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3Laboratoire de Mécanique & Génie Civil - UMR CNRS-UM2 5508,
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The rheology of 2D steady surface flow of cohesionless cylinders in a rotating drum is investigated
through Non Smooth Contact Dynamics simulations. Profile of volume fraction, translational and
angular velocity, rms velocity, strain rate and stress tensor were measured at the midpoint along the
length of the surface flowing layer where the flow is generally considered as steady and homogeneous.
Analysis of these data and their inter-relations suggest the local inertial number - defined as the
ratio between local inertial forces and local confinement forces - to be the relevant dimensionless
parameter to describe the transition from the quasi-static part of the packing to the flowing part
at the surface of the heap. Variations of the components of the stress tensor as well as the ones of
rms velocity as a function of the inertial number are analysed within both the quasi-static and the
flowing phases. Their implications are discussed.

PACS numbers: 45.70.-n, 83.70.Fn, 46.10.+z

I. INTRODUCTION

Granular media present numbers of interesting and un-
usual behaviours: They can flow as liquids, but, under
some circumstances, they can jam and resist to external
shear stress without deforming. Understanding rheology
of granular systems has thus developed along two major
themes: The Rapid flows - gaseous-like - regime where
grains interact through binary collisions, are generally
described in the framework of the kinetic theory [1, 2, 3];
The slow flow - solid-like - regime where grain inertia
is negligible is most commonly described using the tools
of soil mechanics and plasticity theory [4]. In between
these two regimes there exists a dense flow - liquid-
like - regime where grain inertia becomes important but
contacts between grains are kept. Rheology of this last
regime has been widely investigated experimentally, nu-
merically and theoretically (see [5] for a review), but still
remains far from being understood. Several models have
been proposed recently to describe dense granular flows
by accounting for non-local effects [6, 7, 8, 9, 10], by
adapting kinetic theory [11, 12, 13], by modelling dense
flows as partially fluidized flows [14, 15] or by considering
them as quasi-static flows where the mean motion results
from transient fractures modelled as self activated pro-
cess [16, 17, 18, 19], but, to our knowledge, none of them
succeed to account for all the features experimentally ob-
served.

The most spectacular manifestation of this solid/liquid
duality occurs during an avalanche when a thin layer of
grains starts to roll at the surface of the packing, most of
the grains remaining apparently static. The global evo-
lution of such surface flows can be captured by mod-
els derived from non-linear physics [20, 21, 22] or fluid
mechanics [23, 24, 25, 26]. However, some experimen-

tal results remain unexplained: For instance, experimen-
tal velocity profiles measured in two-dimensional (2D)
flows [27, 28, 29] or three dimensional (3D) flows [23, 30,
31, 32] clearly exhibit the selection of a constant velocity
gradient within the flowing layer while momentum bal-
ance implies that the shear stress increases linearly with
depth. This observation is incompatible with any local
and one-to-one stress/strain constitutive relations. Re-
cent experiments [33] have provided evidence of ’jammed’
aggregates embedded in the avalanche. These ’solid’ clus-
ters are found to be power-law distributed without any
characteristic length-scales, and may explain the fail-
ure of present models. But a clear understanding of the
avalanche rheology is still missing.

The purpose of this paper is to investigate the sur-
face flows rheology through numerical simulations of 2D
’minimal’ granular systems made of cohesionless weakly
polydisperse cylinders confined in a slowly rotating drum.
Those allow us to track the evolution of quantities like
stress that are not accessible in real experiments. More-
over, they allow to get rid of artefacts such as the friction
of beads on the lateral boundaries of the drum that may
confuse the interpretation of an experiment. The numer-
ical simulation were performed using contact dynamic
methods [34, 35] based on a fully implicit resolution of
the contact forces, without any resort to regularization
schemes. At a given step of evolution, all the kinematic
constraints within the packing are simultaneously taken
into account together with the equations of motions to
determine all the contact forces in the packing. This al-
lows to deal properly with nonlocal momentum transfers
implied in multiple collisions, contrary to Molecular Dy-
namics schemes traditionally used that reduce the system
evolution to a succession of binary collisions.

The simulation scheme and the description of the sim-
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ulated systems are detailed in Sec. II. In Sec. III, we
report comprehensive analysis of volume fraction and ve-
locity (translational and rotational) profiles at the center
of the drum. They are compared with experimental data
available in the literature. Stress analysis and implica-
tions on the rheology of free surface flows are discussed
in Sec. IV. and Section V respectively. Sec. VI is focussed
on the analysis of both the translational and rotational
velocity fluctuations. Finally, Sec. VII summarizes our
findings.

II. SIMULATION METHODOLOGY

For this study, we simulate granular systems similar
to those investigated experimentally in [27, 28, 29, 33].
We model a 2D rotating drum of diameter D0 equal
to 450 mm half-filled with 7183 rigid disks of density
ρ0 = 2.7 g.cm−3 and diameter uniformly distributed be-
tween 3 mm and 3.6 mm. This weak polydispersity pre-
vents any 2D ordering effect that may induce nongeneric
effects. Normal restitution coefficient between two disks
(respectively between disks and drum) is set to 0.46 (re-
spectively 0.46) and the friction coefficient to 0.4 (respec-
tively 0.95). Normal restitution coefficients and disk/disk
friction coefficient were chosen to mimic the experimen-
tal flows of aluminium beads investigated in [27, 28]. The
drum/disk friction coefficient was set close to 1 to prevent
sliding at the drum boundary.

