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ABSTRACT
ATNoSFERES is a Pittsburgh style Learning Classifier Sys-
tem (LCS) in which the rules are represented as edges of
an Augmented Transition Network. Genotypes are strings
of tokens of a stack-based language, whose execution builds
the labeled graph. The original ATNoSFERES, using a bit-
string to represent the language tokens, has been favorably
compared in previous work to several Michigan style LCSs
architectures in the context of Non Markov problems. Sev-
eral modifications of ATNoSFERES are proposed here: the
most important one conceptually being a representational
change: each token is now represented by an integer, hence
the genotype is a string of integers; several other modifica-
tions of the underlying grammar language are also proposed.
The resulting ATNoSFERES-II is validated on several stan-
dard animat Non Markov problems, on which it outperforms
all previously published results in the LCS literature. The
reasons for these improvement are carefully analyzed, and
some assumptions are proposed on the underlying mecha-
nisms in order to explain these good results.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Experimentation

Keywords
Learning Classifier Systems, ATNoSFERES, Partially Ob-
servable Markov Decision Processes

1. INTRODUCTION
The Pittsburgh versus Michigan debate has been present

in the Learning Classifier Systems (LCSs) community since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

the very beginning of this research area (see [14] for a presen-
tation). On the one hand, most recent works in the LCS do-
main have chosen the Michigan approach [7]. The ATNoS-
FERES architecture proposed in [3, 5], on the other hand,
is a Pittsburgh style architecture dedicated to the resolution
of non Markov problems. It has been compared to several
LCSs, in particular in [4], where the authors concluded a
systematic comparison by the claim that the ATNoSFERES
approach was more robust and more general than its Michi-
gan style opponents, but that it was also several orders of
magnitude slower.

This paper investigates the effect of several modifications
to the original ATNoSFERES approach on its global effi-
ciency. Instead of being represented by a bitstring, the geno-
type, that encodes a series of tokens of the chosen stack-base
graph-building language, is now a string of integers. This
new representation greatly impacts on the mutation, that
can now be naturally made uniform on the set of tokens.
Moreover, all stack tokens of the underlying language can
now operate on specific data on the stack. Finally, the ran-
dom default behavior when no edge is eligible in the current
node of the automaton is suppressed, and the contradictions
in the conditions of all edges of the control graph are filtered
out. Because all those changes tend to make ATNoSFERES
representation and behavior closer to the actual semantic
of the underlying search space – that of the ATNs – it is
hoped that the resulting algorithm, termed ATNoSFERES-
II, achieves at least as good results as ATNoSFERES, but
much faster.

The paper is organized as follows: the next section gives
a short overview of the previously published versions of AT-
NoSFERES. Section 3 details the modifications introduced
in this paper. Section 4 indicates the experimental condi-
tions used to test ATNoSFERES-II on classical Non Markov
animat problems. Section 5 presents the results obtained
by ATNoSFERES-II, compares them to the state-of-the-art
LCS algorithms and produces statistical significance tests of
the improvements. Finally, all those results are discussed in
section 6, and some conclusions are draw on the impact of
the proposed modifications.

2. OVERVIEW OF ATNoSFERES

2.1 The bitstring representation
The ATNoSFERES model [2] is designed to generate the

control architecture of agents thanks to an evolutionary al-
gorithm. The control architecture itself is represented as an



ATN 1 graph where nodes represent states and edges repre-
sent transitions of an automaton. The graph describing the
behaviors is built by interpreting a genotype as a program
in a stack-based language [1] that proceeds by adding nodes
and edges to a basic structure initially containing only the
Start and End nodes. This genotype is a bitstring in the
original ATNoSFERES model.

