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Abstract

We present a dynamic model of attention based on the Continuum Neural Field

Theory that explains attention as being an emergent property of a neural population.

This model is experimentally proved to be very robust and able to track one static or

moving target in the presence of very strong noise or in the presence of a lot of

distractors, even more salient than the target. This attentional property is not

restricted to the visual case and can be considered as a generic attentional process of

any spatio-temporal continuous input.

Keywords. Attention, CNFT, dynamic neural fields, lateral interactions.
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Emergence of Attention within a Neural Population

Introduction

The cortex has long been known for being a massively interconnected structure

of elementary processing elements (the so-called cortical columns, see (Burnod, 1989)

for further details) benefiting from a structural two dimensional topology ascribed in

the two dimensional topology of the cortical sheet itself. Furthermore, along this

structural topology, there exists also a topographical organization such that response

properties of neurons in many sensory cortical areas are ordered such that nearby

neurons tend to respond to nearby areas of the input. Theses topographic maps form

themselves by the self-organization of afferent connections to the cortex which are

driven by external input (Hubel & Wiesel, 1965; Malsburg, 1973; Miller, Keller, &

Stryker, 1989).

Several theories together with their associated neural network models have

demonstrated how such an organization can emerge from a local competition based on

lateral interactions within the cortex (Takeuchi & Amari, 1979; Amari, 1980; Kohonen,

1982). Those models have been primarily based on predetermined lateral interactions,

focusing on the learning of afferent synaptic weights. Generally, these models rely on a

Winner Take All (WTA) or a k-WTA algorithm to model lateral interactions. It helps

both competition and numerical simulation in term of speed. Nonetheless, a number of

recent neurobiological studies (Gilbert & Wiesel, 1990) have pinpointed the

importance of lateral interactions and showed that cortico-cortical connections indeed

change throughout development (Katz & Callaway, 1992). Based on these studies,

(Sirosh & Miikulainen, 1993, 1997; Miikulainen, Bednar, Choe, & Sirosh, 1997) have

designed a self-organizing neural network model for the simultaneous and cooperative

development of topographic receptive fields and lateral interactions in cortical maps

that numerically demonstrates how the famous mexican hat pattern of connectivity



4

can develop itself through unsupervised learning.

But, if these models were able to explain to some extent some observations on

the development of both afferent and lateral connections in cortical feature maps, they

did not exploit the dynamic aspect of neurons as it has been originally introduced by

(Wilson & Cowan, 1973; Amari, 1977). The Continuum Neural Field Theory (CNFT)

has been extensively analyzed both for the one-dimensional case (Wilson & Cowan,

1973; Feldman & Cowan, 1975; Amari, 1977) and for the two-dimensional case (Taylor,

1999) where much of the analysis is extendable to higher dimensions. Those theories

explain the dynamic of pattern formation for lateral-inhibition type homogeneous

neural fields with general connections. They show that, in some conditions, continuous

attractor neural networks are able to maintain a localised bubble of activity in direct

relation with the excitation provided by stimulation.

We investigate further these theories in order to experimentally study functional

properties of the CNFT and show how it is indeed tightly linked to attention defined

as the capacity to attend to one stimulus in spite of noise or distractor. Attention has

a long history and complex meaning in psychology. As (James, 1890) said:

Everyone knows what attention is. It is the taking possession of the mind,

in clear and vivid form, of one out of what seem several simultaneously

possible objects or trains of thought. Focalization, concentration of

consciousness are of its essence. ...

In the light of the proposed experiments, we show that bottom-up (i.e. stimulus

driven) attention may be seen as an emergent property of a neural population using

the Continuum Neural Field Theory. From a pool of neurons spread over two maps,

one input map feeding a focus map, a bubble of activity emerges within the focus map

at the precise location of a stimulus presented within the input map. This could be

easily interpreted as the recognition of the location of the sensory input if it was not for

noise and distractors. When noise or distractors are added, the bubble of activity stay

focused on the original focused stimulus and then, between “several simultaneously
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possible objects”, the model is able to “attend” to the one stimulus it first focused.