Numerical simulations dedicated to evolution of gran-
ular media can be based either on explicit [36, 37, 38, 39]
or implicit [34, 35, 40] method. One of the drawbacks of
explicit models is to reduce non-local momentum trans-
fers implied in multiple collisions to a succession of binary
collisions. Moreover, numerical instabilities can occur in
granular flows. They are corrected either by introducing
some artificial viscosity or by reducing the size of the
time step. The Non Smooth Contact Dynamics method
used here is implicit. It provides a nonsmooth formula-
tion of the bodys impenetrability condition, the collision
rules and the dry Coulomb friction law. The method is
extensively described in [41], and briefly explained below.

Firstly, equations of motion are written for a collection
of rigid bodies and discretized by a time integrator [42].
The interaction problem is then solved at contact level
(local level) rather than at particle level (global level) as
commonly performed in explicit methods. In other words,
equations are written in term of relative velocities uα and
local impulsions rα defined at each contact point indexed
by α. The impenetrability condition evoked previously
means that particles candidates for contact should not
cross the boundaries of antagonist’s bodies. We consider
also that contacting bodies do not attract each other, i.e.

that the reaction force is positive, and vanishes when the
contact vanishes. This can be summarized in the follow-
ing so-called velocity Signorini Condition:

un ≥ 0 rn ≥ 0 un.rn = 0, (1)

where the index n denotes the normal component of the
various quantities (index α is omitted). Let us note that
this philosophy is different from what is used in explicit
methods, where normal forces are usually proportional to
the penetration between two particles. The dry frictional
law is the Coulomb’s one for which the basic features are:
The friction force lies in the Coulomb’s cone (||rt|| ≤ µrn,
µ friction coefficient), and if the sliding relative velocity is
not equal to zero, its direction is opposed to the friction
force (||rt|| = µrn). This summarized in the following
relation:

||rt|| ≤ µrn ||ut|| 6= 0 → rt = −µrn
ut

||ut||
(2)

For rigid bodies we also need to adopt a collision law
because the velocity Signorini condition does not give
enough information. We adopt the Newton restitution
law, u+

n = −enu−
n , realistic for collection of disks. The

reader can refer to [43] for more explanations about col-
lision laws. Time discretization of equations of motion
- where the global contact forces are the only missing
quantities to determine the motion of each bead - lead to
the following scheme:

{

Wr − u = b

lawα[uα, rα] = .true., α = 1, nc
(3)

where u and r denotes the vectors containing the rela-
tive velocity and the mean contact impulse for all the
contact points respectively. The matrix W is the Delas-
sus operator [44] that contains all the local informations
(local frames and contact points) as well as the infor-
mations related to the contacts connectivity. The right
hand side of first line in Eq. 3 represents the free rela-
tive velocity calculated by only taking into account the
external forces. The operator lawα encodes the friction-
contact law which should be satisfied by each component
of couple (uα, rα); nc denotes the number of contact.
Systems of Eq. 3 can be solved by a classical non lin-
ear Gauβ-Seidel algorithm [41] or a Conjugate Projected
Gradient one [45]. This two algorithms benefit from par-
allel versions [46, 47] which show their efficiency in the
simulations of large systems. Information from this local
level, the contact level, is transfered to the global level,
the grain level and the configuration of the system is up-
dated.

The procedure to achieve a numerical experiment is
the following: All the disks are placed in an immobile
drum; Once the packing is stabilized, a constant rota-
tion speed Ω (ranging from 2 rpm to 15 rpm) is imposed
to the drum; After one round, a steady continuous sur-
face flow is reached (This has been checked by looking
at the time evolution of the total kinetic energy within
the packing over the next round); One starts then to
capture 400 snapshots equally distributed over a rota-
tion of the drum. The time-step is set to 6.10−3 s. The
number of time-steps necessary to achieve an experiment
ranges from 4.103 to 104 depending on the rotating speed.
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FIG. 1: Typical snapshot of the steady surface flows in the
simulated 2D rotating drum. Its diameter and its rotation
speed are respectively D0 = 450 mm and Ω = 6 rpm. It is
filled with 7183 disks of density ρ0 = 2.7 g.cm−3 and diame-
ter uniformly distributed in the interval [3 mm; 3.6 mm]. the
disk/disk coefficient of restitution and disk/disk friction co-
efficient are set respectively to en = 0.46 and µ = 0.2. the
disk/drum coefficient of restitution and disk/drum friction
coefficient are set respectively to e0

n = 0.46 and µ0 = 0.95.

All simulations have been performed with LMGC90 soft-
ware [48]. On a SGI Origin 3800 with 16 processors, about
20 h are required to achieve one of these simulations.