The graph-building process operates in two steps. First,
during translation, the genotype is translated into a sequence
of tokens (see table 1). Second, during interpretation, the
token interpreter is fed with the token stream produced by
the translator. The tokens are interpreted one by one as
instructions of a robust programming language dedicated to
graph building. The interpretation of each successive token
operates on a stack in which parts of the future graph are
stored. The construction of the graph takes place during this
interpretation process, by creating nodes and connections
between nodes. When all tokens have been interpreted, the
nodes (each one carrying connections to other nodes) are
popped from the stack and the graph is ready to use.

a b

tokens

translator

c

structure

interpreter

stack

genotype

Figure 1: Principles of the genetic expression used
to produce the behavioral graph from the bitstring
genotype. The string is first decoded into tokens (a),
which are interpreted in a second step as instruc-
tions (b) to create nodes, edges, and labels. Finally,
when all tokens have been interpreted, the unused
conditions and actions remaining in the stack are
added into the structure and the structure is popped
from the stack (c).

There are three kinds of tokens: action and condition to-
kens, such as SW! or foodNE?, that are action and condi-
tion labels for the edges of the ATNs, specific to the actions
(movements) and perceptions (what is in a nearby cell) of
the agent in the maze environments; graph structure tokens,
such as node or connect, that are instructions to push nodes
and connect them with edges, using the labels in the stack;
and finally stack tokens, such as swap all or roll node, that
manipulate the stack either as a whole (the all family of
stack tokens) or by acting only on one of the two kinds of
data present in the stack (the node and the label families of
stack tokens).

2.2 The evolutionary framework
A generation of ATNoSFERES classically starts with the

selection of the parents that will be selected for reproduc-
tion, then applies variation operators (crossover and muta-
tion) to these lucky parents.

The selection is a rank-based truncated selection that pro-
ceeds as follows: First, the n best individuals of the popula-
tion (of size P ) are retained (deterministic truncation), and
sorted by descending fitness. They will be used to generate

1Augmented Transition Network [15]

P − n offspring that will complete the population. Then, in
order to generate each pair of offspring, two parents are se-
lected from those n best, based on a rank-based exponential
selection: if the best parent is associated with a bias b, the
ith best parent is associated with bias b.ci, for some c ∈]0, 1[.
Thus, of course b, c and n must satisfy

∑
n−1

i=0
b.ci = 1. In

all experiments described throughout this paper, P = 300,
n = 60, and c was chosen so that the selection pressure after
truncation (bias from the best to the worst of the n parents)
is 2 (i.e. c = 60

√
0.5).

After the selection described above, the genotype of two
offspring is produced by a 2-points crossover between the
two genotypes, where crossover points must be at the border
between two tokens.

Additionally, in the original ATNoSFERES approach, two
different mutation strategies were used: classical bit-flip mu-
tation, and random insertions or deletions of one codon
(i.e. one token of the language at hand). However, using
add/delete mutations did not improve the performances of
ATNoSFERES, and only the bit-flip mutation was ever used.
This modifies the sequence of tokens produced by transla-
tion, so that the complexity of the graph itself may change.
Nodes or edges can hence be added or removed by the evolu-
tionary process, as can condition/action labels on the edges.

2.3 The evaluation function
The fitness of each genotype is assessed by first building

the ATN, as described above, then by putting this ATN as
the controller of an agent and evaluating the behavior of
the agent in a (Non Markov) environment. There are three
sources of non-determinism in the use of the ATN, there-
fore, each parent is re-evaluated together with the offspring,
and the fitness is averaged over successive evaluations (by
calculating the mean fitness over all evaluations).

To evaluate an agent, the ATN graphs are used as follows
for at most a fixed number of time steps:

• At the beginning (when the agent is initialized), the
agent is at the Start node (S).

• At each time step, the agent crosses an edge:

1. It computes the set of eligible edges among those
starting from the current node. An edge is eligible
when either it has no condition label or all the
conditions on its label are simultaneously true.

2. An edge is chosen in this set. The first versions of
ATNoSFERES were selecting one edge randomly
(this is the first source of non-determinism), but it
was found that a deterministic choice (e.g. choose
the first edge in the list of eligible edges) held bet-
ter results. If the set of eligible edges is empty,
then an action is chosen randomly over all pos-
sible actions, and the current node remains un-
changed (this is the second source of non-determi-
nism).

