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Abstract: Digit Vector Automata (DVA) provide a natural symbolic representation for regularsets of integer vectors encoded as strings of digit vectors (least signi�cant digit �rst). We provethat the minimal DVA that represents a Presburger-de�nable set is structurally Presburger-de�nable:that means, the DVA obtained by modifying the initial state and the set of �nal states represents aPresburger-de�nable set.Key-words: Automata, Presburger arithmetic, Semi-linear set, Symbolic representation
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Structure des automates Presburger-dé�nissablesRésumé : Les automates �nis permettent de représenter symboliquement des ensembles in�nis devecteurs d'entiers, décomposés comme des mots de vecteurs de chi�res. On montre que l'automate min-imal représentant un ensemble Presburger-dé�nissable, est structurellement Presburger-dé�nissable:c'est à dire, que les automates obtenus en changeant l'état initial et les états �naux représentent desensembles Presburger-dé�nissables.Mots clés : Automate, Arithmétique de Presburger, Ensemble semilinéaire, Représentation symbol-ique



Structural Presburger-de�nable Digit Vector Automata 3Presburger arithmetic [21] is a decidable logic used in a large range of applications. Di�erenttechniques [11] and tools have been developed for manipulating the Presburger-de�nable sets (the setsof integer vectors satisfying a Presburger formula): by working directly on the Presburger-formulas(implemented in Omega [20]), by using semi-linear sets [12] (implemented in Brain [22]), or by usingDigit Vector Automata (DVA) that represent regular sets of integer vectors encoded as strings of digitvectors, least or most signi�cant digit �rst [23, 7] (implemented in Fast [1], Lash [15] and CSL-ALV[2]). Presburger-formulas and semi-linear sets lack canonicity: there does not exist a natural way tocanonically represent a set. As a direct consequence, a set that possesses a simple representation couldunfortunately be represented in an unduly complicated way. Moreover, deciding if a given vector ofintegers is in a given set, is at least NP-hard [4, 12]. On the other hand, a minimization procedurefor automata provides a canonical representation for DVA-de�nable sets (a set represented by a DVA).That means, the DVA that represents a given set only depends on the set and not on the way we havecomputed it. For this reason, DVA are well adapted for applications that require a lot of Booleanmanipulations like model-checking.Recently, the DVA obtained by modifying the set of �nal states, has provided some applications.First, we have proved that modifying the set of �nal states of a DVA, provides some simple setsthat can be used for deciding in polynomial time if a DVA is Presburger-de�nable (that means, theDVA represents a Presburger-de�nable set) [17]. Recall that the previous algorithm for deciding thisproperty, was given by Muchnik in 1991 [18, 19, 8], and works in quadruply-exponential time. Second,Bartzis and Bultan [3] provided a widening operator for DVA in order to enforce the convergence ofthe incrementally computed DVA, during the reachability state space exploration of an in�nite statesystem. This operator is obtained by modifying the set of �nal states of Presburger-de�nable DVA,but they do not prove that the obtained DVA remain Presburger-de�nable.However, from practical and theoretical point of view, working only with Presburger-de�nable DVAhas some advantages. First the manipulation complexity (boolean operations and variable elimination)is at most 3-exponential time for Presburger-de�nable DVA (see [13, 17]) and non-elementary for generalDVA (see [5]). Second, we can compute in polynomial time, a Presburger-formula that de�nes the setrepresented by a Presburger-de�nable DVA. Then this formula can be used in other tools like Omega.In this paper, we introduce a new automata-based representation for regular subsets of Zm, calledthe digit Vector automata (DVA). Even if DVA are very similar to other automata-based representations[6, 7, 8], it is the �rst automata-based representation for any regular subsets of Zm, that is bothcanonical (there exists a unique minimal DVA that represents a given set X) and stable by modifyingthe initial state (this stability provides a natural way for associating a subset of Zm to any state ofthe DVA). Moreover, we prove that the minimal DVA that represents a Presburger-de�nable set isstructurally Presburger-de�nable: that means, any DVA obtained by modifying the initial state andthe set of �nal states, is Presburger-de�nable.1 NotationsWe denote by Z and Nnf0g respectively the set of integers and non-negative integers. The set Xmis called the set of vectors with m 2 N components in a set X. Given an integer i 2 f1; : : : ;mgand a vector x 2 Xm, the i-th component of x is written x[i] 2 X. We denote by e0 the vectore0 = (0; : : : ; 0). Vectors x+ y and t:x are de�ned by (x + y)[i] = (x[i]) + (y[i]) and (t:x)[i] = t:(x[i])for any i 2 f1; : : : ;mg, x; y 2 Qm, t 2 Q. We denote by hx; yi =Pmi=1 x[i]:y[i], the dot product of twovectors x; y 2 Qm. Given a functions f : X ! Y , A � X and B � Y , we de�ne f(A) = ff(a); a 2 Agand f�1(B) = fx 2 X; f(x) 2 Bg.Given a non-empty �nite alphabet �, we denote by �+ the set of non-empty words over � and wedenote by � the empty word. As usual �� denotes the set of words �+[f�g. A subset L � �� is calleda language. The concatenation of two words �1 and �2 (resp. two languages L1 and L2) is denoted by�1:�2 (resp. L1:L2 = f�1:�2; (�1; �2) 2 L1 � L2g). Given a word � 2 ��, we denote by (�i)i2N thePI n�1718