A typical snapshot of the simulated granular packing is
shown in Fig. 1. For each bead of each of the 400 frames
within a given numerical experiment, one records the po-
sition x of its center of mass, the ”instantaneous” veloc-
ity c of this center of mass measured over a time win-
dow δt = 6.10−3 s and its angular velocity w. Voronöi
tessellation was used to define the local volume fraction
associated to each bead (see e.g. [33]). The components
of contact stress tensor σ associated to each bead i are
computed as [49, 50]:

σαβ =
1

2Vi

∑

j 6=i

xα
jiF

β
ji, α, β ∈ {1, 2}, (4)

where Vi is the volume of the Voronöi polyedra associ-
ated to the bead i, Fji the contact force between i and
j, and xji = xj −xi. In all the following, these quantities
are nondimensionalized: Calling g the gravity constant
and d the mean disk diameter, distances, time, velocities
and stresses are given in units of d,

√

d/g,
√

gd and ρ0gd
respectively. In this paper, we concentrate on the contin-
uum scale by looking at profiles of the time and space
averaged quantities. Statistical analysis of these quanti-
ties at the grain scale will be presented in a separated
paper.

In rotating drum geometries, the surface flow is not

fully developed. The frame of study should now be cho-
sen appropriately. One thus define the frame ℜ rotating

with the drum that coincides with the reference frame
ℜ0 = (ex, ez) fixed in the laboratory, so that ex (resp.
ez) is parallel (resp. perpendicular) to the free surface
(see Fig. 1) [51]. In the frame ℜ, the flow can be con-
sidered as quasi-homogeneous at the center of the drum,
e.g. within the elementary slice Σ (see Fig. 1) 20 beads
diameter wide, parallel to ez located at x = 0. This slice
is divided into layers of one mean bead diameter wide
parallel to the flow. The given value of a given contin-
uum quantity ā(z) (volume fraction, velocity, stress...) at
depth z is then defined as the average of the correspond-
ing quantity defined at the grain scale over all the beads
in all the 400 frames of the sequence whose center of mass
is inside the layer.

III. KINEMATIC ANALYSIS

A. Volume fraction profile

Let us first focus on volume fraction profiles within
the packing. Figure 2 displays the volume fraction pro-
file measured for Ω = 6 rpm. To check the homogene-
ity of the flow with regard to ν, the elementary slice
Σ was translated of an increment of 5 bead diameters
in both positive x and negative x. The volume fraction
profile is found to be invariant under infinitesimal trans-
lation along ~ex. At the free surface, ν drops quickly to
zero within a small zone of thickness around three/four
beads diameter independent of Ω. In all the following,
the free surface boundary is set at the lower boundary
of this small region (mixed line in Fig. 2), defined at
the point where ν becomes larger than 0.7. At the drum
boundary, ν jumps also to a much smaller value within
a small region about two/three beads diameters thick,
which should be attributed to the presence of the smooth
drum boundary. Apart fr21.8om these two narrow re-
gions, the volume fraction ν is almost constant within
the drum, around the random close packing (RCP) value
νRCP ≃ 0.82. A closer look (Inset of Fig. 2) suggests
that ν is constant within the static phase, and decreases
weakly within the flowing layer as defined from the ve-
locity profile in next section. Such behaviour is expected
since granular systems should dilate before being able
to deform. However, this decreasing is very small and
compressible effects can thus be neglected with regard to
momentum balance, even if they may significantly alter
the local flow rheology [33].

B. Velocity profiles

As expected for a quasi-homogeneous flow, the normal
component vz of the velocity was found to be negligible
compared to the tangential component vx at any depth
z. Figure 3 depicts both the streamwise velocity profile
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FIG. 2: Volume fraction profile ν(z) (averaged over 400
frames) at the center of the drum obtained for Ω = 6 rpm.
The errorbars correspond to a 99% confident interval. The
vertical mixed line locates the free surface boundary, - set
to the point where ν crosses the value 0.7 -, from which ν
drops quickly down to zero. The vertical dotted line locates
the static/flowing interface, defined from the streamwise ve-
locity profile (see Fig. 3). Apart from these two zones, ν ap-
pears almost constant, around 0.8. Inset, zoom in the ”con-
stant region” enhancing the small variations of ν within the
two phases.

vx(z) (Fig. 3a) and the shear rate profile ∂zvx(z) (Fig.
3b) for Ω = 6 rpm. Both these profiles were found to be
invariant under infinitesimal translation along ~ex. Two
phases can clearly be observed: A flowing layer exhibiting
a linear velocity profile and a static phase experiencing
creep motion where both vx, and ∂vx/∂z decay exponen-
tially with depth (see Inset of Fig. 3b). Such shapes are
very similar to the ones observed experimentally in 2D
flows [27, 28, 29] as well as in 3D flows [23, 30, 31, 32].
The interface between the two phases can then be defined
by extrapolating the linear velocity profile of the flowing
phase to zero (see Fig. 3a). The flowing layer thickness
H can then deduced.

Velocity profiles measured for Ω = 6 rpm at five dif-
ferent locations x are represented in Fig. 4. At these lo-
cations, ∂xH is no more equal to zero. The width of the
elementary slice Σ has thus been decreased to two beads
diameters in order to minimize this drift. The shape of
the velocity profile remains the same in these locations,
with a clear linear velocity profile within the flowing layer
and an exponentially decaying velocity within the static
phase. Both the characteristic decay length λ of the ex-
ponential creep within the static phase and the constant
velocity gradient γ̇0 within the flowing layer are observed
to be independent of the precise location x for a given
value of Ω.