The model

Some related works (Hamker & Gross, 1997; Backer & Mertsching, 2002) have

already used dynamic neural fields in the framework of attentional control and showed

for example how they can be used for vision. We would like to propose a more

systematic study by considering the most simple model (where a single map is laterally

connected) and experimentally describe how and why attention naturally emerges from

this model.

Continuum Neural Field Theory

We will use the notations introduced by (Amari, 1977) where a neural position is

labelled by the vector x which represents a two-component quantity designing a

position on a manifold M in bijection with [−0.5, 0.5]2. The membrane potential of a

neuron at the point x and time t is denoted by u(x, t). It is assumed that there is

lateral connection weight function w(x − x′) which is in our case a difference of

Gaussian function (DoG) as a function of the distance |x − x′|. There exists also an

afferent connection weight function s(x,y) from the position y in the manifold M ′ to

the point x in M . The membrane potential u(x, t) satisfies the following equation (1):

τ
∂u(x, t)

∂t
= −u(x, t) +

∫

M

wM (x− x′)f [u(x′, t)]dx′

+

∫

M ′

s(x,y)I(y, t)dy + h

(1)

where f represents the mean firing rate as some function of the membrane potential u

of the relevant cell, I(y, t) is the output from position y at time t in M ′ and h is the

neuron threshold. wM is given by the equation (2).

wM (x − x′) = Ae
|x−x

′ |2

a2 − Be
|x−x

′|2

b2 with A,B, a, b ∈ <∗+ (2)

Furthermore, we use a Gaussian function for afferent connections as in equation (3).

s(x,y) = Ce
|x−y|2

c2 with C, c ∈ <∗+ (3)
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Finally, and depending on the nature of the manifold M we consider (respectively a

plane or a sphere surface), we can respectively use the Euclidean distance or the curve

distance (which is defined as the shortest length of the geodesic between two points).

Discretization

In order to be able to perform numerical simulations using neural network

models, we have to discretize these equations. We denote by n the discretization level

which represents the regular segmentation of the interval [−.5, .5] into n segments of

size 1/n. A manifold M can consequently be discretized as a set of n × n units and

previous neural position x can be denoted xij with i, j ∈ [0, n − 1]2. The corresponding

neuronal position is now given by equation (4)

xij = (
i

n
− 0.5,

j

n
− 0.5) (4)

and equation (1) becomes:

τ
du(xij , t)

dt
= −u(xij , t) +

∑

k,l

wM (xij − x′

kl)f [u(x′

kl, t)]dx
′

kl

+
∑

k,l

s(xij ,ykl)I(ykl, t)dykl + h

(5)

Furthermore, In order to avoid any side effects due to the lack of connectivity along

the edges of a map, we project the manifold M onto a torus in order to use a curve

distance d that is defined by equation (6).

|xij − x′

kl| = min

(

(

i − k

n

)2

,

(

1 −
i − k

n

)2
)

+ min

(

(

j − l

n

)2

,

(

1 −
l − l

n

)2
) (6)

One can observe on Figure 1 the impact of projecting the map onto a torus surface

using the curve distance versus projecting onto a plane using the Euclidean distance.

Architecture

The model we designed is made of two maps input and focus, each of them

being of size n × n units. Map input corresponds to an entry that is feeding the focus
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map as illustrated on Figure 2 while focus map represents a cortical layer whose units

possess localized receptive fields on the surface of the input. In other words, each unit

xij of map focus receives its input from the input map using equation 3 which

corresponds to a localized receptive field, being more or less broad depending on

constant c. The input map does not have any lateral interaction nor feedback while

each unit in the focus map is laterally connected using a difference of Gaussian (see

Appendix A for implementation details).

This architecture, as simple as it stands, implements the most rudimentary form

of attention that allows a model to focus on one static or moving stimulus without

being distracted by noise or distractors, even more salient ones. We will now

experimentally demonstrate this attentional property.