3. The actions on the label of the elected edge are
sequentially performed by the system. Assum-
ing that only one action can be performed at a
time, only the last action is actually performed.
When the action part of the label is empty, an
action is chosen randomly. This is the third and
last source of non-determinism. However, in all
experiments described in this paper, the action



000000 swap all—node 000001 swap all—node 000010 swap all—label 000011 swap all—label
000100 dup label 000101 dup label 000110 dup node 000111 dup node
001000 del label 001001 del label 001010 del node 001011 del node
001100 roll all—node 001101 roll all—label 001110 unroll all—node 001111 unroll all—label
010000 node 010001 node 010010 node 010011 node
010100 connect 010101 connect 010110 connect 010111 connect
011000 connect self 011001 connect self 011010 connect self 011011 connect start
011100 connect start 011101 connect start 011110 connect end 011111 connect end
100000 goN! 100001 goS! 100010 goW! 100011 goE!
100100 goNE! 100101 goSE! 100110 goNW! 100111 goSW!
101000 emptyN? 101001 foodN? 101010 treeN? 101011 emptyS?
101100 foodS? 101101 treeS? 101110 emptyW? 101111 foodW?
110000 treeW? 110001 emptyE? 110010 foodE? 110011 treeE?
110100 emptyNE? 110101 foodNE? 110110 treeNE? 110111 emptySE?
111000 foodSE? 111001 treeSE? 111010 emptyNW? 111011 foodNW?
111100 treeNW? 111101 emptySW? 111110 foodSW? 111111 treeSW?

Table 1: The genetic code used in the experiments, for 6-bit codons. This is the mapping from bit-
strings/integers (in binary representation) to tokens. Some codes for the swap, roll and unroll stack tokens
have two alternative behaviors, either all or node/label (see the text, section 3.4). Also note that, due to
the ATNoSFERES requirement that there are 2N tokens for some N , some tokens are represented more than
once (e.g. swap all is represented 4 times), inducing a slight bias toward those nodes.

part of all edges will contain at most one action,
in order to simplify the comparison with LCSs.

4. The target node of the elected edge becomes the
new current node.

• The agent stops when it reaches the End node (E).
This node is a general feature of the model and may
never be reached, either if the agent loops infinitely or
if the experiment is stopped before.

3. ATNOSFERES-II
This section introduces the modifications that have been

brought to the original ATNoSFERES model described in
the previous section. In order to be able to assess the ef-
fects of each modification independently of one another, all
combinations will be made possible, even if the algorithm
referred to as ATNoSFERES-II uses them all.

3.1 Integer representation
Instead of coding a genome as a bitstring, a string of in-

tegers is now used, where each integer is an index encoding
a token (in the range [0, #tokens]). There might be re-
peated tokens, which is the case in our experiments. First,
this simplifies the translation process (the decoding of a bit-
string into an integer disappears). However, and because
crossover was only allowed at the boundary between tokens
in the bitstring genotype of the original ATNoSFERES, the
only visible effect of this deep modification is at the mutation
level: it is now possible to use the uniform mutation oper-
ator that replaces a given token by another one uniformly,
i.e. with equal chance for all tokens in the list.

Another possibility could be to define a distance among
the tokens based on their semantics (their effect on the struc-
ture being built), in order to bias the mutation. Such a
bias would be used to smooth mutation strength by having
smaller effects on the phenotype change. However, it is clear
that the bitflip mutation used in the original ATNoSFERES
was in fact equivalent to such a weighted mutation, but the
mutation biases were dependent on the order of the tokens
in the token list (e.g. by having condition and action tokens
at the second half of the list, the first bit was a flag for condi-
tion/action tokens). The induced mutation biases were thus

completely arbitrary with respect to the problem at hand.
Another important difference is that the total number of en-
coded tokens no longer has to be 2N for some N (where N
is the number of bits used to represent a token).

Note that a similar effect could also have been obtained in
the bitstring context by increasing the bitstring length and
decoding each token using a modulo function, as is theoret-
ically proved in [10].