4 Jérôme Lerouxsequence of words de�ned by the induction �0 = � and �i+1 = �i:�. We denote by �� the language�� = f�i; i 2 Ng. The length of a word � is denoted by j�j 2 N. For any non-empty word � 2 �+, wedenote by �[1], ..., �[j�j] the elements in � such that � = �[1] : : : �[j�j].2 Digit Vector AutomataIn this section, the Digit Vector Automata (DVA) representation, a state-based representation of setof integer vectors, is presented. The sets obtained by moving the initial state and modifying the set of�nal states of a DVA are respectively characterized in sections 2.2 and 2.3.2.1 Digit vector decompositionLet us consider an integer r � 2 called the basis of decomposition and the set of digits �r = f0; : : : ; r�1g. In this section, we study the least signi�cant digit �rst decomposition of an integer vector in Zminto a word of digit vectors in (�mr )�. This decomposition can be easily obtained by considering thesequence (r;�)�2(�mr )� of functions r;� : Zm ! Zm uniquely de�ned by the following equalities [16]:(r;b(x) = r:x+ b (b; x) 2 �mr � Zmr;�1:�2 = r;�1 � r;�2 (�1; �2) 2 (�mr )� � (�mr )�Assume that the dimension m is equal to 1 and consider a couple (�; s) 2 ��r � Sr where Sr isthe set of sign digits Sr = f0; r � 1g. The following equality is called the least signi�cant digit �rstdecomposition with 2-complement :r;� � s1� r� = (Pj�ji=1 ri�1�[i] 2 N if s = 0Pj�ji=1 ri�1�[i] � rj�j 2 ZnN if s = r � 1The previous decomposition shows intuitively that s = 0 correspond to the non-negative sign digitwhereas s = r � 1 corresponds to the negative one.For a general dimension m � 1, let us consider the function �r : (�mr )� � Smr ! Zm de�ned by thefollowing equality: �r(�; s) = r;� � s1� r�A couple (�; s) 2 (�mr )� � Smr such that x = �r(�; s) is called a r-decomposition of x 2 Zm. Remarkthat any x 2 Zm owns at least one r-decomposition.Function �r naturally associate to any language L � (�mr )� � Smr a subset X = �r(L) of Zm.Remark however that there exists some languages L1, L2 and L such that L1 \L2 = L and such that�r(L1) \ �r(L2) 6= �r(L). For instance, consider L1 = f(�; 0)g, L2 = f(0; 0)g and L = ;. Such a sidee�ect is due to the fact that an integer vector x 2 Zm does not have a unique r-decomposition. Thefollowing lemma characterizes r-decompositions associated to the same vector.Lemma 1 Two r-decompositions (�1; s1) and (�2; s2) are associated to the same vector if and only ifs1 = s2 and �1:s�1 \ �2:s�2 6= ;.Proof : Let us �rst remark that for any sign digit vector s 2 Smr , we have r;s( s1�r ) = s1�r . Inparticular, we have �r(�:sk; s) = �r(�; s) for any word � 2 (�mr )� and for any k 2 N. This equalityis well known when s = 0 and it just means that adding extra zero digits to the least signi�cant digit�rst decomposition of a non-negative integer does not change its value.Assume �rst that (�1; s1) and (�2; s2) are such that s1 = s2 and �1:s�1 \�2:s�2 6= ;, and let us provethat �r(�1; s1) = �r(�2; s2). There exist k1; k2 2 N such that �1:sk11 = �2:sk22 . In particular, from theprevious paragraph we deduce �r(�1; s1) = �r(�1:sk11 ; s1) = �r(�2:sk22 ; s2) = �r(�2; s2). Irisa