Asynchronous evaluation

As we stated before, the CNFT relies on a continuous evaluation of both lateral

and afferent connections that result in one or more localized bubble of activities,

depending on some initial conditions and profile of lateral interactions. In the

following experiments, we are primarily interested in having a single bubble of activity

representing the position of an input stimulus. The problem in such a framework is

that two stimuli of equal intensity and width may be presented within the input map,

with no noise or distractor. Furthemore, if we suppose that the CNFT map starts from

zero activity, the question is then, where the localized bubble of activity will emerge ?

If we use a discretized synchronous evaluation of units within the CNFT map, and

depending on the relative position of the two stimuli, the answer is nowhere or in the

middle while if we use asynchronous evaluation, the answer is on one of the two stimuli.

Synchronous evaluation refers to a well known algorithm used in the neural

networks community where evaluation of activity of a unit u at time t is performed

using stored information at time t − 1. Using such an algorithm for lateral interaction

evaluations is a source of problem in the example cited above because in this case, two
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bubbles compete to emerge while trying to inhibit each other. None of these bubbles

has an advantage on the other since we considered noiseless input. This result in an

oscillatory symetric behavior where each of the two bubbles starts to emerge and is

immediately inhibited by the other one. Once inhibition is weak enough, the two

bubbles will re-emerge and will be immediately re-inhibited, etc. The reason for this

behaviour is a lack of dissymetry in the network that should be normally provided by

non-uniform noise, giving the necessary dissymetry to the network. We have

experimentally tested this hypothesis and showed that even a very small amount of

noise is able to break the symetry.

Another solution is the asynchronous evaluation where evaluation synchronicity

is broken using a random evaluation order. In this case, at each time step, a unit is

randomly chosen and evaluated using information available at this time. A

computational step corresponds in this case to n successive evaluations.

Experiments and results

As we stated before, the goal of the model is to implement a very basic

attentional apparatus (embedded in a single map) and to propose that attention may

be thought as an emergent property of a neural population. Consequently, we define a

target as a spatially localized stimulus onto an input map that is feeding the focus

map which realizes the attentional function. In order to realize such a function, the

focus map should then be able to remained focused on the target in spite of noise,

distractors or movement of target.

Encoding

Mean input activity Sr,θ,W,I follows a bell-shaped profile with height

proportional to constrast. A stimulus sr,θ,W,I is then characterized by the tuple

(r, θ,W, I) corresponding to a Gaussian profile whose center is localized at
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(rsinθ, rcosθ) of width W and intensity I given by equation (7).

sr,θ,W,I(x, y) = Ie
(x−xc)2

W2 e
(y−yc)2

W2 with (xc, yc) = (rsinθ, rcosθ) (7)

Using such a symmetric function about both x-axis and y-axis yields an interesting

decoding property given by equation (8)

∀s/∀x, s(x) = s(−x) ⇒ ∀xc, xc =

∫

∞
xs(x − xc)dx

∫

∞
s(x − xc)dx

(8)

Translated in the discrete case and considering a discretized manifold Mn (in bijection

with [−.5, .5]2) whose value at position xi,j is given by a(i, j), we can get an

approximation of (xc, yc) with equation (9).

(x̂c, ŷc) =

(

∑

i,j
i
n
a(i, j)

∑

i,j a(i, j)
− 0.5,

∑

i,j
j
n
a(i, j)

∑

i,j a(i, j)
− 0.5

)

(9)

Furthermore, noise is added at each neural position and is assumed to be independent.

It follows a zero-mean Gaussian distribution whose variance is fixed at different levels

(see Figure 3). Finally, values are clipped in the range [0, 1] implying that addition of

noise results in a non zero-mean signal.

