
HAL Id: inria-00000131
https://hal.inria.fr/inria-00000131

Submitted on 24 Jun 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Portable Parallel CORBA Objects: an Approach to
Combine Parallel and Distributed Programming for

Grid Computing
Alexandre Denis, Christian Pérez, Thierry Priol

To cite this version:
Alexandre Denis, Christian Pérez, Thierry Priol. Portable Parallel CORBA Objects: an Approach
to Combine Parallel and Distributed Programming for Grid Computing. 7th International Euro-Par
Conference (EuroPar 01), 2001, Manchester/UK, United Kingdom. pp.835-844. �inria-00000131�

https://hal.inria.fr/inria-00000131
https://hal.archives-ouvertes.fr

Portable Parallel CORBA Objects: an Approachto Combine Parallel and DistributedProgramming for Grid ComputingAlexandre Denis1, Christian Pérez2, and Thierry Priol21 IRISA/IFSIC,2 IRISA/INRIA,Campus de Beaulieu � 35042 Rennes Cedex, FranceContact: {Alexandre.Denis, Christian.Perez, Thierry.Priol}@irisa.fr.Abstract With the availability of Computational Grids, new kinds ofapplications that will soon emerge will raise the problem of how to pro-gram them on such computing systems. In this paper, we advocate aprogramming model that is based on a combination of parallel and dis-tributed programming models. Compared to previous approaches, thiswork aims at bringing SPMD programming into CORBA. For example,we want to interconnect two MPI codes by CORBA without modify-ing MPI or CORBA. We show that such an approach does not entailany loss of performance compared to previous approaches that requiredmodi�cation to the CORBA standard.1 IntroductionWith the availability of high-performance networking technologies, it is nowa-days feasible to couple several computing resources together to o�er a new kindof computing infrastructure that is called a Computational Grid [3, 4]. A Compu-tational Grid acts as a high-performance virtual computer to users to performvarious applications such as for scienti�c computing or for data management.This idea has already been addressed since a Computational Grid can be seenas a kind of distributed and parallel system. Some years ago, A. Tanenbaum[14]gave a de�nition for such system: "A distributed system is a collection of in-dependent computers that appear to the users of the system as a single com-puter". Therefore, building Computational Grids raises the same design issuesas for distributed systems: transparency (location of resources is transparent tothe user), interoperability (to hide the heterogeneity of computing and network-ing resources) and reliability (the system has to survive the unavailability ofcomputing and networking resources). It also shares the same design issues asfor parallel systems: performance (best use of both computing and networkingresources) and scalability (e�cient management of a huge number of resources).Software infrastructures, such as Globus[3] or Legion[5], aim at providingruntime systems to allow the execution of applications on Computational Grids.However, Globus was mainly designed to allow the execution of parallel ap-plications. Such approach makes senses since there are already a huge number

