
HAL Id: hal-00005852
https://hal.archives-ouvertes.fr/hal-00005852

Submitted on 6 Jul 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous Multiprocessor Scheduling with
Differential Evolution

Krzysztof Rzadca, Seredynski Franciszek

To cite this version:
Krzysztof Rzadca, Seredynski Franciszek. Heterogeneous Multiprocessor Scheduling with Differential
Evolution. 2005. �hal-00005852�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50488144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00005852
https://hal.archives-ouvertes.fr

Heterogeneous Multiprocessor Scheduling with Differential Evolution

Krzysztof Rzadca∗

Polish-Japanese Institute of Information Technology,
Koszykowa 86,

02-008 Warsaw, Poland
krz@pjwstk.edu.pl

and
ID-IMAG,

51 avenue Jean Kuntzmann,
38330 Montbonnot Saint Martin, France

Franciszek Seredynski
Institute of Computer Science,
Polish Academy of Sciences,

Ordona 21, 01-237 Warsaw, Poland
sered@ipipan.waw.pl

and
Polish-Japanese Institute of Information Technology,

Koszykowa 86,
02-008 Warsaw, Poland

Abstract- The problem of scheduling a parallel program
given by a Directed Acyclic Graph (DAG) of tasks is a
well-studied area. We present a new approach which
employs Differential Evolution to numerically optimize
the priorities of tasks. Our algorithm starts with
a number of acceptable solutions, results of different
heuristics, and merges them to achieve better one in a
small number of function evaluations. The algorithm
outperforms both a number of greedy heuristics and a
classical genetic algorithm on the most of the program
graphs considered in our experiments.

1 Introduction
Parallel computing seems to be the only feasible solution
for delivering the computational power required by many
research and industry projects. However, employing a
parallel computer instead of a sequential one results in a
number of new challenges. Mapping individual tasks to the
available resources and scheduling the order of execution is
one of the hardest issues. At the same time it is crucial for
obtaining the optimum performance of the system.

In general, a parallel program can be divided into
individual tasks. Some tasks cannot be computed until they
have received input data, which can be the result of another
tasks. Such inter-task dependencies lead naturally to the
construction of a DAG of a program. The problem of DAG
scheduling can be defined as the problem of assignement
of tasks to processors and ordering them with the aim of
minimizing the execution time (makespan) of the whole
program. This problem, except some bounded conditions,
is NP-hard [4].

There were many attempts [6] to use global search
meta-heuristics, such as genetic algorithms (GA), simulated
annealing, tabu search, ant colonies, immune systems,
or cellular automata for the problem of DAG scheduling
(see [10] for an overview). Generally, such methods can
be applied in one of the following ways:

• preprocessing, which modifies the DAG, such as
clustering [5][3] of individual tasks into groups.
Sometimes those algorithms also perform allocation
or scheduling;

*Krzysztof Rzadca is partly supported by the French Government Grant
number 20045874

• allocation [8], that is decision making at which
processor each task should be executed. Given the
allocation, a schedule for each processor is produced
by a list scheduling algorithm;

• ordering [1] [2], i.e. determining the order in which
the tasks will be executed. The allocation depends on
a list scheduling algorithm;

• ordering and allocation[10].

Because the preprocessing modifies the DAG, it is out of the
scope of this paper. List scheduling algorithms used by the
algorithms in the second and the third approaches will be
described later in this paper.

There were many previous contributions on optimizing
allocations, which seems to be the simplest approach to
solve the DAG scheduling problem. In this case there are
no unfeasible solutions. However, a typicaly used solution
encoding (e.g. in a GA the value of kth gene represents
a processor where kth task is executed) could result in an
increased complexity of the algorithm. In the case of a GA
and a 2 processor system, we obtain the typical, binary-
encoded chromosomes. Unfortunately, if the number of
processors increases, we are leaving the well-explored area,
which in turn makes some previously suggested approaches
less effective.