Static stimulus

There exist several models using population codes focusing on noise clean-up

such as (Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Deneve, Latham, &

Pouget, 1999) or more general types of computation such as sensorimotor

transformations, feature extraction in sensory systems, motion perception or

multisensory integration (Giese, 1999; Wu, Nakahara, & Amari, 2001; Zhang, 1996;

Deneve, Latham, & Pouget, 2001; Stringer, Rolls, & Trappenberg, 2004). (Deneve et

al., 1999) were able to show through analysis and simulations that it is indeed possible

to implement an ideal observer using biological plausible model of cortical circuitry

and it comes as no surprise that this model relies heavily on lateral interactions. The

model we designed also relies heavily on lateral interactions, as dictated by the CNFT,

and fall into the more general case of recurrent network whose activity relaxes to a
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smooth curve peaking at a position that depends on the encoded variable that was

analyzed as being a good implementation of a Maximum Likelihood approximator

(Deneve et al., 1999).

Our experimental approach is different since we do not consider an experiment

to be a sum of isolated trials but rather consider the temporal nature of stimuli

succession. Consequently, there is not such thing as a “reset” of the activity in the

model between each trials. The experimental protocol is the following:

1. A single stimulus (without noise or distractor) is clamped to the input map.

2. Noise or distractors are added

3. 10 steps of computation are performed within focus map.

4. Position of stimulus is recorded and we re-iterate steps 1 to 4.

There is also an initialization procedure where we let the model first converge

(equivalent to 3 steps of computation) on the single stimulus present within the input

map.

As stated before, we use a stimulus with a bell-shaped profile located at a fixed

position (xc, yc) and we use different levels of Gaussian noise and different numbers of

distractors. As illustrated on Figure 4, the model is able to quite accurately track the

stimulus position in spite of an important level of noise or an important number of

distractors. In the case of distractors, it is important to understand that it is not

possible to decide what is the position of the target based on one trial since distractors

have the exact same profile as the stimulus (see Figure 5). The only “solution” to

the problem is to perform an attentional process where attention is focused on the

same “stimulus”, the only one having an observable spatio-temporal continuity.

Moving stimulus

Using the same protocol as in static experiments, we tested the model against a

moving target evolving around a circular path and we keep track of the decoded

position of the activity bubble within the focus map. One can see in figure 6 the
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resulting path decoded from the bubble of activity in the focus map. The speed of

the moving target is a critical parameter on these experiments since it is directly

related to the apparent spatial continuity of the target which is observable (or not) by

the model. For example, in presented results, θ angle was increased every ten steps of

computation by an amount of 3 degrees. These 10 steps of computation correspond

roughly to the time needed for a bubble of activity to move from one position to

another near one. If the new position is too far from the previous one

(undersampling), the bubble of activity cannot move toward it and simply vanishes to

let another bubble of activity emerge some place else. In such a case, the attentional

property cannot be guaranteed, i.e. the new bubble can emerge at the new position of

the target but it can also emerge at the position of a distractor. Nonetheless, when the

sampling is performed in such a way that the continuity of the movement of the

stimulus is observable by the model, the bubble of activity is able to move to the new

neighborhood position because the competition is biased toward this new position that

is both fed by input and some lateral excitation.

Conclusion

A dynamic model of attention has been described using the Continuum Neural

Field Theory that explains attention as being an emergent property of a neural

population. Using distributed and iterative computation, this model has been proved

very robust and to be able to track one static or moving target in the presence of noise

with very high intensity or in the presence of a lot of distractors, possibly more salient

than the target. The main hypothesis concerning target stimulus is that it possesses a

spatio-temporal continuity that should be observable by the model, i.e. if the

movement of the target stimulus is too fast, then the model can possibly loose its

focus. Nonetheless, this hypothesis makes perfect sense when considering real world

robotic applications. We have been able to succesfully implement this simple model on

a robot watching perfectly identical targets and it revealed itself able to focus on the
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first presented target and to remain focused on it, even when other targets were added

or removed from the perceived scene or when any of them were moved (including the

target). Nevertheless, and as model stands, one can object that this model is not able

to switch attention between available stimulus. The reason is that we wanted to

introduce one of the most simple model able to exhibit some kind of early attention.

