than � � X � � ,
a schedule of length at most � � can be found in time complexity�) ����� � �*� $ �) � M � ��� � �'& , depending on the knapsack resolu-
tion algorithm (exact or approximate) used.

� � � � ��� ����� � I�� 	G
 	 &�
We have presented in this paper a new algorithm for scheduling a
set of independent malleable tasks. It improves significantly the
best bound known at this time, with a performance guarantee of
�
The inequality

� + ������	
� is not valid if ����������� �
. However for ����� it

is easy to check in this case that is positive.

� � . According to the value of the parameter ��� , depending on
the canonical allotment of the instance, we solve the problem ei-
ther using the canonical list scheduling algorithm in �! #� ����� �,&
or a knapsack based algorithm for the selection of the allotment in�) ����� � �*� $ �) M ����� � � � & . We would like to emphasis that the
guarantee of � � is a worst case performance bound not only on the
instance, but also its parameters. Indeed the list scheduling algo-
rithm has a guarantee � � �� whatever the value of � � . The restric-
tion to get a better performance guarantee is that for �B� � � � X � �
the particular ��� -schedule structure is not asserted to exist for the
knapsack based algorithm. Nevertheless we have no doubt that
in practise most instances admit such a schedule for better perfor-
mance ratios than � � . Its existence can always be checked in time�) #�'�*& solving the corresponding knapsackproblem. Experiments
are currently under progress to assert the good average behavior of
our heuristics.

The natural continuation of this work is to study the schedul-
ing of precedence graphs structures. Prasanna et al. [15] proved for
the continuous version of the malleable tasks that the scheduling
of general tasks graph has a very pleasant dominant structure: the
number of processors allotted to the tasks can be seen as a flow
through the precedence constraints of the graph. Such a structure
permits to adapt an approximation for the independent malleable
tasks to general precedence tasks graphs. We are also currently
working on tree structures which occur on an actual parallel appli-
cation for the simulation of the circulation in Atlantic ocean.

� �%& � �%!U�Y	 ��I� 	 � �
The authors would like to thank an anonymous referee for his help-
ful remarks to improve the presentation of the paper.

� 	'#�	 	
	 � � 	 �
[1] B.S. Baker, D.J. Brown, and H.P. Katseff. A 5/4 algorithm for

two dimensional packing. Journal of Algorithms, 2:348–368,
1981.

[2] R. Baker, E.G. Coffman, and R.L. Rivest. Orthogonal
packings in two dimensions. SIAM Journal on Computing,
9(4):846–855, 1980.

[3] E. Blayo, L. Debreu, G. Mounie, and D. Trystram. Dy-
namic load balancing for ocean circulation model with adap-
tive meshing. submitted to EuroPar’99, 1999.

[4] R. Brent. The Parallel Evaluation of Arithmetic Expressions
in Logarithmic Time, pages 83–102. Academic Press, New
York, 1973.

[5] E.G. Coffman, M.R. Garey, D.S. Johnson, and R.E. Tar-
jan. Performance bounds for level-oriented two-dimensional
packing algorithms. SIAM Journal on Computing, 9(4):808–
826, 1980.

[6] M.R. Garey and D.S. Johnson. Complexity results for multi-
processor scheduling under resource constraints. SIAM Jour-
nal on Computing, 4, 1975.

[7] M.R. Garey and D.S. Johnson. Computers and intractability:
A guide to the theory of NP-completeness. W.H. Freeman,
New York, 1979.

[8] R.L. Graham. Bounds on multiprocessing timing anoma-
lies. SIAM Journal on Applied Mathematics, 17(2):416–429,
March 1969.

[9] D.S. Hochbaum and D.B. Shmoys. Using dual approximation
algorithms for scheduling problems: theoretical and practical
results. Journal of the ACM, 34:144–162, 1987.

[10] K. Jansen and L. Porkolab. Linear time approximation
schemes for scheduling problems. In 10th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 99, pages 490–
498, 1999.

[11] D.S. Jonhson, A. Demers, J.D. Ullman, M.R. Garey, and R.L.
Graham. Worst-case performance bounds for simple one-
dimensional packing algorithms. SIAM Journal on Comput-
ing, 3(4):299–329, December 1974.

[12] W. T. Ludwig. Algorithms for scheduling malleable and non-
malleable parallel tasks. PhD thesis, University of Wisconsin
- Madison, Department of Computer Sciences, 1995.

[13] C.H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[14] G. N. S. Prasanna and B. R. Musicus. Generalised multipro-
cessor scheduling using optimal control. In � rd Annual ACM
Symposium on Parallel Algorithms and Architectures, pages
216–228. ACM, 1991.

[15] G.N.S. Prasanna and B.R. Musicus. The optimal control ap-
proach to generalized multiprocessor scheduling. Algorith-
mica, 15(1):17–49, 1996.