Structural Presburger-de�nable Digit Vector Automata 5Next, assume that �r(�1; s1) = �r(�2; s2) and let us prove that s1 = s2 and �1:s�1 \ �2:s�2 6= ;.As the manipulated structures are de�ned component wise, we can assume without loss of generalitythat the dimension m is equal to 1. Remark that the sign digits s1 and s2 must be equal. In fact,otherwise, there exists i1; i2 2 f1; 2g such that si1 = 0 and si2 = r � 1 and in this case we have shownthat �r(�i1 ; si1) 2 N and �r(�i2 ; si2) 2 ZnN which is in contradiction with �r(�1; s1) = �r(�2; s2). Letus consider k1; k2 2 N such that the words w1 = �1:sk11 and w2 = �2:sk22 have the same length denotedby k 2 N. The �rst paragraph shows that �r(w1; s1) = �r(w2; s2). As s1 = s2, we deduce the followingequality: kXi=1 ri�1:(w1[i]� w2[i]) = 0Assume by contradiction that w1 6= w2. In this case k 2 Nnf0g and there exists a maximal (for �)j 2 f1; : : : ; kg such that w1[j] 6= w2[j]. We have:jw1[i]� w2[i]j8><>:= 0 if i > j� 1 if i = j� r � 1 if i < jWe deduce the following bound::j kXi=1 ri�1:(w1[i]� w2[i])j = jrj :(w1[j]� w2[j]) + j�1Xi=1 ri�1:(w1[i]� w2[i])j� jrj :(w1[j]� w2[j])j � j�1Xi=1 jri�1:(w1[i]� w2[i])j� rj � j�1Xi=1 ri�1:(r � 1)= 1We obtain a contradiction. We deduce that w1 = w2 and in particular the word w = w1 = w2 is in�1:s�1 \ �2:s�2. Q.E.DA language L � (�mr )� � Smr is said saturated [14] if for any (�; s) 2 (�mr )� � Smr , we have(�; s) 2 L if and only if (�:s; s) 2 L. Previous lemma 1 shows that a language L is saturated if andonly if there exists X � Zm such that L = ��1r (X). In particular, we deduce that the side e�ect
L1 \ L2 = L and �r(L1) \ �2(L2) 6= �r(L) is no longer true for saturated language. In fact, forany saturated languages L1;L2 and for any # 2 f[;\; n;�g, the language L1#L2 is saturated and�r(L1)#�r(L2) = �r(L1#L2).We are interested in associating to a saturated language a state-based symbolic representation, calledDigit Vector Automata.De�nition 1 (Digit Vector Automata) A Digit Vector Automaton (DVA) A is a tuple A =(Q;�mr ; �; q0; F0) where:� Q is a non-empty �nite set of states.� � : Q� �mr ! Q is the transition function.� q0 2 Q is the initial state.� F0 � Q � Smr is the set of �nal states such that (q; s) 2 F0 if and only if (q0; s) 2 F0 for everyq0 = �(q; s).PI n�1718



6 Jérôme Leroux
q0;8<: (0; 0; 0);(0; r � 1; r � 1);(r � 1; 0; r � 1)9=; q1;8<:(r � 1; r � 1; r � 1);(r � 1; 0; 0);(0; r � 1; 0) 9=;

q?; ;
b[1] + b[2] = b[3] + rb[1] + b[2] + 1 = b[3]

b[1] + b[2] = b[3] b[1] + b[2] + 1 = b[3] + r
b[1] + b[2] + 1 62 b[3] + f0; rgb[1] + b[2] 62 b[3] + f0; rg �mr