We have now extended the basic model as to implement attentional switch between

relevant object and successfully implemented it on a real robot (Vitay, Rougier, &

Alexandre, 2005). The robot revealed itself able to scan successively different identical

and moving targets without ever focusing twice on the same target.

Finally, attention as it has been introduced in this work and implemented in the

model is not restricted to visual attention. Provided there exists some map with some

coherent bubbles of activity, a focus map can be used to attend to one or the other

bubble. This may shed a new light on prefrontal cortex and working memory where it

would become highly dynamic.
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Appendix A

A

Using equations (2), (3) and equation (5), simulation parameters are

n = 30, τ = .75

A = 1.4
α

, a = 5

n
, B = 0.65

α
, b = 17

n
, C = 1

α
, c = 0.1 with α = 13
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Appendix B

B

Figures B1 and B2 are two screenshots from simulations displaying focus profgile

in the presence of noise or distractors. Demonstration movies can be downloaded from

http://www.loria.fr/~rougier/research/demos.html
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Figure Captions

Figure 1. Lateral connectivity pattern is a simple difference of Gaussian function

(DoG) between a sharp positive Gaussian function and a wider negative one with

different intensity and same center. The profile of the DoG is the same for every unit

in a map and drives the global activity profile of the whole map. The distance used

(Euclidean or curve) depends on the type of projection of the manifold M . On both

(a) and (b), lateral weights have been drawn for unit at position (-.3,-.3). On (a) the

projection has been made onto a plane and the Euclidean distance has been used

whereas on (b), the projection has been made onto a sphere surface and the curve

distance has been used.

Figure 2. The model is made of two maps of n × n units each (n = 30 on figure). The

“input” map receives its inputs from an external moving stimulus that evolves along a

circular trajectory and whose center corresponds more or less to the center of the map.

The “focus” map receives its inputs from the “input” one, using a one-to-one

connection pattern. On the example displayed, the “focus” map has settled itself on a

pattern of activity that is representing the actual input.

Figure 3. Input is a bell-shaped curve centered around (xc, yc) representing an external

stimulus. Noise is assumed to be independent and to follow a zero-mean Gaussian

distribution whose variance has been set to different values: (a) noiseless input (b)

variance is .1 (c) variance is .25 (d) variance is .5 (e) variance is .75 (f) variance is 1.0.

All input values are clipped within interval [0, 1] implying that a variance of 1 is not

equivalent to a signal-noise ratio of 1.

Figure 4. Every 10 steps of computation, the position s of a static target has been

decoded in both input (sI) and focus (sF ) map. Distances |s − sI | and |s − sF | have

been used as measures of error and are reported here (each plotted figures is an average

over 1000 trials). On figure (a), a zero-mean Gaussian noise with various intensities
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has been added to the stimulus. Clearly, the focus map is able to accurately extract

the original position of the stimulus. On figure (b), zero to 25 distractors (with same

width and intensity as the original stimulus) were added in input and focus map is

also able to accurately extract the original position. Error within input map (with

presence of noise and distractor) have been plotted as an element of comparison.

Figure 5. Figure (a) represents a moving noiseless stimulus without any distractors.

Figure (b) represents a moving noiseless input with 10 distractors. Without

considering the spatio-temporal nature of the stimulus, it is not possible to decide

where is the target in Figure (b).

Figure 6. A moving target is evolving around a circular path within input map and

the position of the bubble of activity is decoded within focus map at each time step.

Figures present the interpolated path (a line is drawn between two successive position)

for different intensity of noise ((a) 0, (b) 0.1, (c) 0.25, (d) 0.5, (e) 0.75 and (f) 1). Even

with a noise of intensity one, the model is able to track the moving target along its

circular path.

Figure B1. Screenshot from the simulation showing an input with a level of .5. The

bubble of activity within the focus map is still focused on the original stimulus.

Figure B2. Screenshot from the simulation showing an input with 10 distractors added.

The bubble of activity within the focus map is still focused on the original stimulus.
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