In the following, and because the only visible effect of this
change of representation is the actual change of mutation,
the original ATNoSFERES approach will be referred to as
BitFlip while the ATNoSFERES-II approach will be termed
Uniform.

3.2 Default node action
As stated in section 2.2, in the original version of ATNoS-

FERES, when no edge could be elected, an action was cho-
sen randomly – this was referred to as the second source of
non-determinism. However, this results in non-deterministic
performance of the algorithm.

In ATNoSFERES-II, a drastic strategy is used in such a
case: when no edge is eligible, the evaluation of the agent
stops and FAIL is returned. As a consequence, the remain-
ing number of time steps for the current test is decreased to
zero, and the fitness for this test is null (the overall fitness is
the sum over several tests, see section 4). In the following,
this choice of abruptly ending the test when no edge is eli-
gible will be referred to as Finish, while the random choice
of ATNoSFERES will be called Random.

We must emphasize that the third source of non-determi-
nism (performing a random action when crossing an edge
with no action label) seems experimentally to have much less
impact on non-deterministic performances. We observed
that the few such edges still present in the population after
some generations were never eligible.

3.3 Contradiction filtering
In the original version of ATNoSFERES, an edge of the

control graph could eventually be labeled with contradictory
conditions, resulting in its permanent ineligibility. Such a
situation cannot happen in LCSs, since the condition part
of a classifier cannot contain contradictions. In the present



work, the occurrence of contradictory conditions in the label
of edges is prevented by forbidding more than one condition
specifying the value of the same attribute in the condition:
once an attribute has been used in a given label, all sub-
sequent tokens involving that attribute are ignored for that
label. The use of this mechanism will be referred to as No-
Contradiction, in contrast with the Contradiction original
ATNoSFERES algorithm.

3.4 Behavior of swap/roll/unroll tokens
In the original version of ATNoSFERES, the swap, roll

and unroll stack tokens could operate without discrimina-
tion on any data in the stack, whereas some other stack
tokens could only operate either on the nodes or on the
labels: e.g. dup node only operated on nodes, and dup la-
bel only on labels. This “typing” of tokens is extended in
ATNoSFERES-II to all available stack tokens, in order to
facilitate structural manipulations of the automata being
built. The previous set of the untyped swap/roll/unroll to-
kens will be referred to as all, while the typed ones will be
referred to as node/label.

4. EXPERIMENTAL SETTINGS

4.1 Representation
Our experimental set-up is the same as in [4], described in

section 2.1, except for the new features of ATNoSFERES-II.
We used a 1% bias for mutation probabilities. In particular,
since one of the goals of the present experiments is to com-
pare the uniform and the bit-flip mutations on a fair basis,
the distribution of the set of tokens is also the same (see ta-
ble 1), except that, of course, integer- and not bit-strings are
used in the Uniform approach of ATNoSFERES-II (section
3.1). The other difference, as pointed out in section 3.4, lies
in the use of “typed” swap, roll and unroll tokens (see al-
ternatives in table 1), when it comes to compare Node/Label
against All.

Capitalizing on previous published experiments, we do not
start with as many genome lengths as before [5, 4]. Some
preliminary tests with lengths of 250, 300 and 350 tokens
on a subset of parameter combinations demonstrated that,
in this range, the genome lengths had no statistically signif-
icant impact on the final performance. From thereon, and
with an abusive generalization to all environments, we shall
consider that the average results obtained with this limited
range of lengths can be extended to other lengths for all
environments.

Also, in the next section, the graphical representation of
the graphs is different from that of [5, 4], in order to make
the figures more readable (e.g. see figure 2). First, the
condition part is presented above the action part. Then,
each condition is here prefixed by a letter representing the
perception of the agent: food, tree, or empty. The Start
node is labeled 0, and the End node is the node labeled with
the largest number. If no condition is present on an edge,
any perception will match. Nodes and edges are represented
as usual by circles and directed arrows.