The optimization of the ordering was covered briefly in
the literature. One can look at this problem either as an
optimal ordering problem, and apply techniques similar to
those used in traveling salesman problem, or as a numerical
optimization of values of priorities of tasks. In later case
the priorities lead to the ordering. The second approach
seems to be an interesting solution, as some degree of
“fuzziness” can be introduced. Think of a typical crossover
operator in a GA and two individuals I1 and I2 which
encode a different order of tasks t1 and t2. In ordering-
like encoding, a child would have, randomly, either t1 or
t2 executed first. In the numerical encoding, the difference
between the priorities of t1 and t2 expresses the “degree
of certitude”, i.e. how certain is the individual that e.g.
t1 should be executed before t2. If I1 is “sure” that
t1 should be executed before t2 (the difference between
the priorities is significant), and I2 is “uncertain” of the
opposite (the difference is insignificant), the child would
most probably have t1 executed before t2. On the other

hand, if both I1 and I2 are “sure” of their orderings, the
child should be “uncertain” of the resulting ordering. To
our best knowledge the numerical optimization of priorities
was used only in [1] [2], where a simple GA was used to
evolve integer-encoded chromosomes. In this approach the
value of kth gene gives the priority of kth task. The typical
one-point crossover and re-initializing mutation are utilized
as genetic operators.

The forth approach, optimizing both the ordering and
the allocation, can potentially lead to the best results, as
it gives the greatest “freedom” to the global optimization
method. There is no greedy algorithm which could “spoil”
its solutions. On the other hand, the search space is very
large, hence those algorithms are expected to be rather
costly. In [10] an optimal solution to scheduling DAGs with
less than 30 nodes required 600–1600 generations of a GA
with population size 400.

Our algorithm applies the concept of the Differential
Evolution (DE) [7] to optimize the priorities of tasks. By
employing a numerical optimization technique it is able to
explore inter-tasks dependencies at the level much finer (i.e.
fuzzy-like) than the optimal ordering approaches. By means
of the DE, an optimization scheme acting on real-valued
chromosomes, the genetic operators act very close to the
problem domain, therefore they search through the space
of possible solutions efficiently. In addition, the algorithm
starts with a number of “acceptable” solutions, which are
results of different greedy heuristics, allowing the search
process to start in “promising” regions.

The rest of this paper is organized as follows. Section 2
contains a detailed description of the scheduling problem
which we consider in this paper. In Section 3 we present
a generic framework of a typical list scheduling algorithm
which is the base for our approach. Section 4 contains a
brief introduction to the Differential Evolution. Section 5
presents the Differential Scheduler – our scheduling
algorithm. Results of conducted experiments are described
in Section 6. Last section concludes the paper and presents
directions for future work.

2 DAG Scheduling Problem
The system architecture on which the program is scheduled
is given by a system graph, Gs = (P, Es) (Figure 1
a). The set P = {p} of M ≡ |P | nodes
represents the processing units (which can be individual
physical processors, workstations, or clusters), later called
processors. The edges Es represent the connections
between processors. The distance dist(pi, pj) between two
processors pi and pj is the length of the shortest path (the
one which contains the minimal number of edges) between
the nodes pi and pj in the graph Gs. We assume fully
heterogeneous model with unrelated processors. The time
needed for computing the ith task (wm

i) depends both on
the task ti and the processor pm.

The parallel program to be scheduled is represented by a
DAG, Gp = (T, Ep), where T = {t} is a set of N ≡ |T |
nodes which represent individual, indivisible tasks of the
program (Figure 1 b). Ep = {ei,j} is the set of edges which

a) b)

Figure 1: Example graphs of a two-processor system (a) and
a four-task program (b).

represents dependencies and communication between tasks.
If the tasks ti and tj are connected by an edge ei,j , the
task tj cannot start until ti completes and the data (the
result of task ti) is received. During the execution of the
program a task tj is called a ready task, if all such ti are
completed. By succ(ti) we denote the set of immediate
successors of ti, similarly pred(ti) is the set of immediate
predecessors of ti. The weight of an edge ei,j defines the
time necessary to send the data from the task ti to tj when
those two tasks execute on neighboring processors. If those
tasks execute on the same processor p we assume that the
time c

p,p
i,j needed for the communication is zero. Otherwise,

the time c
p,q
i,j needed for communication is a product of the

edge’s weight and the distance between processors: c
p,q
i,j =

ei,j ∗ dist(pp, pq).
An important parameter of a parallel program is the

mean Communication to Computation Ratio (CCR). It can
be defined as the average of weights of edges divided by the
average of tasks’ computation times.

We assume no task duplication. Each task must be
executed on exactly one processor. The tasks are not
preemptive, i.e. once the execution of a task has started,
it cannot be interrupted until it completes.