of existing parallel applications that should bene�t from Computational Grids.However, the availability of Computational Grids will give rise to new kind of ap-plications for which parallel programming, based on the use of message-passinglibraries, is not suitable. Coupled simulations are an example of such new kindsof application. It aims at coupling several parallel codes to simulate complexsystems that require a multi-physics approach. Therefore, one important ques-tion arises when using a grid system: what is the most appropriate approach toprogram a Computational Grid, or said di�erently, what programming modelshave to be provided to Grid application designers ? On that matter, there isno consensus mainly due to the wide nature of applications that could bene-�t from Computational Grids. Since such systems are a combination of paralleland distributed systems, it is very tempting to extend programming models thatwere associated to parallel systems (message passing libraries, shared memory)so that they can be used for distributed programming. Similarly, programmingmodels for distributed systems (remote procedure call, distributed objects) canbe adapted to program parallel systems. Neither of these two approaches canbe seen as viable solutions for the future of Grid Computing. It is thus impor-tant to try to combine the two di�erent worlds into a single coherent one. Such aprogramming model will have to give an answer to the design issues already men-tioned: transparency, interoperability, reliability, scalability and performance.This paper aims at showing how two combine parallel and distributed pro-gramming technologies. More precisely, it gives a method that combines SPMD(Single Program Multiple Data) with CORBA (Common Object Request BrokerArchitecture) without modi�cation.The remainder of this paper is structured as follows. Section 2 gives anoverview of di�erent approaches to perform parallel computations with CORBA.Section 3 presents an approach that allows SPMD computation to be performedwith standard CORBA. Section 4 provides some experimental results. Finally,we conclude in section 5 by laying the grounds for future works.2 Parallel Computing with CORBAAmong a large set of distributed programming technologies, CORBA is prob-ably the most promising one due to its object oriented approach and its inde-pendence from operating systems and languages. CORBA is a speci�cation fromthe OMG (Object Management Group) to support distributed object-orientedapplications. CORBA acts as a middleware that provides a set of services allow-ing the distribution of objects among a set of computing resources connected toa common network. Transparent remote method invocations are handled by anObject Request Broker (ORB) which provides a communication infrastructureindependent of the underlying network. An object interface is speci�ed usingthe Interface De�nition Language (IDL) that gives a list of allowed operationson a particular object. As a distributed programming technology, CORBA canbe used as a �glue� to couple several high-performance simulation codes thatare executed on di�erent computing resources connected to the Internet. How-

ever, CORBA lacks of supporting e�ciently the encapsulation of parallel codes.To overcome this problem, several attempts have already been made to extendCORBA in such a way that an object implementation can rely on a SPMDmodel.The PARDIS CORBA-based environment [7, 8] is one of the �rst attemptsto allow data parallel programming within a CORBA object. PARDIS designerspropose a new kind of object they call SPMD object which is an extension ofa CORBA object. To support data distribution among di�erent threads associ-ated with a SPMD objects, PARDIS provides a generalization of the CORBAsequence called distributed sequence. This new argument type requires the mod-i�cation of the IDL compiler. PARDIS provides a mechanism to invoke opera-tions on objects asynchronously based on the future concept. A future is thebasic mechanism to get the results of services activated asynchronously.The PaCO CORBA-based environment [11, 13, 6] is another attempt forparallel programming in CORBA.We introduced the concept of parallel CORBAobject as a collection of identical CORBA objects. It aims at encapsulating aMPI code into CORBA objects so that a MPI code can be fully integrated intoa CORBA-based application. Execution of parallel CORBA objects is based onthe SPMD execution model. Data distribution between the objects belonging toa collection is entirely handled by the system. However, to let the system carryout parallel execution and data distribution between the objects of the collection,some speci�cations have been added to the object interface. A parallel objectinterface is thus described by an extended version of IDL, called Extended�IDL.It is a set of new keywords, added to the IDL syntax1, to specify the numberof objects in the collection, the shape of the virtual node array where objectsof the collection will be mapped, the data distribution modes associated withparameters and the collective operations applied to parameters of scalar types.More recently, the OMG has issued an RFP[10] (Request For Proposal) thatsolicits proposals to extend CORBA functionality to conveniently and e�cientlysupport parallel processing applications. A response[9] was submitted by a con-sortium of several industrial companies and a supporting organization. The pro-posed approach shares some similarities with previous works ([7, 11]). However,speci�cation of behaviors of parallel objects (data and request distributions)is not performed thanks to IDL extensions. Instead, it is included in a POA(Portable Object Adapter) policy associated with a Parallel Part Adapter (PPA)that is an extension of the POA. This approach requires a speci�c ORB (parallelORB) to manage parallel objects. Calling an operation to a parallel object froma standard ORB requires the use of a proxy object that aims at performing abridge between the two di�erent ORBs.In the previous three approaches, adding support for parallel processingwithin CORBA requires some modi�cations to the actual standard. These ex-tensions concern either the IDL language or the ORB itself. There are seriousdoubts that such extensions will be provided by numerous existing CORBA im-plementations. Our current work is aiming at incorporating SPMD programming1 A more complete description of these extensions is given in [11, 13]