The ”natural” control parameter in our experiment is
the rotating speed Ω. However, comparisons between ex-
periments in heap geometry and rotating drum geometry
[5] suggest that the main control parameter for the sur-
face flow is the non-dimensionalized flow rate Q, defined
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FIG. 3: Profile of (a) streamwise velocity vx(z) and (b)
streamwise velocity gradient ∂zvx(z) (averaged over 400
frames) at the center of the drum as obtained for Ω = 6 rpm.
The errorbars correspond to a 99% confident interval. The
profile of the velocity gradient (resp. of the velocity gradi-
ent) is linear (resp. constant) within the flowing layer. The
plain straight line in sub-figure (a) (resp. in sub-figure (b))
corresponds to a linear fit: vx = γ̇(z + H) (resp. a constant
∂zvx = γ̇) where γ̇ ≃ 0.15. The vertical mixed line locates the
free surface boundary (see Fig. 2). The flowing/static interface
(dotted line) is defined from the depth where the straight line
intersects the z-axis in sub-figure (a). The flowing layer thick-
ness H can then be deduced: H = 14.6. Inset of sub-figure (a)
(resp. inset of sub-figure (b)): plot of the profile of the veloc-
ity vx(z) (resp. velocity gradient ∂zvx(z)) in semilogarithmic
scales. In both insets, the plain straight line corresponds to
an exponential fit of caracteristic decay length λ ≃ 3.4.

as:

Q =

∫ 0

z=−R0

ν(z)vx(z)dz (5)

Its variation as well as the one of the flowing layer thick-
ness H and the mean slope θ with respect to Ω are re-
ported in Tab.I.

Velocity profiles obtained in the center of the drum
for various Q are represented in Fig. 5a. Apart from the
flowing layer thickness H , the streamwise velocity profile
at the center of the drum is characterized by two param-
eters, namely the characteristic decay length λ of the ex-
ponential creep within the static phase and the constant
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FIG. 4: Velocity profiles obtained for Ω = 6 rpm at five dif-
ferent locations x. The velocity gradient within the flowing
layer as well as the exponential decreasing within the static
phase are found to depend weakly on the precise location in
the drum. They are consequently independent of both the
flowing layer thickness H and its x derivative ∂xH

Ω 2 rpm 4 rpm 5 rpm 6 rpm 10 rpm 15 rpm
Q 8 15.3 19.5 21.8 39.8 57.7
θ 18.1 18.9 19.3 19.7 21.2 23.0
H 9 11.5 13.3 14.6 17.2 21.0

TABLE I: Variation of the nondimensionalized flow rate Q,
the mean angle θ of the flow and the flowing layer thickness
H with respect to the rotating speed Ω within the elementary
slice Σ at the center of the drum.

shear rate γ̇0 within the flowing layer. Their evolution
with respect to the flow rate Q is reported in Fig 5b,c.
Within the errorbars, λ is independent of Q, of the order
of 3 ± 0.3. This behaviour is similar to what is reported
in both 3D heap flows experiments [52] and 3D rotating
drum experiments [23, 27, 53], where λ was found to be
λ ≃ 1.4 and λ ≃ 2.5 respectively.

In our numerical simulation, γ̇0 exhibits a weak depen-
dence with Q (see Fig. 5c). It ranges typically from 0.1 to
0.25 when Q is made vary from 8 to 58. This dependency
is compatible with the ones observed experimentally in
2D rotating drum by Rajchenbach [29], who proposed
that γ̇0 scales as γ̇0 ∝ (sin θ − sin Φ)1/2/ cos1/2 Φ, where
Φ refers to the Coulomb friction angle. Value of this an-
gle can be estimated from the variation of the mean flow
angle with respect to Q (see Fig. 6 and next section) and
was found to be Φ = 17.4◦. Inset of Fig. 5c shows that
the scaling proposed by Rajchenbach is compatible with
our results. It is worth to mention that γ̇0 was found to
be constant, around 0.5, independent of Q in 3D experi-
ments in Hele-Shaw drums [5, 23]. This strongly suggests
some non-trivial effect of either the lateral confinement
or the flow dimension on the profile within the flowing
layer. This will be explored in future 3D simulations of
rotating drums.
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FIG. 5: (a) Velocity profiles at the center of the drum for
various rotating speed Ω (b) Characteristic decay length λ of
the shear strain ∂zvx as a function of the flow rate Q. Within
the errorbars, λ is constant, around 3. (c) Constant shear rate
γ̇0 within the flowing layer as a function of the flow rate Q.
Inset: γ̇ vs. (sin θ − sin Φ)1/2/ cos1/2 Φ where the Coulomb
friction angle Φ = 17.4◦ has been identified with the value
µeff (Q = 0) defined in Fig. 6b. The straight line is a linear

fit γ̇ = 0.75(sin θ − sin Φ)1/2/ cos1/2 Φ.

C. Flowing layer thickness and mean flow angle

The thickness of the flowing layer H is plotted as a
function of the flow rate Q in Fig. 6a. As observed exper-
imentally [5, 23], H scales as

√
Q, which is expected since

the shear rate varies weakly within the flowing layer.