The DAG scheduling problem we consider in this
paper is the minimization of the total execution time
(the makespan) of the program taking into account the
constraints defined by the DAG and the communication
costs resulting from the system architecture and non-zero
weights of the edges.

3 List Schedulers for Heterogeneous Model
List scheduling is one of the most popular heuristic
approaches to the problem of DAG scheduling. One can
divide a typical list scheduler algorithm (such as HEFT [9])
into two steps: priority computation heuristic (sometimes
referred as a policy) and scheduling. In the first step, a
number specifing the task’s priority is associated with each
task. In the second step, the tasks are ordered by decreasing
priority and each task is allocated to the processor which
gives the minimum completion time. Those two steps will

be covered in the next subsections.

3.1 Priority Computation
Priority computation can be viewed as the aggregation of
the information about DAG structure in each node. The
simplest way is to define the priority pr(ti) of a task ti
recursively [11], either by so-called upward ranking ru(ti):

ru(ti)= max
tj∈succ(ti)

(

ru(tj) + comm(c0,0
i,j , . . . , c

m,m′

i,j ,

. . . , c
M,M
i,j)

)

+ comp(w1
i , . . . , wm

i , . . . , wM
i),(1)

or by downward ranking rd(ti):

rd(ti)= max
tj∈pred(ti)

(

rd(tj) + comp(w1
j , . . . , wm

j , . . . , wM
j)

+comm(c0,0
j,i , . . . , c

m,m′

j,i , . . . , c
M,M
j,i)

)

, (2)

where comp is a function which aggregates the times
needed for computation on individual processors, comm

is a function which aggregates the time needed for
communication, wm

i gives the time needed for computation
of task ti on processor pm, c

m,m′

i,j = dist(pm, pm′) · ei,j is
the time needed for the communication between tasks ti and
tj , when those two tasks are executed on processors m and
m′ respectively. There might be other approaches refining
the formulas (1) and (2), which consider e.g. the critical
path in the DAG.

In the homogeneous processor model, the value of comp

depends only on task. However, in heterogeneous model
computation time depends also on the processor. Therefore
comp must somehow aggregate information about different
processing times. The algorithm also lacks information
about the exact communication time. As during this
phase the allocation of tasks to processors is unknown,
the heuristic does not know the distance between the
processors on which two dependent task will be executed.
Consequently, comm has to aggregate information about
every possible communication time. Six possible functions
for comp and comm were defined in [11]:

• mean – the average of input arguments,

• median – the median of input arguments,

• simple best – the minimum of input arguments,,

• best – for comp, returns the minimum computation
time, for comm returns the time needed for
communication on two processors which give
minimum computation cost for the dependent tasks,

• simple worst – the maximum,

• worst – like best, but takes maximum values.

The biggest problem is that, given a DAG, it is hard to
judge a priori which function will yield the best result. In
our experiments, two well-performing combinations were
upward ranking (Eq. 1) with mean function (best makespan

in 28% of experiments) and upward ranking with best
function (best makespan also in 28%). However, the worst
functions had score of 10% (note that for one experiment
more than one function can deliver the best makespan, so
those values do not have to sum up to 100%). We observed
no correlation between the performance of heuristics and
the graph type, nor the number of nodes, nor the CCR.

3.2 Scheduling
In this step, the list scheduling algorithm assigns tasks to
processors and determines the order of execution. There are
two possible approaches to this issue. The scheduler can use
tasks’ priorities (or the order suggested by the global search
algorithm) either as hints for tie-breaking when two or more
ready tasks compete for processors or as the order in which
tasks will be assigned to processors.

The first case is computationally more expensive. An
ordered list of ready tasks must be maintained. Each time a
task completes, this list must be updated and some new tasks
must be scheduled for execution. This requires inserting
temporary each ready task into the schedule of each
processor (in the heterogeneous model the processor which
gives the earliest time of completion is not necessarily
the one which is free in the moment of scheduling) and
computing the resulting start and completion times. In order
to follow the priorities given by the algorithm as closely as
possible, the algorithm should not schedule the tasks which
would start later than the next scheduling step (when the
next task will complete). Otherwise, in the next scheduling
step there may be a ready task with priority higher than
the priority of one of the tasks already scheduled, but
not started. This leads to multiple iterations of the ready
list. In the worst case, when all N tasks are ready, the
algorithm performs N scheduling steps, in the following
steps reviewing the list of size N, N − 1, . . . , 1. Assuming
that inserting the task into the schedule costs O(N) (naive
insertion scheduling)1, the whole algorithm has complexity
of O(N3).