4.2 The environments and the fitness
Three different environments, respectively Maze10 [6], E1

and E2 [9], have been used to validate and test the mod-
ifications of ATNoSFERES proposed in section 3. For all
these environments, the “optimal policy” is the best policy

that can be found with the standard limited perception used
in the so called “woods” experiments [13] without any limit
on the number of memory bits. The number of steps to find
the food from each cell given by this optimal policy has been
presented in [4].

For each given environment, each automaton is started
once in each cell, and its fitness is measured as the average
number of steps it takes to find the food, averaged over all
cells (to be minimized).

5. RESULTS
Because we did not want to make any assumption about

the usefulness of each on the modifications to the origi-
nal ATNoSFERES proposed in section 3, systematic exper-
iments were conducted in each of the three environments in
order to evaluate the 16 possible combinations of each of the
four modifications, with 50 independent runs per setting.

5.1 Best solutions found
This section will present the best overall results obtained

in each environment. In each case, both the automaton
and a picture of its performance with respect to the optimal
policy is given. All those automata have been obtained using
the Uniform and No contradiction modifications – the other
two will be detailed in each subsection.

5.1.1 Maze10
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Figure 2: Best automaton found for the Maze10
environment (5.11 steps to food; an optimal policy
requires 5.05). 19 edges (3 nodes) that are never
elected (reached) are not represented, for the sake
of readability.
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Figure 3: Performance of the best policy found for
the Maze10 environment (by the automaton of fig-
ure 2). It is only one step worse, and on a single
cell, than the optimum (dotted circle). The rest is
optimal.

In Maze10, the best result of ATNoSFERES-II (figure 2)
has a policy that is is only one step longer than the optimal
policy (see figure 3), when the Start cell is just below the



NE corner of the maze. It was found using 300 codons, and
the Node/Label and Finish parameters. As far as we can
tell, no LCS has ever performed so well on this problem.
The average number of steps to food is 5.11, vs. 5.61 for
ATNoSFERES in [4].

5.1.2 E1
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Figure 4: Best automaton found for the E1 environ-
ment (2.90 steps to food; an optimal policy requires
2.81). 30 edges (11 nodes) that were never elected
(reached) are not represented, for the sake of read-
ability.
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Figure 5: Best policy found for the E1 environment
(by the automaton of figure 4). Only two cells are
only two time steps away from the optimum (dashed
circles). The rest is optimal.

In environment E1, the best policy found is only 4 steps
longer than the optimal one (figure 5). It was found with
a chromosome length of 250, and using the All and Finish
settings. Again, as far as we are aware, no LCS has ever
performed so well on this problem: The average number of
steps to food is 2.90, vs. 3.3 for ACS in [9].

5.1.3 E2
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Figure 6: Best automaton found for the E2 environ-
ment (3.29 steps to food; an optimal policy requires
2.98). 13 edges (1 node) that were never elected
(reached) are not represented, for the sake of read-
ability.

In environment E2, the best policy found is 15 steps away
from the optimum (figure 7). Its genotype length is 350, and
again the All and Finish strategies were used. As for the two
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Figure 7: Best policy found for the E2 environment
(by the automaton of figure 6). Three cells are one
time step away from the optimum (dotted circles),
three cells are two time steps away from the opti-
mum (dashed circles), and two cells are three time
steps away from the optimum (solid circles). The
rest is optimal.

other environments, as far as we can tell, no LCS has ever
performed so well on this problem: The average number of
steps to food is 3.29, vs. 3.58 for ATNoSFERES in [4].

5.2 Validation of the different modifications
The noticeable improvements of the off-line best results re-

ported in the previous section when using ATNoSFERES-II
have been obtained using (some of) the modifications pre-
sented in section 3. The present section investigates which
of the corresponding modifications has a significant impact
on the overall performance of the algorithm in average.