The mean flow angle θ can then be assimilated to an ef-
fective friction coefficient µeff = tan θ between the flow-



6

0 20 40 60 80
0

5

10

15

20

Q

H

0 2 4 6 8 10
0

5

10

15

20

25

Q1/2
H

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Q

µ ef
f

(b) 

FIG. 6: (a) Flowing layer thickness H at the center of the
drum as a function of the flow rate Q. Inset, H vs.

√
Q. The

straight line is a linear fit H = 3
√

Q. (b) Variation of the
effective friction coefficient µerr = tan θ of the surface flow
with respect to Q (non-dimensionalized units). The errorbars
show the standard deviation over the sequence at constant Q.
The straight line is a linear fit: µeff (Q) = 0.31 + 1.9.10−3Q.

ing layer and the static phase [24]. Its evolution with
respect to the flow rate Q is represented in Fig. 6. The
effective friction coefficient is found to increase with Q.
Similar increasing was observed experimentally, - at a
much larger scale -. It was attributed to wall effects [5, 23]
since this dependency was observed to be weaker when
the drum thickness is increased [5, 27]. No such wall ef-
fects can be invoked in the present study. In other words,
part of the increase of the effective friction with flow rate
cannot be induced by wall friction contrary to what was
suggested in [5, 23] and should be found in the granular
flow rheology.

D. Angular velocity profiles

A typical mean angular velocity profile ω(z) has been
represented in Fig. 7. It is interesting to plot ω with re-
spect to the vorticity ∇× v = ∂zvx (see Inset of Fig. 7).
There is a clear relationship between these two quanti-
ties: ω = 1

2
∇×v in the whole packing independently of Q.

This relationship is analogue to the one obtained in classi-
cal hydrodynamics where the mean rotating speed of the
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FIG. 7: Mean angular velocity profile ω(z) (averaged over 400
frames) at the center of the drum obtained for Ω = 6 rpm. The
errorbars correspond to a 99% confident interval. The vertical
mixed line (resp. the vertical dotted line) show the free surface
boundary as defined in Fig. 2 (resp. the static/flowing inter-
face as defined in Fig. 3). Inset, ω vs vorticity ∇× v = ∂zvx

for Ω = 2 rpm, (o), Ω = 4 rpm (⋆), Ω = 5 rpm (�), Ω = 6 rpm
(△), Ω = 10 rpm (⋄), Ω = 15 rpm (⊲). The straight line is
given by ω = 1

2
∇× v.

particles is equal to half the vorticity. Such relationship
was observed in Molecular Dynamics simulations of di-
lute granular flows [54, 55], but expected to fail at higher
volume fraction [56, 57]. In this latter case, grains were
expected to organize in layers the grains of which rotate
in the same direction. This would decrease the mean an-
gular velocity of the grains, and ω would be smaller than
1

2
∇ × v. In our numerical simulation, such behaviour is

not observed, which suggests that the grains spins do not
organize in layer despite the high density of the flow.

IV. STRESS ANALYSIS

A. Stress tensor profile

Let us now look at stress profiles - that cannot be mea-
sured experimentally. The stress tensor σ is the sum of
three contributions: σ = σc+σk+σr where σc, σk and σr

refer to the contact, kinetic and rotational components
of the stress tensor respectively. In our dense free surface
flows, σk and σr are found to be negligible with regard
to σc. One can thus assume that σ ≃ σc.

Components of the contact stress tensor associated to
each bead has been computed for each snapshot of each
numerical experiment (see Sec.II). The profile of the con-
tinuum value of each component of the contact stress ten-
sor - and consequently the total stress tensor - σαβ(z) is
then defined over the elementary slice Σ located in the
center of the drum (see Fig. 1) according to the same
procedure used to calculate velocity and volume frac-
tion profile. The tensor σ is found to be symmetric, i.e.

σxz = σzx. For 2D surface flows, it is thus defined by
three independent components σxx, σxz and σzz. Typi-
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cal profile of these components with respect to the depth
z at the center of the drum are represented in Fig. 8.

Shapes of these profiles are quite surprising. In the
rotating frame ℜ, velocity and volume fraction profiles
were found to be invariant along infinitesimal translation
along ex within the elementary slice Σ. In other words, for
x = 0, one gets ∂ν/∂x ≃ ∂v/∂x ≃ 0. More generally, it is
commonly assumed that at the center of the drum, the x
derivative of the stress tensor vanishes [5, 10, 27, 29, 33].
The Cauchy equations would then read:

(a) ∂σxz

∂z = −ν sin θ
(b) ∂σzz

∂z = ν cos θ + νΩvx + νΩ2z
(6)

where θ denotes the mean flow angle. The second right-
handed term of Eq. 6b is the Coriolis term. This term is
maximum at the free surface where it reaches 15% of the
first right-handed gravity term e.g. for Ω = 6 rpm. the
last right-handed term of Eq. 6b is the centrifugal term.
This term is maximum at the drum boundary where it
reaches 1% of the first right-handed gravity term e.g. for
Ω = 6 rpm. Finally, inertial effects can be neglected and
the Cauchy equations for pure steady homogenous flows
would come down to:

(a) ∂σxz

∂z = −ν sin θ
(b) ∂σzz

∂z = −ν cos θ
(7)

and, since the volume fraction ν is almost constant, close
to the random close packing value νRCP = 0.82:

(a)σxz(z) = −zνRCP sin θ
(b)σzz(z) = −zνRCP cos θ

(8)

These predictions were compared to the measured pro-
files (Fig. 8). The measured profile σzz fits well with
Eq. 8b. However, σxz departs from Eq. 8a within the
static phase. To understand this discrepancy, one looks
at the gradient of the stress tensor (see Fig. 9). The x-
derivative of the various components were calculated by
translating the elementary slice Σ of an increment δx = 5
from one side to the other of the reference position x = 0.
We checked that the obtained values do not depend on
δx. Both ∂σzz/∂x and ∂σxz/∂x vanish within Σ at the
center of the drum. However ∂σxx/∂x does not. In other
words, steady surface flows in rotating drums cannot be
considered as quasi-homogenous even at the center of the
drum. The Cauchy equations should then read:

(a) ∂σxx

∂x + ∂σxz

∂z = −ν sin θ
(b) ∂σzz

∂z = −ν cos θ
(9)

This may explain the slight discrepancies observed be-
tween homogenous steady heap surface flows and steady
surface flows in rotating drum (see e.g. [7] for related
discussions).

V. CONSTITUTIVE LAWS

A. Inertial number I

It was recently suggested [5, 58, 59, 60] that the
shear state of a dense granular flow can be character-
ized through a dimensionless number I, referred to as
the inertial number, defined as:

I =
∂zvx√

σzz
(10)

This parameter can be regarded as the ratio between the
typical time of deformation 1/∂zvx and the typical time
of confinement 1/

√
σzz [5].

A typical profile of the inertial number I is plotted
in Fig. 10a. This non-dimmensionalized parameter was
shown to be the relevant parameter to account for the
transition from the quasi-static regime to the dense in-
ertial regime in plane shear configuration, annular shear
and inclined plane configuration [5, 58, 60]. Therefore, it
is natural to consider I as the relevant parameter to de-
scribe the transition from the quasi-static phase and the
flowing layer in the surface flow geometry. To check this
assumption, we determine the value Ith of the inertial
number at the interface between the static phase/flowing
layer interface - defined by extrapolating the linear ve-
locity profile of the flowing phase to zero (see Fig. 3)- for
all our numerical experiments carried out at various Ω.
Variations of Ith as a function of Q is represented in Fig.
10b. This threshold is found to be constant, equal to:

Ith ≃ 1.8.10−2 (11)

which provides a rather strong argument to consider this
non-dimensionalized parameter as the relevant one to de-
scribe surface flows.

B. Rheology

Now that a relevant parameter describing the local
shear state of the flow has been proposed, one can dis-
cuss in more detail the flow rheology. As a first guess,
it is tempting to consider local constitutive laws relating
the components of the stress tensor to I through a one-
to-one relation. In this case, dimensional analysis leads
to:

σxz/σzz = µ(I), σxx/σzz = k(I) (12)

Typical variations of the effective friction coefficient µ
as a function of the inertial number I are plotted on Fig.
11a. A semilogarithmic representation (see inset of Fig.
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FIG. 8: Profiles of the three independent components of the static stress tensor σzz (a), σxx (b) and σxz (c) for Ω = 6 rpm.
The errorbar correspond to a 99% confident interval. In subfigure (a), (resp. subfigure (c)) the straight line is given by σzz =
−νRCP cos θ (resp. by σxz = −νRCP sin θ) as expected from Cauchy equations for an homogenous surface incompressible flow
of volume fraction νRCP = 0.82. For Ω = 6 rpm, θ was measured to be θ = 19.7◦. The vertical mixed lines and the vertical
dotted lines show the free surface boundary and the static/flowing interface as defined in Fig. 2 and Fig. 3 respectively.
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FIG. 9: Top: Profiles of the 6 independent component of the contact stress tensor gradient, namely ∂σzz/∂z (a), ∂σxx/∂z (b),
∂σxz/∂z (c), ∂σzz/∂x (d), ∂σxx/∂x (e) and ∂σxz/∂x (f) for Ω = 6 rpm. The errorbars correspond to a 99% confident interval.
In subfigure (a), (c), (d) and (f), the horizontal straight line is given by ∂σzz/∂z = −νRCP cos θ, ∂σxz/∂z = −νRCP sin θ,
∂σzz/∂x = 0 and ∂σxz/∂x = 0 respectively, as expected from Cauchy equations for an homogenous surface incompressible flow
of volume fraction νRCP = 0.82 and mean flow angle θ = 19.7◦ as measured for Ω = 6 rpm. The vertical mixed lines and the
vertical dotted lines show the free surface boundary and the static/flowing interface as defined in Fig. 2 and Fig. 3 respectively.

11a) shows that data collected for different flow rates Q
collapse relatively well within the scaling:

µ = a + b log I (13)

with a ≃ 0.35 and b ≃ 0.013 when I ranges from 10−4

to 10−1. A departure from this scaling is observed when
I becomes smaller than 10−4. In this latter case, µ de-
creases more rapidly with I. It is worth to note that the
scaling given by Eq.13 is quantitatively similar to the
one observed in the incline plane geometry [58], which
suggests that both free surface flow and flows down to a
rough incline plane may be described through the same

constitutive laws. Relating µ and I through a local con-
stitutive law seems thus to be relevant.