In the second case, when tasks’ priorities give the order
in which tasks will be assigned to processors, they must
obey tasks’ dependencies defined by the DAG, i.e. each
task must have the priority greater than its successors:

∀ti∀tj ∈ succ(ti) : p(ti) > p(tj). (3)

The algorithm is therefore simpler (see Table 1). Firstly,
tasks are ordered by decreasing priority. Then, each tasks
is allocated to the processor which gives the earliest time
of completion. For each processor m, task’s i ready time
ri
m is computed (the time when the last communication

arrives). Then task i is inserted into the schedule of the
processor m after the time ri

m (not necessarily at the end of
the schedule, if there is a gap long enough to insert the task).
The completion time fm

i is the sum of task’s start time si
m

and the computation time wi
m. This algorithm inserts each

task into the schedule only once, so with the naive insertion

1By using balanced tree for storing scheduled tasks on each processor
this cost can be easily reduced to O(log(N))

Table 1: List scheduling algorithm

1. Sort taskList by decreasing priority

2. for each task ti:

(a) bestProc = ∅; eft = inf

(b) for each processor pm

i. compute ready time ri
m =

maxt∈pred(ti)(f
alloc(t)
t + c

alloc(t),m
t,i)

ii. si
m = mintimeT : T ≥ ri

m ∧
pm is free during (T, T + ri

m)

iii. fm
i = si

m + wm
i

iv. if (fm
i < eft): bestProc = m; eft = fm

i

(c) alloc(ti) := bestProc

scheduling its complexity is O(N 2) (which can be further
reduced to O(N log(N)) with balanced tree).

4 Differential Evolution

DE is a population-based global optimization method,
suitable for functions defined on totally ordered spaces,
including real numbers. There were many attempts
to use genetic-like approach in global optimization of
such functions, including the binary-encoded GA or the
Evolution Strategies. Those approaches were, however,
sensitive to some phenomena seen frequently in the
functions to be optimized, such as epistasis (hidden
dependencies between variables which do not allow the
separate optimization on each dimension), rotation (a search
method often failed when the function was rotated in
the search space) or binary-encoding related problems
(typically used encoding is often unable to represent wide
range of variables’ values).

The novel approach in DE is a customized mutation
operator which replaces the commonly-used reinitialization
from the uniform distribution. In DE’s basic version,
DE/rand/1/bin, to the gene to be mutated it is added
the difference between the values of this gene from two
randomly-chosen individuals. In the version used in this
article, DE/current-to-rand/1, a third individual is used and
all of the genes are changed in order to make the search
process rotation-indifferent (see Table 2). The selection
operator is also simplified. Given the parent and its child,
the better one is chosen.

The optimization of tasks’ priorities can be viewed as
the minimization of a function which assigns a makespan
to a vector of priorities. Although this function probably
contains some domain-specific operations (such as the
second step of the list scheduling algorithm, covered in the
Section 3.2), we treat it like a black box. We expect that
such a function will be difficult to optimize. The number
of dimensions is high, because it is equal to the number of

Table 2: Differential Evolution algorithm (DE/current-to-
rand/1)

xj,i the value of jth dimension in ith individual
x

(hi)
j upper constraint for jth dimension

x
(lo)
j lower constraint for jth dimension

Gmax maximum number of generations
K coefficient of combination (parameter of the algorithm)
F coefficient of mutation (parameter of the algorithm)

1. Initialize the population:
for each individual i and each dimension j:

xj,i = x
(lo)
j + rand[0, 1] · (x

(hi)
j − x

(lo)
j)

2. for genNum = 1 to Gmax

(a) for each individual i:
i. randomly choose 3 distinct individuals r1,

r2, r3

ii. mutate and recombine:

−−−→xchild = −→xi+K ·(−→xr3−−→xi)+F ·(−→xr1−−→xr2)

iii. select: if f(−−−→xchild) < f(−→xi):
replace individual i by child in the next
generation.

tasks. Epistasis also occur, as the schedule is produced by
comparing the values of input priorities. Therefore a robust
global optimization method should be used to optimize such
a function – and we expect the DE is such a solution.