Maze10 E1 E2
Uniform 8.2 3.7 4.3
BitFlip 12 5 6.4
p-value ≈ 0 ≈ 0 ≈ 0

All 10 4.4 5.4
Node/Label 9.7 4.4 5.3

p-value 0.02 1.0 0.9
Contradiction 10 4.4 5.4

No contradiction 9.8 4.3 5.3
p-value 0.2 0.05 0.4

Random 9.7 4.3 5.3
Finish 10 4.4 5.4

p-value 0.04 0.6 0.2

Table 2: Average number of steps to food for each
parameter value and environment, and T-test p-
value for each couple of alternative parameter val-
ues. A p-value lower than 0.05 means a statistically
significant difference (in bold).

Table 2 analyzes the results according to each couple of
parameter values, that is, for each value of a given parameter
(e.g. Uniform or BitFlip), the results are averaged over the 8
possible values of the other 3 parameters. It clearly appears
that Uniform mutation produces significantly better results
than BitFlip in all three environments. The statistical sig-
nificance is not so clear for the other strategies, except for
Node/Label and Random for Maze10, and No contradiction
for E1.

Hence in the remaining of this section, Uniform is as-
sumed, and the analysis is carried over on the 8 sets of ex-
periments for which Uniform was used. Table 3 shows the
results of this analysis, and it appears that Random gives
significantly better results for Maze10 and E2, but not for
E1. Other parameters do not produce significantly different
results, with the exception of Node/Label for Maze10.



Uniform Maze10 E1 E2
All 8.6 3.7 4.3

Node/Label 7.7 3.7 4.4
p-value ≈ 0 0.7 0.6

Contradiction 8.1 3.8 4.4
No contradiction 8.3 3.7 4.3

p-value 0.4 0.06 0.2
Random 7.9 3.7 4.3

Finish 8.4 3.7 4.4
p-value 0.01 0.9 0.03

Table 3: Average mean for each parameter value and
environment, and T-test p-value for each couple of
alternative parameter values, assuming Uniform.

Uniform & Random Maze10 E1 E2
All 8.1 3.7 4.2

Node/Label 7.7 3.8 4.3
p-value 0.1 0.5 0.4

Contradiction 8 3.8 4.3
No contradiction 7.8 3.6 4.2

p-value 0.5 0.03 0.4

Table 4: Average mean for each parameter value and
environment, and T-test p-value for each couple of
alternative parameter values, assuming Uniform and
Random.

Assuming now Uniform and Random, No contradiction
still gives significantly better results for the E1 environment
(see table 4). So even if the Contradiction/No contradiction
parameters do not produce significantly different results for
all environments, No contradiction nevertheless gives bet-
ter average mean results in all experiments, whether con-
sidered alone, or in conjunction with either Uniform alone
or Uniform and Random. Furthermore, all the best known
solutions found for the tested environments use the No con-
tradiction value.
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Figure 8: Results for the Maze10 environment, ac-
cording to the mutation and default node action
variables. See section 5.2 for details and analysis.

Box plots (see figures 8, 9 and 10) are provided to give an
informal idea of the distributions of the fitnesses for each en-
vironment, according to the two meaningful variables (mu-
tation and default node action). These graphics represent
meaningful statistics rather than all the data: the median
as an horizontal line in the boxes, rather than the sample
mean, as the measure of central tendency due to the skew
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Figure 9: Results for the E1 environment, according
to the mutation and default node action variables.
See section 5.2 for details and analysis.
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Figure 10: Distribution of the results for the E2
environment, according to the mutation and default
node action variables. See section 5.2 for details and
analysis.

in the distribution caused by the fixed lower limit of fitness
values; the second and third quartiles, taken as the upper
and lower edges of the boxes; finally, the “whiskers” are plot
from both quartiles to the extremal values.

The distribution for ATNoSFERES corresponds more or
less to the BitFlip/Random case. From these plots, one
can see that, on the one hand, Uniform mutation clearly
outperforms BitFlip in all cases, and on the other hand, for
example for Maze10 (see figure 8), that approximately 25%
of the Uniform/Random solutions outperform XCSMH (1st
quartile).

5.3 Comparison of convergence time with ACS
and XCSMH

Table 5, borrowed from [4], gives a comparison between
the performance of the original ATNoSFERES and that of
some well-known LCSs from the literature in terms of con-
vergence time.