[16] V.J. Rayward-Smith. UET scheduling with unit interproces-
sor communication delays. Discrete Applied Mathematics,
18:55–71, 1987.

[17] A. Steinberg. A strip-packing algorithm with absolute per-
formance bound � . SIAM Journal on Computing, 26(2):401–
409, 1997.

[18] J. Turek, J. Wolf, and P. Yu. Approximate algorithms for
scheduling parallelizable tasks. In & th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 323–
332, 1992.

Appendix
� � 	����%# ��#N&�	���&-	 	��7� R
We present in appendix the proof of the property 3 of the canonical
list algorithm, stating that any task of the second level completes
before time � � . Recall that � is an arbitrary real number of $ � X'& $ 5 $.
For the property to be valid, we need the additional hypothesis that
the area �-� is smaller than ��� , refer to section 3.2 for all the
definitions. We prove in the following the existence of a constant� * such that for any number of processors � 2 � * the property
holds.

Without loss of generality we can assume that the tasks are in-
dexed by their decreasing execution times � �7 " / . Due to the hypoth-
esis on � � , the first task, and the following ones, that can not be
allocated to the first level of the algorithm has an execution time
lower than � . Consider the allocation of a task � � on the second
level, and let � � be the task of the first level on which it is sched-
uled. For short we denote respectively by

�
and � their execution

times (on their canonical numbers of processors). To prove the
property 3 we have to establish that � M � : � � . Recall that we
have

� : � , hence to avoid trivial cases we can assume that � 0 � .

We denote by 8 the number of unoccupied processors on the first
level at this step of the algorithm, cf figure 7. We also introduce �
as the number of remaining processors on the right of � � . The con-
servation of the work (property 2) and the condition on � � provide
us the following system equation on � and

�
:

 ���@�&
� #� 3 �*&�� M � � : ��� with

� :�� : 5 #� 3 �*&�� M #��� M 5 3 8 & � : �
To get a reasonable value for � * , we slightly modify our algo-

���������������������������
	�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�
��������������

���

��������������������

� � � �

�

�

�

Figure 7: Allocation of a task at the second level.

rithm. Let 8 * be the greatest integer such that 8 * X Q8 * M65 & � � .
On one hand, the monotony (property 1) of the tasks imposes that
a task of duration lower than � is allotted to at most 8 * M 5 proces-
sors. On the other hand allotting only 48 * ��� @ �] ��

�
on such a task

may at most double its execution time, hence still upper bounded
by � � . Consider the situation when at the first allocation of a task� on the second level, at least 48 * processors remain unoccupied on
the first level. We then decide to allocate in first place such a task �
on 48�* processors on the first level. As we noticed task � completes
before time � � , and necessarily after time 5 . We call this case a
reallocation. The rest of the tasks is then allocated using the list
algorithm on � � � � 3 48 * processors. For this new problem the
area of the tasks is bounded by � � , since � completes after time 5 .
In particular the lemma 1 still holds since only surface arguments
are used. However the condition on � � # is a bit different from the
one on �-� . Let

� � : � be the execution time of � on its canonical
number of processors, and

� : � � the maximal execution time of
the following tasks in the ordered list. Then we have:

� �� : � � 3 8 � � M 48 � : � � � M #� 3 � ��& 48 *
Instead of �� @ & we hence consider the following system for the al-
location of a task of length

�
on the second level:

 �� @ @ # & � #� 3 �*&�� M � � : ��� M #� 3 � ��&
8 � #� 3 �*&�� M #��� MZ5 3 8 & � : �
with

� : � � $ � :�� : 5 . Here 8 � plays the part of the (eventual)
reallocated processors. Notice that if 8 ��� � , we have the initial
inequality system �� @ & where no task is reallocated. From this sys-
tem we will exhibit a constant � Q8$�8 � & such that for � 0 � Q8$�8 � &
any pair of solution �� $ � & verifies � M � : � � . Writing � under
the form � � M P , the first inequality gives:

�� �� M � & : � �9� M 8 � #� 3 � ��& M P #� 3 � & �
If we assume that P 2 8 � , since � 3 � is a negative quantity,
we have �� �� M � & : � �9� M 8 � #� � 3 � 3 � & , which implies

 �� M 8 � & �� M � & : � �� M 8 � &(� . Hence � 2 ��� M 8 � (i.e. P 2 8 �)
involves our result � M � : � � . Assume on the contrary that� : � � M 8 � , and consider the second inequality. If the condition� 3 �': ��� M 5 3 8 is satisfied, a simple exchange argument on
the surface shows that � M � is maximized for � � 5 . We have
then: � : �

��� MZ5 3 8
To ensure that

� : � � 3�5 (i.e. � M � : � �), it is sufficient to
have:

� 2 � � 3 5
&� 3 � Q8 3 5 &

Since we are under the hypothesis � : � � M 8 � , the condition on� is satisfied for � greater than:

� � Q8$ 8 � &�� &� 3 �
&� 3 � Q8 3 5 & M 8 � 3 5 �

Suppose now that we are in the other case where � 3 � 2��� M6543 8 . We write � under the form � � � � 3 8 M65 M P
with P 2 � . Recall that we have the additional hypothesis that��� M 8 � 3 5 2 � . It involves that P : 8 � M 8 3 � 3 � ; in particular8 � must be greater than � for this case to be considered. The second
inequality of the system gives:

 #� � 3 8 M 5 & �� M � & : � � 3 8 M 5 & M P 5 3 ��& �
To ensure that � M � is lower than � � it is sufficient to have:

 5 3 ��&
8 � M �L8 3 5 : � � 3 � &H���
This condition is fulfilled, since we have � : ��� M 8 � , if � is
greater than:

� � Q8 $�8 � &�� �
�� 3 � Q8 � M �98 3 �& �

It results that we can assert � M � : � � for all � 2 � Q8 $ 8 ��& �
� ��� � � � Q8 $ 8 � & $ � � Q8$�8 ��&�� , the second term � � existing only for8 � 2 � .

In our algorithm, if no task is reallocated (8 � � �), we must
verify the system ��L@ � & with 8 � 48 * , i.e. with possibly 48 * 3 5 idle
processors at the first level. On the contrary if a task is reallocated,
we have 8 � � 48 * , and at most 8�* 3 48�* processors can remain unoc-
cupied on the first level. We must then satisfy the system ���@ ��@ � & ,
with 8 : 8�* 3 48 * . Hence we set

� * � ����� � � � 48 * 3 5 $ �& $ � Q8 * 3 48 * $ 48 * &��
The figure 8 shows the value of � * according to � . For � �

� � X � , the value we are interested in, the previous expression gives
� � * � � �

. However we can refine our analysis to prove that the
property holds for � � , . In this case, since the canonical number
of processors of task is at most , , we have to consider 8 * � , in-
volving 48 * � & . In the expression of � * , the values � � � $ � & and� � #� $ && are lower than , ; the last value � � Q8$ && being strictly
greater than , only for 8 2 � . Hence the only case when � � * � is
greater than , (in fact equals to

�
) happens for a task � reallocated

to & processors remaining � processors idle on the first level. How-
ever at least one task have been scheduled before the reallocation
of � . If � processors remain idle this task occupy only one proces-
sor, while � was initially alloted to , processors (otherwise � can
be scheduled without reallocation). Due to property 1 it involves a
canonical execution time of � greater than X , , and so a work area
for the two tasks altogether greater than

��� X ,�� �� � .

0.75 0.80 0.85 0.90 0.95

5

10

15

20

M
in

im
al

 n
um

be
r

of
 p

ro
ce

ss
or

s

Value of m

sqrt(3)/2

m=8

Figure 8: Value of � � * � in function of � .

The total area of the remaining tasks being less than �L� 5�� , the
property 1 shows that any of these tasks is necessarily allotted to
one processor, with an execution time off course lower than ��� 5	� .
Clearly they are all scheduled by the LPT rules on the two remain-
ing processors and complete before time 5 . It permits us to con-
clude that the schedule length can not exceed � � .

 � 	����%# �%# ��	�'
 �
We present here the proof of the lemma 1 of the section 3.2. Con-
sider a task �-� scheduled outside the first two levels by the canon-
ical list algorithm. We establish here that � � is then a sequential
task (alloted to one processor) of execution time lower than 5 X � .
For short we denote by � and � respectively its canonical number
of processor � � and its execution time � �7 " / . We start by proving
that necessarily all processors compute a task of the two first lev-
els, i.e. that these levels are totally occupied. We denote by 8
and 8 � the number of processors unoccupied respectively on the
first and the second level of the schedule when task ��� is allocated.
The only reason for �-� not to be allocated in this two levels is thatP�� ��� � ��8 $ 8�� � is strictly lower than � . Using the property 1, the
execution time � of � � is then greater than P�X QP M65 & and its area
greater than P . However the total area of the tasks yet allocated to
the first two levels is at most #� � 3 P &�� . Writing down the prop-
erty 2, we get:

� 2 #� � 3 �9P &�� M P 0 �9P
P M�5 #� 3 P & M P

It implies that 5 0 �9P* QP MZ5 & , and so P � � . It shows that the first
two levels are totally occupied. Rewriting the property on the sur-
face, we have � 2 #� � M�5 &�� . It involves that the execution time
of the task is strictly lower than 5 X � , and thus, due to monotony, it
is executed on only one processor.