Figure 1: DVA AX representing X = fx 2 Z3; x[1] + x[2] = x[3]g
q0;8<: (0; 0);(r � 1; 0);(r � 1; r � 1)9=; q1; f(r � 1; 0)gb[1] > b[2]b[1] < b[2]

b[1] � b[2] b[1] � b[2]
Figure 2: DVA AX representing X = fx 2 Z2; x[1] � x[2]g

q0; Smr�mr q0; ;�mr
Figure 3: On the left, DVA AZm. On the right, DVA A; Irisa



Structural Presburger-de�nable Digit Vector Automata 7As usual, function � is uniquely extended over Q�(�mr )� by �(q; �1:�2) = �(�(q; �1); �2). Moreover,a tuple (q; �; q0) such that q0 = �(q; �) is denoted by q ��! q0 or just q ! q0, and called a path from q toq0 labeled by �. Such a state q0 is said reachable from q (when q = q0, we just say that q0 is reachable).The language L(A) recognized by a DVA A is de�ned by L(A) = f(�; s) 2 (�mr )� �Smr ; (�(q0; �); s) 2 F0g. Thanks to the condition (q; s) 2 F0 if and only if (q0; s) 2 F0 for everyq s�! q0, the language L(A) is saturated. The set X = �r(L(A)) � Zm is called the set represented bythe DVA A.
q0; f(0; 0)g q1;� (0; 0);(r � 1; 0)�

q?; ;�mr
b[1] 6= 0 ^ b[2] = 1b[1] = 0 ^ b[2] = 0 b[2] = 0

b[2] 6= 0(:(b[1] = 0 ^ b[2] = 0))^(:(b[1] 6= 0 ^ b[2] = 1))
Figure 4: DVA AX representing X = fx 2 Z2; Vr(x[1]) = x[2]gSets represented by DVA correspond to the r-de�nable sets. Recall ([8]) that a set X � Zm issaid r-de�nable if it can be de�ned in the �rst order theory FO (Z;+;�; Vr) where Vr : Z ! Z is ther-valuation function de�ned by Vr(0) = 0 and Vr(x) is the greatest power of r that divides x 2 Znf0g(�gure 4). Recall also that a Number Decision Diagram (NDD) [6, 24] that represents a set X � Zm, isan automaton over �mr that recognizes the language f�:s; (�; s) 2 ��1r (X)g. We do not consider NDDin this paper because the automaton obtained from a NDD by replacing the initial state by an otherstate is not a NDD in general (it does not recognizes a language of the form f�:s; (�; s) 2 ��1r (X 0)gwhere X 0 � Zm). However, DVA and NDD have slightly the same structure and we can easily computea NDD from a DVA and conversely, that represents the same set X. In particular, we directly deducefrom [8] and this remark, the following corollary 1Corollary 1 A set X � Zm can be represented by a DVA if and only if it is r-de�nable.Remark 1 As in the NDD case, DVA can be e�ciently manipulated by reprensenting the set fb 2�mr ; q b�! q0g and fs 2 Smr ; (q; s) 2 F0g by some Binary Decision Diagrams (BDD) [9] over thealphabet �r (and not the exponential one �mr ).2.2 Moving the initial stateThe DVA obtained from a DVA A by replacing the initial state q0 by a state q 2 Q is denoted by

Aq. To simplify notations, when a set X � Zm is implicitly represented by a DVA A, we denote byXq � Zm the set represented by the DVA Aq. We are going to characterize the set Xq in function ofX. As an application, we show that any r-de�nable set X � Zm is represented by a unique minimalDVA.Proposition 1 For any path q ��! q0 in a DVA A that represents a set X, we have Xq0 = �1r;�(Xq).PI n�1718