From this table, it was clear that, though being more
general and obtaining sometimes better solutions, ATNoS-
FERES was several orders of magnitude slower than all
other tested LCSs. However, since the modifications that
lead to ATNoSFERES-II significantly improved those per-
formances, it remains to check again whether this improve-
ment has a significant impact on the running time of the
algorithm, and to compare this running time to that of the



envir. LCS type perf. LCS PR(%) NG NT NT/LCS
Maze10 XCSM 15.1 7,000 100 8.42 45,000 6.42
Maze10 XCSMH 6.1 6,500 7.30 4909 360.106 55,000

E1 ACS (BSmax = 1) 4 4,400 30.92 5115 218.106 50,000
E2 ACS (BSmax = 2 or 3) 6.5 2,000 83.84 835 14.106 7,000

Table 5: Comparison between the original ATNoSFERES and LCSs. The measure is the average number
of trials needed to reach the performance given in column “perf.”. PR is the percentage of runs where
ATNoSFERES outperforms the corresponding LCS, and NG is the average number of generations before this
takes place. Thus, with 300 individuals per generation, the average number of evaluation runs necessary to
outperform the corresponding LCS is NE = 300∗NG∗100/PR, and the average number of elementary runs NT
for an environment with NS start cells (NS = 18 for Maze10, 44 for E1 and 48 for E2) is: NT = NS ∗NE. Thus
NT gives the average number of elementary runs needed by ATNoSFERES to outperform the corresponding
LCS. Finally, NT/LCS gives a good approximation of the factor by which the corresponding LCS is faster
than ATNoSFERES to reach its best performance. Note that no performance comparison is given on E1
against ACS with BSmax = 2 since ATNoSFERES never outperforms it.

same LCSs. The results are shown in table 6, and show
that ATNoSFERES-II is indeed much faster than ATNoS-
FERES, though still slower than the other LCSs.

6. DISCUSSION
The first remark we want to make is that, despite the

improvement in performance brought by our modifications,
we still did not succeed in reaching the optimal policy in
any of the three environments tested here. This illustrates
how difficult these simple non Markov environments are for
a genetic-based machine learning system.

From section 5.2, we can see that the most important
and significant improvement is the change of representa-
tion, through the induced change of mutation. The im-
pressive efficiency of this modification is probably mainly
due to the codons-to-tokens mapping that was used in the
original version of ATNoSFERES (table 1). As a matter of
fact, one can note that the leftmost bit is an indicator for
label tokens: tokens enumerated from 100000 to 111111 are
exclusively action or condition tokens, to be pushed on the
stack. Therefore, when using a bit-flip mutation over the
binary encoding of the codons, with a 1% probability, once
a codon has its leftmost bit set, it has 99% probabilities
to remain an action or a condition: the combination of the
mapping and the bit-flip mutation resulted in a very strong
bias toward labels exploration, with very little structure ex-
ploration. On the other hand, when using the uniform mu-
tation over string of integers, structural changes occur with
probability 0.5 during mutation – and the results show that
this additional structural exploration significantly improves
the performance of the algorithm. Further work will look in
detail at the statistics of every token used by the best solu-
tions, and should help to find a more efficient distribution
bias over the different tokens, that will be easy to implement
in the integer representation.

The introduction of Finish default action node did not
prove very useful: either Random performs significantly bet-
ter, or the difference is not statistically significant. But
this conclusion is consistent with the general consensus in
the Reinforcement Learning community, according to which
some non-determinism is always helpful when tackling Non
Markov problems, as purely deterministic controllers might
easily get stuck in local minima. However, in the context of
evolutionary techniques, non-determinism makes the evalu-
ation more difficult and may be detrimental to the conver-

gence of the GA. Some optimal trade-off probably remains
to be found here.

The Node/Label set of stack tokens, introduced in order
to facilitate structural modifications of the automaton be-
ing built during the interpretation process, only improves
results in the Maze10 environment. Restricting to the Uni-
form/Random combination, this advantage vanishes (see ta-
ble 3). More precisely, on Maze10, only restricting to Uni-
form results in Random still significantly outperforming Fin-
ish on average (see table 3), and such is the case too for
Node/Label with respect to All, with even more significance.
So, the incompatibility on Maze10 lies between Node/Label
and Random.