5 Differential Scheduler

Our algorithm employs the idea of differential evolution
to optimize priorities of nodes, which are the input data
for the second phase of the list scheduling algorithm.
Differential Scheduler (DS) replaces the heuristics used
in the step of priority computation in the list scheduling
algorithm (Section 3.2) by a meta-heuristic. It uses
internally the second step of the list scheduler in order
to evaluate the proposed priorities (to compute the length
of the schedule). The result of the algorithm are the
optimal values for priorities of tasks. In order to obtain the
schedule induced by those priorities it suffices to execute
the evaluation function (i.e. the second step of the list
scheduler) with the result. The whole algorithm is described
in the Table 3.

The length of an individual is equal to the number N

of tasks in the DAG. kth gene of ith individual specifies a
single real number – pri(tk), the value of the priority for
the kth task (see Fig. 2).

The search space defined in such a way is sizable.
Therefore it might be valuable to start the global search

Table 3: Differential Scheduler algorithm

1. for each priority computing heuristic

H ∈ {upward ranking, downward ranking} ×
× {mean, median, simplebest, best,

simpleworst, worst}

(a) initiate NumCopy clones of an individual with
priorities computed by H

(b) if H is downward ranking: inverse priorities
(c) normalize the individuals

2. initiate the rest of population randomly:

(a) assign random priorities to each individual
(b) apply repair algorithm to each individual

(Table 4)
(c) normalize each individual

3. for each individual i:
compute schedule length by running the list

scheduler with priorities ~pi

4. for genNum = 1 to Gmax

(a) newPopulation = ∅

(b) for each individual i of current population pop

i. randomly choose 3 other individuals r1, r2,
r3

ii. create a child with priorities:

−−−−→prchild = −→pri + K · (−−→prr3 −−→pri) +

+ F · (−−→prr1 −−−→prr2)

iii. apply repair algorithm (Table 4)
iv. normalize the child
v. compute schedule length makespanchild

by running the list scheduler with priorities
~pchild

vi. if makespanchild < makespani

newPopulation∪ = child

else
newPopulation∪ = i

(c) pop = newPopulation

from a number of “acceptable” solutions, rather than from
random ones (step 1a of the algorithm). Priorities computed
by different heuristics outlined in the Section 3.1 (i.e. either
upward ranking (Eq 1), or downward ranking (Eq 2) with
one of the functions mean, median, simple best, best,
simple worst, worst), seem to be natural candidates to be
included in such a starting set. What is more important,
“vector of priorities” is a common language of all priority-

Figure 2: An example of an individual for the DAG
from Fig. 1 with priorities computed by a downward
ranking (top), after inverse operation (middle) and after
normalization (bottom).

computation based list scheduling algorithms, so it is a
natural base for comparing and merging their results.

Of course different heuristics can assign values which
differ numerically, e.g. we can easily construct an heuristic
H1 which assigns priorities from the range (0, 1) and an
heuristic H2 from the range (0, 1000). However, in such
a vector, the information is stored in relations (for the
example from Fig. 2, bottom: pr(t4) < pr(t2), pr(t1) >

pr(t2)) between priorities (t4 after t2, t1 before t2), and
not the values themselfs. Therefore, operations such as
multiplying the vector by a number (i.e. multiplying all
the priorities) or adding a scalar value to the vector do not
change the schedule returned by the list scheduler in the
second step. Hence, after applying a heuristic, in the step 1c
we normalize the vector by subtracting the minimum value
and by dividing the vector by the sum of priorities:

pr(ti) =
pr(ti) − mink=1...|N | pr(tk)

∑|N |
k=1 pr(tk)

(4)

Our list scheduler requires that the priority of each task
has to be greater than priorities of all its successors – this
is the easiest way to ensure that the dependencies between
tasks are not violated. Priorities computed by downward
heuristics (Eq. 2) are, however, inverted, in the sense that
for each task, the priority of a task is less than the priority
of its successors. Therefore, priorities are inversed (step 1b)
before the normalization step described in the previous
paragraph:

pr(ti) =

(

max
k=1...|N |

pr(tk)

)

− pr(ti). (5)

The rest of the population is initialized randomly
(step 2).

In order to compute the makespan (steps 3 and 4(b)v),
individual’s priorities are the input data to the second step
of the list scheduler algorithm, described in the Section 3.2.