8 Jérôme LerouxProof : Without loss of generality, we can restrict our proof to a path q0 ��! q in a DVA A thatrepresents a set X. Let us consider an integer vector x 2 Xq. There exists a path q w�! q0 and s 2 Smrsuch that x = �r(w; s) and (q0; s) 2 F0. We deduce that we have a path q0 �:w��! q0 with (q0; s) 2 F0.Therefore �r(�:w; s) 2 X. From �r(�:w; s) = r;�(�r(w; s)) = r;�(x), we deduce that x 2 �1r;�(X)and we have proved the inclusion Xq � �1r;�(X). For the converse inclusion, consider an integer vectorx 2 �1r;�(X). As r;�(x) 2 X, there exists a path q0 w�! q0 and s 2 Smr such that r;�(x) = �r(w; s) and(q; s) 2 F0. Moreover, as x 2 Zm, there exists (w0; s0) 2 (�mr )� � Smr such that x = �r(w0; s0). Fromthe equality r;�(x) = �r(w; s), we deduce that �r(�:w0; s0) = �r(w; s). Lemma 1 shows that s0 = sand there exists k1; k2 2 N such that �:w0:sk1 = w:sk2 . As we have a path q0 w�! q0 with (q0; s) 2 F0and A is a DVA, we deduce that q00 = �(q0; sk2) is such that (q00; s) 2 F0. From �:w0:sk1 = w:sk2 , weget that q0 �:w0:sk1�����! q00. In particular we have a path q w0:sk1����! q00 with (q00; s) 2 F0. We deduce thatx = �r(w0:sk1 ; s) 2 Xq and we have proved �1r;�(X) � Xq. Q.E.DThe previous proposition 1 proves in particular that the set QX = f�1r;�(X); � 2 (�mr )�g is �nitewhen X is r-de�nable. The minimal (for the number of states) DVA that represents a r-de�nable setX � Zm can be easily characterized by introducing the DVA AX de�ned by the set of states QX , thetransition function �X de�ned by a �X(X 0; b) = �1r;b (X 0) for any X 0 2 QX , the initial state q0;X = X,the set of �nal states F0;X = f(X 0; s) 2 QX � Smr ; s1�r 2 X 0g.A DVA A is said minimal if for any DVA A
0 that represents the same set than A, the num-ber of states jQj of A is less than or equal to the number of states jQ0j of A

0. Two DVA
A1 = (Q1;�mr ; �1; q0;1; F0;1) and A2 = (Q2;�mr ; �2; q0;2; F0;2) are said isomorph if there exists a one-to-one relation �� Q1 � Q2 such that �1(q1; b) � �2(q2; b) and fs 2 Smr ; (q1; s) 2 F0;1g = fs 2Smr ; (q2; s) 2 F0;2g for any q1 � q2, and such that q0;1 � q0;2.Theorem 1 For any r-de�nable set X � Zm, the DVA AX is the unique (up to isomorphism) minimalDVA that represents X.Proof : First remark that AX is a DVA that represents X. Next, let us consider a minimal DVA
A = (Q;�mr ; �; q0; F0) that represents X. Proposition 1 proves that there exists a function f : QX ! Qsuch that Xf(X0) = X 0 for any X 0 2 QX . In particular jQX j � jQj and as A is minimal, we havejQX j = jQj and in particular AX is also minimal. Moreover, we deduce that f is a one-to-one function.Just remark that A and AX are isomorph for the one-to-one relation �= f(X 0; f(X 0)); X 0 2 QXg.Q.E.DFrom the previous theorem 1 and corollary 1, we deduce that a set X � Zm is r-de�nable if andonly if QX = f�1r;�(X); � 2 (�mr )�g is �nite.2.3 Replacing the set of �nal statesGiven a DVA A, the class of subsets F � Q�Smr such that (q; s) 2 F if and only if (q0; s) 2 F for anytransition q s�! q0, is denoted by FA. The DVA obtained from a DVA A be replacing the set of �nalstates F0 by a set F 2 FA is denoted by A

F . To simplify notions, when a set X � Zm is implicitlyrepresented by a DVA A, we denote by XF the set represented by the DVA A
F . In this section, theset FA is geometrically characterized by introducing the notion of eyes, semi-eyes and kernel.Let us consider the equivalence relation �A over Q�Srm de�ned by (q1; s1) �A (q2; s2) if and onlyif s1 = s2 and �(q1; s�1) \ �(q2; s�2) 6= ;.An eye Y is an equivalence class for the relation �A (see �gure 5). A semi-eye is a �nite union ofeyes. Remark that the class of semi-eyes is exactly FA.Let us consider the function �e : Q� Smr ! Q� Smr de�ned by �e(q; s) = (�(q; s); s).The kernel ker(Y ) of a subset Y � Q � Smr is de�ned as ker(Y ) = Tn2N �ne (Y ) and correspondsto the greatest (for �) �x-point for �e included in Y . Remark that the kernel of any eye Y is a nonIrisa