Figure 11b shows the variations of k = σxx/σzz as a
function of I. In the flowing layer i.e. when I exceed Ith,
k → 1. The non monotonic behaviour observed in the
static phase is much more suprising: The parameter k
starts from a value lower than 1 at the drum boundary
k(I → 0) ≃ 0.8, increases and reaches a maximum for I ≃
10−3 where k(I ≃ 10−3) ≃ 1.2 and finally decreases for
increasing I and tends to 1 within the flowing layer. Such
observation is very different from the k = 1 behaviour
observed in the whole materials in both annular shear
and incline geometry [5, 39, 58].

While the profile {µ(z)} is observed to be invariant
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FIG. 10: (a): Profiles of the inertial parameter I(z) for Ω =
6 rpm. The errorbar correspond to a 99% confident interval.
The vertical mixed lines and the vertical dotted lines show
the free surface boundary and the static/flowing interface as
defined in Fig. 2 and Fig. 3 respectively. (b): Variation of the
value Ith of the inertial number at the static/flowing interface
with respect to the flow rate Q.

along infinitesimal translation, the profile {k(z)} is not
(Fig. 12). The x-derivative of k is found to be almost con-
stant ∂k/∂x ≃ −0.05 within the whole packing. In other
words, the flow cannot be considered as homogeneous at
the center of the drum as regard with the parameter k.
Furthermore, while the curves µ(I) collected for different
flow rates Q collapse fairly well, the curves k(I) do not.
This strongly suggest that the non-local effects implied
e.g. by the existence of multi-scale rigid clusters embed-
ded in the flow [33] should be found in the constitutive
law k(I) rather than in µ(I) contrary to what was sug-
gested in [5, 7, 28, 33].

VI. FLUCTUATION ANALYSIS

Let us now analyse the fluctuations δv and δω of the
velocity and the vorticity respectively. Calling c(x, t) the
”instantaneous” velocity of a bead located at the posi-
tion x within the elementary slice Σ at a given time t,
the fluctuating part of the velocity δc(x, t) is defined as
δc(x, t) = c(x, t) − vx(z)ex where vx(z) denotes the av-
erage velocity at the depth z (see Fig. 3a). Profiles of
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FIG. 11: (a): Variation of the effective friction coefficient µ =
σxz/σzz as a function of the inertial number I for Ω = 6 rpm.
Inset: Variation of µ as a function of I for Ω = 2 rpm, (o), Ω =
4 rpm (⋆), Ω = 5 rpm (�), Ω = 6 rpm (△) and Ω = 10 rpm
(⋄) in semilogarithmic scale. The dash-dot line is given by
µ = 0.35+0.013 log I . (b): Variation of the ratio k = σxx/σzz

as a function of the inertial number I for Ω = 6 rpm. Inset:
Variation of k as a function of I for for Ω = 2 rpm, (o),
Ω = 4 rpm (⋆), Ω = 5 rpm (�), Ω = 6 rpm (△) and Ω =
10 rpm (⋄) in semilogarithmic scale. The dash-dot horizontal
line corresponds to k = 1
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the free surface boundary and the static/flowing interface as
defined in Fig. 2 and Fig. 3 respectively.
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velocity fluctuation δv2(z) are them computed by divid-
ing Σ into layers of one mean bead diameter wide, and
averaging δc2 over all the beads of the 400 frames whose
center of mass is inside the corresponding layer. Same
procedure is applied to determine the profiles of angular
velocities fluctuations. In our athermal granular systems,
the only time scale is provided by the velocity gradient
∂zvx. Therefore, we looked at profiles of {δv/∂zvx} and
{δω/∂zvx} rather than direct profiles of {δv} and {δω}.

Figure 13 displays both translational velocity fluctua-
tion profile (Fig. 13a) and angular fluctuation (Fig. 13b)
nondimensionalized by the shear rate ∂zvx. In both cases,
the nondimensionalized fluctuations are found to be con-
stant within the flowing layer i.e. :

δv
∂zvx

≃ 2.65 for z ≥ −H or I ≥ Ith
δω

∂zvx

≃ 3.35 for z ≥ −H or I ≥ Ith
(14)

In the static phase, both δv/∂zvx and δω/∂zvx are found
to increase with the distance from the static/flowing in-
terface. Figure 14 plots both δv/∂zvx (Fig. 14a) and
δω/∂zvx (Fig. 14b) as a function of the inertial num-
ber I. It evidences the existence of two different scalings
within the static phase, namely:

(a) δv
∂zvx

∝ I−1/2 for I ≤ Ith

(b) δω
∂zvx

∝ I−1/3 for I ≤ Ith
(15)

Such scaling are very similar to the one observed in the
shear geometry [58]. The importance of these fluctuations
with regards to the typical rate of deformation ∂zvx (up
to 40), as well as the scaling given by Eq. 15a exhibited
within the static phase are compatible with the picture
presented in [5] to describe quasi-static flow: The aver-
age grains motion is made of a succession of very slow
motions when the particle climbs over the next one, and
a rapid motion when it is pushed back into the next hole
by the confining picture.