#include "Matrix.idl"interface IExample {void send_data(Matrix m);} Figure 1. IDL interface of the parallel objectvoid f(long* A, int size) {IExample obj("Servant");Matrix<long> data(1); // create a Matrix of 1 dimensiondata->setBounds(0,1,size); // bounds [1,size[for dimension 0data->setData(A); // initialize data pointer (no data copy)obj->send_data(data); // remote invocation} Figure 2. Motivating Example: a sequential client calls a parallel method.within CORBA without modifying the standard. It does not entail a lost of per-formance compared to those approaches that require modi�cations to CORBAand it has to be easy to use.3 Portable Parallel CORBA ObjectsParallel CORBA objects are de�ned as a collection of identical CORBA objects.They aim at providing parallelism support to CORBA. Obviously, CORBA ob-jects of a collection are assumed to work together. They are expected to com-municate thanks to an external mechanism, like for example MPI. This worktargets parallel CORBA objects on top of compliant CORBA ORBs withoutinvolving whatsoever modi�cation of the CORBA speci�cations. We call suchobjects portable parallel CORBA objects. Throughout this section, we discusswith respect to a motivating example.3.1 Motivating ExampleFigure 1 presents the user level IDL interface of the motivating example pre-sented in Figure 2. A sequential client wants to send an array A to a methodvoid send_data(Matrix m) of the interface IExample. The client knows thatthis service is implemented by an object of named Servant. But, the client doesnot know � and does not want to know � that the implementation is in factparallel. To connect to the object, the client instantiates a local object obj oftype IExample with the name of the remote object as argument. Then, once theMatrix view of its local array A is built, the method is invoked.3.2 Achieving Portable Parallel CORBA ObjectsTo implement this kind of example on top of a compliant CORBA ORB, weneed to introduce a layer between the user code and the ORB, as depicted in

CORBA stub

Parallel CORBA

Parallel User Code (MPI)

,QWHUIDFH�

0DQDJHU,QWHUIDFH�

,QWHUIDFH� Implementation

0DQDJHU,QWHUIDFH�

CORBA skeleton

Parallel CORBA

CORBA ORB

,QWHUIDFH�

Figure 3. Portable parallel CORBA objectsFigure 3. This layer embeds the complexity of connection and data distributionmanagement. Its main role is to map an user-level interface � IExample in theexample � to an IDL interface, that is called ManagerIExample. This latestinterface contains the methods de�ne by the user as well as private methods.The private methods provide services like the localization of all remote objectsbeing part of the implementation of IExample and the retrieval of the datadistribution of arguments of user-level methods.The client and server side methods of the parallel CORBA object layer areanalog to the stub and the skeleton of ORB requests. But, while stubs andskeletons of ORB requests deal with peer-to-peer issues (like data marshaling),the stub and skeletons of the parallel CORBA object layer concentrate on datadistribution issues. Finally, the stubs and the skeletons of the parallel CORBAlayer should be generated from an IDL level description of the user services.However, they are currently hand-written.The rest of this section reviews di�erent aspects of the internals.Connection Management. A parallel object is de�ned by a name (string). Thisname in fact represents a context in the Naming Service that contains two kindof entries: the IOR of the service manager and all the IOR of the objects thatbelongs to the parallel objects, as illustrated in Figure 4. The constructor ofIExample retrieves information like the number of objects thanks to the Managerobject. Then, it can collect their respective IOR from the Naming Service.Method Invocation. When the client invokes the send_data method, it in factcalls the corresponding method of the ManagerIExample interface, locally imple-mented into the parallel CORBA layer. This method builds CORBA requestsaccording to the data distributions expected by the parallel objects. Such in-formation is available thanks to methods belonging to the ManagerIExampleInterface. Then, it sends the CORBA requests to the ManagerIExample objects.The role of the server side method is to gather data coming from di�erent clients(when the client is parallel) before calling the server side implementation of thesend_data method. Similarly, it scatters the out arguments.