Structural Presburger-de�nable Digit Vector Automata 9
s s ss s s sss ss ssssssss s s s ssss s s s s ssss
Figure 5: On the left an eye. On the right its kernel.empty set of the form ker(Y ) = f(q0; s); : : : ; (qn�1; s); (qn; s) = (q0; s)g such that �(qi; s) = qi+1 forany i 2 f0; : : : ; n� 1g (see �gure 5).Example 1 Let AX be the minimal DVA representing X = fx 2 Z3; x[1] + x[2] = x[3]g given in�gure 1. The eyes of A are f(q0; (0; 0))g, f(q0; (r � 1; r � 1))g, f(q1; (0; 0))g, f(q1; (r � 1; r � 1))g,f(q0; (0; r � 1)); (q1; (0; r � 1))g, and f(q0; (r � 1; 0)); (q1; (r � 1; 0))g.3 Presburger-de�nable DVAA subset X � Zm is said Presburger-de�nable if it can be de�ned by a formula in the �rst ordertheory FO (Z;+;�) (see �gure 6). A DVA A is said Presburger-de�nable if the set represented by Ais Presburger-de�nable. A set X is said structurally Presburger-de�nable if the minimal DVA A thatrepresents X, is such that A

Fq is Presburger-de�nable for any state q 2 Q and for any semi-eyes F 2 FA.Naturally, as A
F0q0 represents X, a structurally Presburger-de�nable set is Presburger-de�nable. In thissection, we prove the converse.
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Figure 6: A Presburger-de�nable set fx 2 N2; (x[1] = 2:x[2]) _ (2:x[1] = x[2])g and its minimal DVA
AX in basis r = 2.PI n�1718



10 Jérôme LerouxRemark 2 A linear set X of Zm is a set of the form X = b +Pp2P N:p where b 2 Zm is called thebasis and P � Zm is a �nite subset of Zm called the set of periods. A semi-linear set of Zm is a �niteunion of linear sets of Zm. Recall that a set X is Presburger-de�nable if and only if it is semi-linear[12].Example 2 The Presburger-de�nable set X = fx 2 N2; (x[1] = 2:x[2]) _ (2:x[1] = x[2])g and itsminimal DVA AX in basis r = 2 are given in �gure 6. Remark that the set of �nal states F0 canbe decomposed into 3 eyes Y0 = f(q0; e0)g, Y3 = f(q3; e0)g and Y4 = f(q4; e0)g. The DVA A
Y0X , A

Y3Xand A
Y4X respectively represent XY0 = fe0g, XY3 = fx 2 N2nfe0g; x[1] = 2:x[2]g and XY4 = fx 2