VII. CONCLUDING DISCUSSION

Rheologies of 2D dense granular flows were investi-
gated through Non Smooth Contact Dynamics simula-
tions of steady surface flows in a rotating drum. Pro-
files of the different continuum quantities were mea-
sured at the center of the drum where the flow is
non-accelerating. Volume fraction ν is found to be al-
most constant, around the Random Close Packing value
νRCP ≃ 0.82 within the whole packing, except for a tiny
dilation (few percents) within the flowing layer, as ex-
pected from dilatancy effects. As observed experimen-
tally [23, 27, 28, 29, 30, 31, 32], the streamwise veloc-
ity profile {vx(z)} is found to be linear within the flow-
ing layer, and to decrease exponentially within the static
phase. Mean profile of the angular velocity was also mea-
sured at the center of the drum and was shown to be
equal to half of the vorticity in the whole packing.
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FIG. 13: Profile of translational velocity fluctuations δv (a)
and angular velocity fluctuation δω (b) non-dimensionnalized
by the shear rate ∂zvx at the center of the drum obtained for
Ω = 6 rpm. The vertical mixed lines and the vertical dotted
lines show the free surface boundary and the static/flowing
interface as defined in Fig. 2 and Fig. 3 respectively.

In a second step, profiles of the three independent com-
ponent of the stress tensor were measured at the center
of the drum. Quite surprisingly, the flow is found to be
non-homogeneous at the center of the drum with regard
to one of this component, namely σxx. In other words,
∂xσxx does not vanish whereas ∂xν, ∂xv, ∂xσzz and ∂xσxz

vanish.

The inertial number I - defined as the ratio between
inertial solicitations and confinement solicitations was de-
termined. This number is shown to be the relevant one
to investigate quantitatively the rheology of the surface
flows. The transition from the static to the flowing phase
is found to occur to a fixed value Ith of I,independently
of the flow rate Q. Constitutive laws relating the com-
ponents of the stress tensor to I were determined. The
effective frictionµ = σxz/σzz is found to increase loga-

rithmically with I, independently of the flow rate Q. This
relation is found to match quantitatively the one observed
in rough incline geometry. On the other hand, the ratio
k = σxx/σzz is found to be be significantly different from
k = 1 in contrast to what was observed in plane shear,
annular shear, and rough incline geometry [39, 58]. To
be more precise, k if found to vary non monotonically
with I. Moreover, ∂xk is found not to vanish contrary to
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FIG. 14: (a) Non-dimensionalized velocity fluctuation δv/∂zvx

as a function of the inertial number I for Ω = 2 rpm, (o),
Ω = 4 rpm (⋆), Ω = 5 rpm (�), Ω = 6 rpm (△) and
Ω = 10 rpm (⋄). The axes are logarithmic. The slope of the
plain straight line is −1/2 (b) Non-dimensionalized velocity
fluctuation δω/∂zvx as a function of the inertial number I for
Ω = 2 rpm, (o), Ω = 4 rpm (⋆), Ω = 5 rpm (�), Ω = 6 rpm
(△) and Ω = 10 rpm (⋄). The axes are logarithmic. The slope
of the plain straight line is −1/3. In both graphes, the vertical
dash-dot line show the static/flowing interface as defined by
I = Ith.

the x-derivative of the other continuum quantities. It is
worth to note that k = 1 together with a univocal re-

lation between µ and I would have naturally implied a
Bagnold velocity profile, as observed in rough incline ge-
ometry, but not in the present free surface flow geometry.
In other words, the selection of the velocity profile resides
more in the function k(I, ...) than in µ(I).

Dependencies of {k(I)} with Q, as well as the fact that
∂xk does not vanish lead us to conjecture that the ratio k
encodes the structure of the percolated network of grains
in extended contact with each others - referred to as the
arches network. In this scenario, the structure of this net-
work - and therefore the ratio k - is related to the global
geometry of the packing as well as to the orientation of
the flow. This picture is broadly consistent with nonlocal
models based on the coexistence of particle chains and
fluidlike materials [7, 9]. However, a more detailed study
is needed to verify this and understand how k can be
related to the global structure of the force network.

Finally, both velocity δv and angular velocity δω
fluctuations were analysed. These quantities non-
dimensionalized by the shear rate ∂zvx were found to
be constant - independent of the flow rate - within the
flowing layer thickness. In the static phase, both δv/∂zvx

and δv/∂zvx were found to decrease as different power-
laws with I. This behaviour is consistent with the idea
of an intermittent dynamics generated from the succes-
sion of rapid rearrangements and slow displacement [5].
This change of behaviour at the static/flowing interface is
broadly consistent with recent measurements of Orpe and
Khakhar [61] revealing a sharp transition in the rms ve-
locity distribution at this interface. Understanding what
set precisely the scaling laws require precise statistical
analysis of beads velocities at the grain scale. This rep-
resents interesting topic for a future investigation.
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unilatérales. Ann. Sci. Ecole. Norm. Sup., 34:95–179,
1917.

[45] M. Renouf and P. Alart. Conjugate gradient type algo-
rithms for frictional multicontact problems: applications
to granular materials. Comp. Meth. Appl. Mech. Engrg.,
194(18-20):2019–2041, 2004.

[46] M. Renouf and P. Alart. Solveurs parallèles pour la simu-
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