Naming Service

Context : Servant
Node0
Node1
Node2
Node3

ManagerFigure 4. A parallel CORBA object of name Servant registers all its CORBA objectsin the naming service under the context of same name. This context also containsthe IOR of the manager and the IOR of all objects.When a client invokes a method of a parallel object, it potentially has to sendseveral CORBA requests. An e�cient and reliable solution would be the use ofthe Asynchronous Message Interface that appears in CORBA 2.4. As we are notaware of open source ORB that supports this feature, we implement a temporarysolution based on oneway requests. This solution has severe limits. First, it isnot a reliable solution as such kind of requests are not reliable according to theCORBA speci�cations. But, as we used TCP to transport CORBA requests, alloneway requests are delivered. Second, we have to build a system to detect thetermination of the request.Data Distribution Management. The core of parallel objects is the data distri-bution management. From our experience, mainly derived from PaCO and HighPerformance FORTRAN[2], we believe its important to have a high level oftransparency: our choice is to separate the data distribution from the interface.By decoupling the data distribution from the interface, we obtain four majorbene�ts. A �rst bene�t is there is no need to modify the CORBA IDL. Thesecond bene�t is that argument data distribution is transparent to the user, asdistribution does not appear in the interface. A third bene�t is that a parallelobject can dynamically change the distribution pattern it is awaiting. This mayhappen for example if some objects are removed (due to node failure for ex-ample) or some objects are added. This feature implies some interesting issues.For example, how is the client informed? A solution would be to use a listenerdesign pattern. A second issue is: what does a parallel object do with incomingrequests that have an argument with an old distribution? If all the data hascorrectly been received, a redistribution may be performed. However, wheneversome data is missing (node failure) or the parallel object does not implementthe redistribution feature, a CORBA exception is returned to the client. Thefourth bene�t is the ease of the introduction of new data distribution patternsas only clients and parallel objects that use non standard data distributions haveto know about these.Intermediate Matrix Type. Applications are expected to be written with theirown data distribution scheme. So, we face the problem of embedding user datainto a standard IDL representation so as to provide interoperability. We achievedata distribution interoperability thanks to a Matrix interface, sketched in Fig-ure 5. It provides a logical API to manipulate an internal IDL representation

interface Matrix {struct dim_t { long size, low, high; };struct matrix {dis_t dis; // current distributionlong ndim; // number of dimensionsequence<dim_t> rdim; // global view of the arraysequence<dim_t> ddim; // local view of the arraydata_t data; // data};}; Figure 5. IDL distributed array representationMatrix<float> data(2); // matrix with 2 dimensiondata.setBounds(0,0,size1); // Set bounds for dimension 0data.setBounds(1,0,size2); // Set bounds for dimension 1Distribution d0(Matrix::BLOCK, procid, nbproc);Distribution d1(Matrix::SEQ);data.setDistribution(0, d0); // Set distribution for dimension 0data.setDistribution(1, d1); // Set distribution for dimension 1data.allocateData(); // Allocate memoryfor(int i0 = data.low(0); i0 < data.high(0); i0++)for(int i1 = data.low(1); i1 < data.high(1); i1++)data(i0, i1) = ...Figure 6. C++ server side example: initialization of a 2D distributed array of �oatswhich has a block-distributed dimension. i0 and i1 are global indexes.of data distributions. This API should be straightforward for client (like in theexample of Figure 2) and should provide functionalities for implementers. Inter-nally, the Matrix interface manages an IDL structure that contains distributioninformation as well user data. That's this structure which is sent through theORB.Currently, we only implement the Matrix interface as a C++ class whoseAPI provides methods that manages a C++ representation of the IDL Matrixstructure. While Figure 2 has provided a client side example, Figure 6 presentsa server side example that illustrates the initialization of a 2D distributed array.4 Preliminary ExperimentsThe goal of this section if to evaluate the performance of the portable parallelCORBA objects on basic situations: a client connected to a parallel object.First, we use a sequential client connected to a parallel object. Then, we connecta parallel client to a parallel object. All CORBA objects belonging to a parallelCORBA object are located on di�erent machines. For most experiments, welimit the parallelism to two nodes. We concentrate on the overhead generatedon a node as we know that aggregated performance is possible [6]. However,we �nish this section by presenting experiments involving two clusters of heightnodes connected by VTHD, a gigabit wide-area network.