Population of individuals is evolved by a DE algorithm
(loop in the step 4). In each generation, for each individual
i, three other individuals r1, r2, r3 are randomly selected.
Those four individuals produce a child, whose priority
values are a product of parents’ priorities:

−−−−→prchild = −→pri + K · (−−→prr3 −−→pri) + F · (−−→prr1 −−−→prr2),

Table 4: The algorithm for repairing the priorities of tasks

toV isit a FIFO queue of tasks to be visited
uSN(t) number of unvisited successors for each

task t

NV Preds for task t: set of predecessors with priority
greater than pr(t)

C a number greater than 1 (we used 1.1)
ε a small number (used in border cases)

1. initiate toV isit with all tasks with no successors

2. for each task t: uSN(t) = |succ(t)|

3. while not empty(toV isit)

(a) task t = first task from toV isit

(b) foreach ti ∈ pred(t): uSN(ti) --

(c) foreach ti ∈ pred(t) ∧ uSN(ti) = 0:
add ti to toV isit

(d) minPred = minti∈pred(t) pr(ti)

(e) NV Preds = {ti : ti ∈ pred(t) ∧ pr(ti) >

pr(t)}

(f) if NV Preds 6= ∅

minNV Pred = minti∈NV Preds pr(ti)

(g) if (minPred > pr(t)) continue;
(h) toAdd = pr(t) − minPred

(i) if (NV Preds 6= ∅)
toAdd+ = 1

2 (minNonV iol − pr(t))
else
toAdd = toAdd ∗ C

(j) if (toAdd < ε) toAdd = ε.
(k) add toAdd to the priority of all the predecessors

where −→prx is a vector of priorities of the individual x (note
that this is an operation on the vector of priorities). Such
an operation can produce an unfeasible child, i.e. it is
possible that for some tasks the condition (Eq. 3) is violated.
Therefore, after the crossover the new individual is repaired
(step 4(b)iii) by an algorithm described in Table 4. Without
priorities’ reparing, we would have to use the slower version
of list scheduler. The child replaces its parent i, if its
makespan is shorter than parent’s.

The repair algorithm (Table 4) assigns the values for
priorities which result in ordering as close as possible to
the original one, but which obeys the rule (Eq. 3). The
cost of this algorithm is O(N). The algorithm visits, from
the bottom till the top, every task t in the graph. For each
t, two predecessor tasks are found: minPred which has
the minimum priority and minNV Pred, which has the
minimum priority from the tasks which do not violate the
rule in Eq. (3). If every predecessor obeys the rule (3),
their priorities do not have to be adjusted. Otherwise,

a) grid b) level

c) matrix d) wickler

Figure 3: Examples of small graphs from different families

toAdd contains the value which will be added to every
predecessor. This value is mainly the difference between the
priorities of minPred and t. In order to increment it even
more (so that pr(minPred) > pr(t)), the algorithm adds
either half of the difference between pr(minNV Pred)
and pr(t), or (if all the predecessors violate the rule (3),
pr(t) − pr(minPred) multiplied by a constant.

6 Experimental Results
We performed an extensive simulation in order to evaluate
the quality of the results obtained by our algorithm.
We experimented on four families of random graphs
(depicted in Figure 3), with three different CCR ratios
(0.1, 1, 10), and different number of nodes (50, 100,
200, 500). There were 5 graphs generated for each
combination of those parameters. The processing time of
each task on each processor wm

i were randomly chosen
from the range (1, 20) with the uniform distribution. The
algorithms were scheduling those graphs on three different
system architectures (two processor, fully connected four
processors and eight processors connected in cube). In total,
there were 675 different experiment settings (we have not
experimented on matrix graphs with 500 nodes because of
the long time of execution of the list scheduling algorithm).

We compared our algorithm with HEFT and a slightly
modified genetic algorithm (GA) from [2]. For each graph,
we compared the best result of the HEFT (the minimum
makespan over the results returned by all the 12 possible
heuristics described in the Section 3) with the result of DS
and the GA by computing a percentage improvement of the
makespan:

gain = 100% ∗
makespanHEFT − makespanalgorithm

makespanHEFT

We ran both the GA and the DS five times on each graph.