N2nfe0g; 2:x[1] = x[2]g.From proposition 1, we get the following corollary.Corollary 2 For any reachable state q of a Presburger-de�nable DVA A, the DVA Aq is Presburger-de�nable.Proof : Let A be a DVA that represents a Presburger-de�nable set X and consider a reachable stateq of A. There exists a path q0 ��! q. Proposition 1 proves that Xq = �1r;�(X). As X is Presburger-de�nable, there exists a Presburger-formula � that de�nes X. Now, just remark that Xq is de�ned bythe Presburger formula ��(x) := 9x0 (x0 = rj�j:x+ r;�(e0)^�(x0)). Hence Aq is Presburger-de�nable.Q.E.DA quanti�cation elimination shows that a Presburger-de�nable set X is a boolean combination in
Zm of sets of the form X = fx 2 Zm; x[i] 2 c + n:Zg where (i; c; n) 2 f1; : : : ;mg � Z � (Nnf0g),and sets of the form X = fx 2 Zm; h�; xi � cg where (�; c) 2 (Zmnf0g) � Z. The following technicallemmas 2 and 3 prove that these sets are structurally Presburger-de�nable.Lemma 2 The set X = fx 2 Zm; x[i] 2 c + n:Zg where (i; c; n) 2 f1; : : : ;mg � Z � (Nnf0g) isstructurally Presburger-de�nable.Proof : Let A be the minimal DVA that represents X = fx 2 Zm; x[i] 2 c + n:Zg. There existsa unique integer k 2 N such that n0 = nrk is a r-prime integer (an integer relatively prime with r).Let us consider the set L of words � 2 (�mr )k such that �1r;�(X) 6= ;. Remark that for any word� 2 L, we have �1r;�(X) = fx 2 Zm; rk:x[i] 2 c � r;�(e0)[i] + n:Zg. As �1r;�(X) 6= ;, we deduce thatc� = c�r;�(e0)[i]rk is an integer, and in particular we get �1r;�(X) = fx 2 Zm; x[i] 2 c� + n0:Zg. Asn0 is r-prime, there exists an integer k0 2 N such that rk0 2 1 + n0:Z. For any � 2 L and for any(w; s) 2 ((�mr )k0)� � Smr , we have:�1r;�:w(X) = �1r;w(fx 2 Zm; x[i] 2 c� + n0:Zmg)= fx 2 Zm; rjwj:x[i] + r;w(e0)[i] 2 c� + n0:Zg= fx 2 Zm; x[i] 2 c� + s1� r � �r(w; s)[i] + n0:ZgLet us consider an eye Y of A, let s 2 Smr be the unique sign vector such that Y � Q � fsg. Let usconsider the Presburger-de�nable set Zs = f�r(�; s); � 2 (�mr )�g of vectors with the same sign s.We �rst assume that Xq 6= ; for any (q; s) 2 ker(Y ). We denote by P the set of p 2 Z such thatfx 2 Zm; x[i] 2 �p+ n0:Zg 2 fXq; (q; s) 2 ker(Y )g. Remark that P is Presburger-de�nable becauseIrisa



Structural Presburger-de�nable Digit Vector Automata 11P = (P \ f0; : : : ; n0 � 1g) + n0:Z. Moreover, we have:x 2 XY () 9� 2 (�mr )� x = �r(�; s) ^ (�(q0; �); s) 2 Y() 9� 2 L 9w 2 ((�mr )k0)� x = �r(�:w; s) ^ (�(q0; �:w); s) 2 ker(Y )() 9� 2 L 9w 2 ((�mr )k0)� �x = r;�(�r(w; s))^�r(w; s)[i] 2 c� + s1�r + P() 9� 2 L 9z 2 Zs x = r;�(z) ^ z[i] 2 c� + s1� r + PWe have proved that XY is Presburger-de�nable.Finally, assume that Xq = ; for at least one (q; s) 2 ker(Y ). We have XY = ZsnSY 02CnfY gXY 0where C is the set of eyes Y 0 � Q � fsg. Remark that if there exists an eye Y 0 2 CnfY g and(q0; s) 2 ker(Y 0) such that Xq0 = ;, as A is minimal, we get q = q0 and in particular Y = Y 0 whichis impossible. From the previous paragraph, we deduce that XY 0 is Presburger-de�nable for anyY 0 2 CnfY g. Therefore XY is Presburger-de�nable. Q.E.DLemma 3 The set X = fx 2 Zm; h�; xi � cg where (�; c) 2 (Zmnf0g)�Z is structurally Presburger-de�nable.Proof : Let A be the minimal DVA that represents X = fx 2 Zm; h�; xi � cg. For any (�; s) 2(�mr )� � Smr , and for any k 2 N, we have:�1r;�:sk(X) = �x 2 Zm; ��; x� s1� r� � c� h�; �r(�; s)irj�j+k �In particular, for any (�; s) 2 (�mr )� � Smr , there exists k0 2 N such that for any integer k � k0, wehave: �1r;�:sk(X) = 8<:fx 2 Zm; D�; x� s1�rE � 0g if h�; �r(�; s)i � cfx 2 Zm; D�; x� s1�rE < 0g if h�; �r(�; s)i > cLet us consider an eye Y and the unique sign digit vector s 2 Smr such that Y � Q � fsg. Let usconsider the Presburger-de�nable set Zs = f�r(�; s); � 2 (�mr )�g of vectors with the same sign s.From the previous equality, we deduce that there exists# 2 f<;�g such that for any (q; s) 2 ker(Y )we have Xq = fx 2 Zm; D�; x� s1�rE#0g. In particular ker(Y ) is reduced to ker(Y ) = f(q; s)g. Letus consider #0 2 f�; >g such that (#;#0) 2 f(�;�); (<;>)g. We have:x 2 XY () 9� 2 (�mr )� (�(q; �:s�); s) \ ker(Y ) 6= ;() x 2 Zs ^ h�; xi#0cTherefore XY is Presburger-de�nable. Q.E.DTheorem 2 A set X is structurally Presburger-de�nable if and only if it is Presburger-de�nable.Proof : Recall that a quanti�cation elimination shows that a Presburger-de�nable set is a booleancombination in Zm of sets of the form X = fx 2 Zm; x[i] 2 c + n:Zg and sets of the formX = fx 2 Zm; h�; xi � cg. Lemmas 2 and 3 prove that these sets are structurally Presburger-de�nable. Moreover, as the complement of a structurally Presburger-de�nable set remains struc-turally Presburger-de�nable, it is su�cient to prove that the intersection X = X1 \X2 of two struc-turally Presburger-de�nable sets X1 and X2 remains structurally Presburger de�nable. Let A1, A2PI n�1718