Version 1 - Explicit data copy Version 2 - No explicit data copyMico Mico patch OmniORB Mico Mico patch OmniORBBuilding (ms) 267 250 284 103 2.80 2.93Sending (ms) 1020 1003 861 986 1005 863Total (ms) 1288 1253 1156 1090 1008 866Sending (MB/s) 9.80 9.97 11.61 10.14 9.95 11.59Total (MB/s) 7.76 7.98 8.65 9.17 9.92 11.55Table 1. Performances of Mico and OmniORB ORBs for a sequential client connectedto a parallel CORBA object (2 objects) over Fast Ethernet.4.1 Basic ExperimentsWe perform experiments for two version of the portable parallel CORBA objectlayer. Version 1 does explicit data copy when creating CORBA requests whileVersion 2 uses sequence data constructor.An important goal is to have portability. So, we experiment two di�erentORBs: Mico 2.3.4 [12] and OmniORB 3 [1]. As Mico 2.3.4 performs a copywhen used with sequence data constructor, we remove this (unnecessary) copyby patching the unbounded sequence C++ template of Mico 2.3.4. We referencethis patched Mico version as �Mico patch�. We do not modify OmniORB 3 as itdoes not copy data in sequence data constructors. The ORBs have been compiledfor speed as well as the test programs. The compilers are gcc/g++ 2.95.2. Thetest platform is a PC cluster. The nodes are dual-processor Pentium II 450Mhzwith 256MB memory. The network is a standard Fast Ethernet (100 Mb) andthe communication protocol is TCP/IP. The operating system is Linux 2.2.13.The experiments presented in Table 1 are for a sequential client transferringan array to a parallel object. The performances are presented for the portableparallel CORBA objects with Mico 2.3.4, Mico 2.3.4 patch and OmniORB 3.The �rst row of the table represents the building time (computing part), thesecond row the sending time and the third row the whole time of the operation,which is very close of the building time plus the sending time. The fourth andthe �fth rows present the data bandwidth of the sending row and the total row.As shown in Table 1, the building time leads to a huge overhead when thereare data copies. The use of sequence data constructor improve performances.But, the use of a zero-copy sequence data constructor allow a more importantdecrease of the building time (divided by 100). The consequence is an bandwidthimprovement of 24 % for Mico patch and of 33 % for OmniORB.The experiments presented in Table 2 are for a parallel client invoking amethod on a parallel object. We observe that a strategy based on sequence dataconstructor leads to better performance. The use of zero-copy data constructorleads again to better performances. The reason why the overhead is so small iswe really re-use the bu�er of the incoming request (forward) and so there areno creation of new sequences. The building time in Version 2 is negligible withrespect to the communication time.