Table 5: Comparison of the percentage gain on the schedule length produced by the Differential Scheduler (DS) and the
Genetic Algorithm (GA) with regard to the HEFT schedule length

factor DS best [%] DS average [%] GA best [%] GA average [%]
average 5.34 4.55 2.64 1.34
system two processor 4.88 4.17 2.96 1.87

four processor 5.52 4.65 2.89 1.39
eight processor cube 5.63 4.83 2.09 0.76

graph family grid 5.96 5.05 2.11 0.58
level 6.34 5.41 2.79 1.49

matrix 1.29 1.02 -1.36 -2.12
wickler 6.77 5.85 6.03 4.54

graph size 50 6.18 5.38 3.46 1.60
100 5.24 4.39 2.28 0.99
200 5.13 4.39 2.55 1.57
500 4.66 3.88 2.17 1.14

CCR 10 8.19 7.16 3.79 1.94
1 4.76 3.90 2.42 1.24

0.1 3.13 2.65 1.75 0.84

We compared both the best makespan found in 5 runs and
the average makespan. As the number of experiments
is considerable, Table 5 presents only aggregated results.
When analyzing the impact of one of the dimensions
(family, CCR, number of nodes, system) on the results,
the results from other dimensions are averaged (e.g. the
second row of the Table 5 presents an average over all the
experiments with two processor system).

We had to modify the original GA from [2] because the
list algorithm used there was optimized for homogeneous
model. In each step tasks were scheduled only on
processors which were free in that moment, which not
necessarily results in the processor with earliest time of
completion. Such a version of the GA gave results worse
than the HEFT algorithm. We decided to apply the same
repair algorithm we used in DS, but without modifying
permanently the values of the genes (i.e. priorities are
modified only for the list scheduler).

We set the population size of DS to 24 and number of
generations to 50 – after some basic experiments we saw
that those values are small enough to get decent execution
time, yet sufficient to yield acceptable results. Those
settings result in 1224 function evaluations in the course
of optimization. For the initialization of the population,
DS used all 12 heuristics, each heuristic produced 1
individual (numCopy = 1). The other 12 individuals were
initiated randomly. The coefficients of combination (K) and
mutation (F) were set to 0.5. We have seen though that the
algorithm was not very sensitive when those values were
from the range (0.1, 0.9). We set the parameters of the GA
as suggested by its authors, however, in order to have fair
comparison with the DS, we set the same population size
and the same number of generations.

The average time of execution of the DS was 10.8
seconds, considerably more than the average time of the
HEFT (140 ms). It varied with the size and the family of
the graph.

Table 5 summarizes the results obtained. On average, DS

improves the makespan of the schedule by 4.55%, which is
considerably better than the GA (1.34%). In the case of
DS, the average from 5 runs was close to the best result
obtained (5.34%), contrary to the GA, where the differences
were much more significant – 2.64% of improvement when
looking at the best result and only 1.34% when looking at
the average. DS performs almost equally well on every type
of parallel system considered – however a slight increase
in the quality with the increased number of processors
can be seen (4.17%, 4.65%, 4.83%). Because the DS
algorithm does not encode the processor number, we think
that either HEFT performs worse on larger systems, or the
list scheduler algorithm used by DS has more “freedom”
to choose the right processor. The results of the GA are
worsening quickly with the increased number of processors.
Both algorithms had problems with matrix type graphs –
in the case of DS, the average improvement in that graphs
(1.02%) is more than five times lower than the average
improvement on the three other types of graphs (5.43%).
GA’s results were worse (by 2.12%) than the HEFT’s.
We suspect that, due to a large number of edges in those
graphs, the HEFT results are close to the optimum, that
there is no much place left for improvements. It is also
possible that that both algorithm do not deal well with
highly connected graphs. The results of the DS algorithm
are worsening when increasing the number of nodes. When
the the number of nodes increases, the search space and
the length of the chromosome gets larger. As the number
of function evaluations remains the same, one can expect
such behaviour. Both algorithms achieved best results on
graphs in which communication plays important role. The
difference between DS’s results on graphs with CCR = 10
(7.16%) and CCR = 0.1 (2.65%) is especially signficant.
We suspect that this is due to the fact of underestimating the
costs of communication by the HEFT. In such cases DS has
“a room for improvement”.