Nevertheless, this phenomenon is difficult to explain. In
[4], it was shown that the kind of structures necessary to
perform optimally in Maze10, E1 and E2 are very different
from one another. It is likely that a difference in the token
language would result in a different probability of obtaining
this or that structure, but the corresponding analysis is at
the moment beyond our reach. If this assumption appears
to be true, this means that the token language itself has to
be specifically tuned for each particular problem.

Quite surprisingly, the Contradiction/Non-Contradiction
alternative does not systematically make significant differ-
ence either. As a matter of fact, the difference is significant
in average fitnesses for both alternatives only on E1. It
could have been expected that biasing the population to-
wards meaningful condition parts would systematically re-
duce the search space towards efficient automata, but this
does not seem to be the case, even if the Non-Contradictory
language seems to perform slightly better in all experiments.
Here, we must take into account the fact that the Non-
Contradictory language induces more introns in the geno-
type, as many conditions are simply ignored once put upon
an edge. So again, there is probably a trade-off between
a more efficient search, thanks to more meaningful edges,
and degradation of performances because of the genotype
bloat. Future work will investigate this assumption by try-
ing much shorter genotypes, leaving less room to introns,
and/or adding some parsimony pressure to the fitness. If
our assumption is true, we should observe even better results
on average when exploring a space biased towards shorter
genotypes.

Finally, from the results of section 5.3, it is clear that,
even if the improvement in performance has a serious impact



envir. LCS type perf. LCS PR(%) NG NT NT/LCS
Maze10 XCSM 15.1 7,000 100 10 54,000 7.7
Maze10 XCSMH 6.1 6,500 27.5 5,300 104.106 16,000

E1 ACS (BSmax = 1) 4 4,400 92 2,500 36.106 8,100
E1 ACS (BSmax = 2) 3.3 1,200 22.5 6,900 40.107 337,000
E2 ACS (BSmax 2 or 3) 6.5 2,000 99 460 67.105 3,300

Table 6: Same comparison as in table 5 between the new version of ATNoSFERES (assuming only Uniform
mutation and Random default node action), and LCSs. This time, performance comparisons can be given on
E1 against ACS with BSmax = 2.

on convergence time, this impact is still far form sufficient
to make ATNoSFERES-II competitive in speed with ACS,
[11, 9] and XCSMH [8], the most efficient Michigan-style
LCSs (the case of XCSM can be ignored due to the much
higher efficiency of XCSMH). We feel that this conclusion
advocates once again for the more general claim that:

• the Pittsburgh approaches are often more robust than
Michigan ones and, given enough time, can often ob-
tain better performances, but

• they are generally much slower, which results in poorer
performance under strong CPU time constraints.

7. CONCLUSION
In this paper, we have studied the effect on the perfor-

mance of several modifications of the Pittsburgh style sys-
tem ATNoSFERES. Some of these modifications, such as a
different encoding of the token language, have been demon-
strated to have a statistically significant impact on the per-
formance. Other modifications, such as the deterministic
versus stochastic behavior of the automaton, or the pres-
ence versus absence of contradictions on the label of edges,
have given less conclusive results.

In some cases, the effect of these variations have not been
clearly explained so far: further investigations are necessary
to change the assumptions we made about these phenomena
into unquestionable explanations.

Anyway, one clear result of this paper is that, thanks
to some of these modifications, ATNoSFERES-II was able
to find the best CS-based controllers known so far in the
Maze10, E1 and E2 environments. However, it should be
noticed that this improvement in performance was not ac-
companied by a clear improvement in convergence speed.
This last assertion, as well as general considerations known
as the Michigan vs Pittsburgh debate, are a strong incentive
to try to design a Michigan-style system based on the same
representation as ATNoSFERES. We hope that the studies
conducted here will help in making this future system more
efficient.
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