Version 1 - Explicit data copy Version 2 - No explicit data copyMico Mico patch OmniORB Mico Mico patch OmniORBBuilding (ms) 129 117 141 50 0.27 0.25Sending (ms) 547 508 432 544 518.6 431.5Total (ms) 676 625 574 593 519.2 432.1Sending (MB/s) 9.14 9.84 11.57 9.19 9.64 11.59Total (MB/s) 7.39 8.00 8.71 8.43 9.63 11.57Table 2. Performances of Mico and OmniORB ORBs for a parallel client (2 objects)connected to a parallel object (2 objects) over Fast Ethernet. No data redistribution.4.2 VTHD ExperimentsVery recently, we had access to the VTHD network. It's an experimental net-work of 2.5Gb/s that in particular interconnects two INRIA laboratories, whichare about one thousand kilometers apart. In a peer-to-peer situation using Om-niORB we measure a throughput of 11MB/s; the Ethernet 100 Mb/s card beingthe limiting factor. For experiments with an 8-node parallel client and an 8-node parallel object, we measure an aggregated bandwidth of 85.7MB/s, whichrepresents a point-to-point bandwidth of 10.7MB/s. Portable CORBA parallelobjects prove to e�ciently aggregate bandwidth.4.3 Comparison with PaCO PerformanceWith PaCO, we perform experiments similar to those of section 4.1. We usedthe last available version which is based on Mico 2.3.3. We obtain 8.77MB/sfor the sequential client and 8.51MB/s for the parallel client. When comparedto Table 1 and Table 2, one can see that performances are similar and dependmostly on the performance of the underlying ORB. So, the portable parallelCORBA objects are as e�cient as parallel CORBA objects of PaCO.5 ConclusionThanks to the continuous improvement of networks, Computational Grids arebecoming more and more popular. Some Grid Architectures, like Globus, pro-vide a parallel programming model, which does not appear well suited for certainapplications, for example coupled simulations. For such applications, we advo-cate a programming model based on a combination of parallel and distributedprogramming models.CORBA has proved to be an interesting technology. However, as it doesnot handle parallelism, there is a clear need of parallel CORBA objects wheninterconnecting for example two MPI parallel codes. Previous works on parallelCORBA objects [7, 11] have required modi�cations of CORBA speci�cations. Inthis paper, we have shown that it is feasible to de�ne parallel CORBA objectson top of CORBA compliant ORB without modi�cation of the IDL. As we do

not modify CORBA speci�cations, we need to introduce a layer between theuser code and the ORB to handle data distribution issues. Thanks to this layer,we can achieve data distribution transparency at the client side while allowingparallel objects to dynamically change the expected data distribution of theirmethod arguments. Experiments show that the overhead of this layer is verysmall. E�ciency relies on the no-copy sequence data constructor and on thee�ciency of the communications of the ORB. Also, contrary to a belief, thenumbers show that current CORBA implementation can be very e�cient onEthernet networks.Future work will concern the de�nition of interfaces related to parallel objectsthat we have just sketched in this paper. A second direction is to further studyissue with dynamic modi�cation of data distribution. Note that distributions arealways decided by the server side application.References[1] AT&T Laboratories Cambridge. OmniORB Home Page. http://www.omniorb.og.[2] High Performance Fortran Forum. High Performance Fortran Language Speci�-cation. Rice University, Houston, Texas, October 1996. Version 2.0.[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal of Supercomputer Applications and High PerformanceComputing, 11(2):115�128, Summer 1997.[4] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New ComputingInfracstructure. Morgan Kaufmann Publishers, Inc, 1998.[5] A. S. Grimshaw, W. A. Wulf, and the Legion team. The Legion Vision of aWorldwide Virtual Computer. Communications of the ACM, 1(40):39�45, January1997.[6] T. Kamachi, T. Priol, and C. René. Data distribution for parallel corba objects.In EuroPar'00 conference, August 2000.[7] K. Keahey and D. Gannon. PARDIS: A Parallel Approach to CORBA. In Su-percomputing'97. ACM/IEEE, November 1997.[8] K. Keahey and D. Gannon. Developing and Evaluating Abstractions for Dis-tributed Supercomputing. Cluster Computing, 1(1):69�79, May 1998.[9] Mercury Computer Systems, Inc. and Objective Interface Systems, Inc. and MPISoftware Technology, Inc. and Los Alamos National Laboratory. Data ParallelCORBA - Initial Submission, August 2000.[10] Object Management Group. Request For Proposal: Data Parallel ApplicationSupport for CORBA, March 2000.[11] T. Priol and C. René. Cobra: A CORBA-compliant Programming Environmentfor High-Performance Computing. In Euro-Par'98, pages 1114�1122, September1998.[12] A. Puder. The MICO CORBA Compliant System. Dr Dobb's Journal, 23(11):44�51, November 1998.[13] C. René and T. Priol. MPI code encapsulating using parallel CORBA object. InProceedings of the Eighth IEEE International Symposium on High PerformanceDistributed Computing, pages 3�10, August 1999.[14] A. Tanenbaum. Distributed Operating System. Prentice Hall, 1994.