When the other dimensions are not averaged, our
algorithm can improve the results of the HEFT from 0%

Table 6: Comparison of the percentage gain on the schedule
length produced by the Differential Scheduler (DS) and the
best result found (OPT) with regard to the HEFT result

factor DS best [%] DS average [%] OPT [%]
average 7.34 6.27 8.90
graph family

level 6.87 5.95 8.68
grid 6.32 5.27 7.43

wickler 8.83 7.59 10.60
graph size

50 7.77 6.67 8.94
100 7.60 6.39 9.26
200 6.65 5.74 8.50

CCR
0.1 5.20 4.38 6.73

1 4.99 4.02 6.35
10 11.82 10.40 13.63

(some matrix graphs) up to 12%-17% (some graphs with 50
nodes and CCR=10).

In the second set of experiments we wanted to observe
how far the proposed solutions are from the ones obtained
with “decent” parameter settings (which should be closer
to the optimal solutions). We ran DS algorithm with
population size of 100 individuals and with 200 generations
at most (which resulted in 20077 function evaluations). As
in the previous set of experiments we saw that the DS
results are independent of the parallel system, so we decided
to experiment only on four processor system. We also
chosen smaller graphs in order to diminish the time required
for experiments (remembering that on bigger graphs the
differences between the “optimal” and the “normal” results
should be bigger). Table 6 summarizes the results obtained.
OPT is the best result of the DS with “decent” parameters
found in 5 independent runs.

We can see that, on average, the difference between
the gain obtained by the DS (6.27%) and the OPT value
(8.90%) is not very big. On the other side, OPT version
requires almost eight times as much computational time.
Similarly to DS, OPT acheives best results on the wickler
graph family, though the difference between those two
results is the biggest. We think that this graph family
has the biggest possibility of improvement. The difference
in gains between the graphs with CCR=0.1 and CCR=10
also probably results from a similar phenomenum. To our
surprise, the difference between the DS and the OPT results
is not the biggest on the biggest programs.

7 Conclusions and Future Work
We have presented an optimization algorithm for the
problem of DAG scheduling which uses the differential
evolution to optimize the priorities of the individual
tasks. Our algorithm starts with a number of “acceptable”
solutions (results of different heuristics) and gradually
improves them. The algorithm works with rather small
population and a limited number of generations. From the

results of extensive experiments performed we can conclude
that the algorithm is not very sensitive neither to the size of
the system, nor to the number of nodes in the graph and on
the most of the graphs considered it is able to improve the
results of the greedy heuristics on average by 4.5%. The
results are close to the optimal ones, obtained with much
higher cost. By using a representation close to the problem
domain, together with genetic operators acting directly “on”
that representation, we outperformed a GA using the same
search space.

In our future work we would like to apply other meta-
heuristics to the same search space. We also plan to add
new heuristics for computing priorities in order to further
expand the initial population.

Bibliography
[1] I. Ahmad and M. K. Dhodhi. Multiprocessor

scheduling in a genetic paradigm. Parallel Comput.,
22(3):395–406, 1996.

[2] M. Dhodhi and I. Ahmad. A multiprocessor
scheduling scheme using problem-space genetic
algorithms. In Evolutionary Computation, 1995.,
IEEE International Conference on, pages 214–219,
1995.

[3] H. El-Rewini, T. Lewis, and H. Ali, editors. Task
Scheduling in Parallel and Distributed Systems. PTR
Prentice Hall, 1994.

[4] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[5] V. Kianzad and S. Bhattacharyya. Multiprocessor
clustering for embedded systems. In Proceedings of
Euro-Par 2001, volume 2150 of LNCS, pages 697–
701, London, UK, 2001. Springer-Verlag.

[6] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs
to multiprocessors. ACM Computing Surveys,
31(4):406–471, 1999.

[7] K. V. Price. An introduction to differential evolution.
In D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas in Optimization, pages 81–108. McGraw-Hill,
London, 1999.

[8] F. Seredynski and A. Zomaya. Sequential and parallel
cellular automata-based scheduling algorithms.
IEEE Trans. on Parallel and Distributed Systems,
13(10):1009–1023, 2002.

[9] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. on Parallel
and Distributed Systems, 13(3):260–274, 2002.

[10] A. Wu, H. Yu, S. Jin, K.-C. Lin, and G. Schiavone.
An incremental genetic algorithm approach to

multiprocessor scheduling. IEEE Trans. on Parallel
and Distributed Systems, 15(9):824–834, 2004.

[11] H. Zhao and R. Sakellariou. An experimental
investigation into the rank function of the
heterogeneous earliest finish time scheduling
algorithm. In Proceedings of Euro-Par 2003, volume
2790 of LNCS, pages 189–194. Springer, 2003.