12 Jérôme Lerouxand A
0 be the minimal DVA that represent respectively X1, X2 and X. Remark that X is repre-sented by the Cartesian product A = (Q1�Q2;�mr ; �; q0; F0) where �((q1; q2); b) = (�1(q1; b); �2(q2; b)),q0 = (q1;0; q2;0), and F0 = F1;0 � F2;0. Remark that for any eye Y of the DVA A

0, there exists a �nitesequence (Y1;i; Y2;i)i2I where Y1;i and Y2;i are some eyes of respectivelly A1 and A2, such that XY isrepresented by the DVA A

Si2I Y1;i�Y2;i . Therefore XY = Si2I XY11 \XY22 is Presburger-de�nable. Inparticular X is structurally Presburger-de�nable. We are done. Q.E.D4 Future workWe have proved that any Presburger-de�nable set is structurally Presburger-de�nable. In particular,the widening operator for DVA introduced by Bartzis and Bultan provides Presburger-de�nable DVAfrom the widening of two Presburger-de�nable DVA. We are interested in extending the geometricalwidening operators known for the closed convex polyhedrons [10], to the Presburger-de�nable DVA.References[1] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. FAST: Fast Acceleration ofSymbolic Transition systems. In Proc. 15th Int. Conf. Computer Aided Veri�cation (CAV'2003),Boulder, CO, USA, July 2003, volume 2725 of Lecture Notes in Computer Science, pages 118�121.Springer, 2003.[2] Constantinos Bartzis and Tev�k Bultan. E�cient symbolic representations for arithmetic con-straints in veri�cation. International Journal of Foundations of Computer Science (IJFCS),14(4):605�624, August 2003.[3] Constantinos Bartzis and Tev�k Bultan. Widening arithmetic automata. In Proc. 16th Int. Conf.Computer Aided Veri�cation (CAV'2004), Omni Parker House Hotel, Boston, USA, July 2004,volume 3114 of Lecture Notes in Computer Science, pages 321�333. Springer, 2004.[4] Leonard Berman. Precise bounds for Presburger arithmetic and the reals with addition: Prelimi-nary report. In Proc. 18th IEEE Symp. Foundations of Computer Science (FOCS'77), Providence,RI, USA, Oct.-Nov. 1977, pages 95�99, Providence, Rhode Island, 31 October�2 November 1977.IEEE.[5] Achim Blumensath and Erich Grädel. Finite presentations of in�nite structures. In Proc. 2nd Int.Workshop on Complexity in Automated Deduction (CiAD'2002), 2002.[6] Bernard Boigelot. Symbolic Methods for Exploring In�nite State Spaces. PhD thesis, Universitéde Liège, 1998.[7] Alexandre Boudet and Hubert Comon. Diophantine equations, Presburger arithmetic and �niteautomata. In Proc. 21st Int. Coll. on Trees in Algebra and Programming (CAAP'96), Linköping,Sweden, Apr. 1996, volume 1059 of Lecture Notes in Computer Science, pages 30�43. Springer,1996.[8] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc., 1(2):191�238, March 1994.[9] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACMComputing Surveys, 24(3):293�318, 1992. Irisa
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