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Permutation owshops with exat time lags to minimize maximumlatenessJulien FondrevelleMACSI Projet LORIA-INRIA Lorraine , Eole des Mines de Nany, Par de Saurupt, 54042 Nany,Frane,E-mail: julien.fondrevelle�loria.frAli AllahverdiDepartment of Industrial and Management Systems Engineering, College of Engineering andPetroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait ,E-mail: allahverdi�ku01.kuniv.edu.kwAmmar Oulamara and Marie-Claude PortmannMACSI Projet LORIA-INRIA Lorraine , Eole des Mines de Nany, Par de Saurupt, 54042 Nany,Frane,E-mail: foulamara, portmanng�loria.frAbstratIn this paper, we investigate the m-mahine permutation owshop sheduling problem where exattime lags are de�ned between onseutive operations of every job. The objetive is to minimizethe maximum lateness. We introdue di�erent job types, depending on their time lags. We studypolynomial speial ases and provide a dominane relation. We derive lower and upper bounds thatare integrated in a branh-and-bound proedure to solve the problem. We perform a omputationalanalysis to evaluate the eÆieny of the proposed method.Keywords : Flowshop, exat time lags, maximum lateness, dominane relation, branh-and-boundproedure
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1 IntrodutionWe onsider the problem of sheduling n jobs in an m-mahine permutation owshop where thereexist exat time lags between the operations of every job. Eah job j is proessed suessively onthe mahines 1; 2; : : : ;m for pj;1; pj;2; : : : ; pj;m time units respetively. Eah mahine an proess atmost one job at a time. Moreover, the time elapsed between every ouple of suessive operations ofthe same job must be equal to a presribed value (exat time lag). We arbitrarily de�ne the timelag between the ompletion time of the operation on the upstream mahine and the starting timeof the subsequent operation, proessed on the downstream mahine (stop-start time lag). Sine theproessing times are deterministi and known in advane, it is equivalent to onsider start-start orstop-stop time lags. When there exists at least one positive exat time lag, permutation shedules, i.e.shedules where the job sequenes are the same on all the mahines, are no longer dominant, even withtwo mahines. Nevertheless, we onsider here only permutation shedules, whih are ommonly usedin industrial appliations. The aim is to �nd a feasible shedule that minimizes the maximum lateness.The owshop problem with exat time lags (or exat delays) is a partiular ase of the owshopwith minimal and maximal time lags. In this situation, the waiting times between the operations arelower- and upper-bounded. Our problem orresponds to the ase where for eah ouple of onseutiveoperations, the minimal and maximal time lags are equal. Besides, it must be noted that the exattime lag onstraints generalize the lassial no-wait onstraints, for whih the waiting time betweensuessive operations equals 0. The no-wait requirement an be found in industries where produtsmust be proessed ontinuously through the stages in order to prevent degradation. Without loss ofgenerality, we onsider here the situation in whih the time lag is an integer value (positive or negative).The ase of negative time lags orresponds to job overlapping. This an be used to model a sequene-independent setup time that an be performed while the job is still in proess on the preeding mahineor a removal time that an be exeuted while the job is already in proess on the sueeding mahine.Flowshop problems with no-wait and separate setup times exist in several real situations, for instanein hemial, steel or plasti industries ([Allahverdi and Aldowaisan,01℄). Another example arises whenlot-sizing is taken into aount. The �rst item or subset of the lot may be available for proessing ona mahine before the ompletion of the last items on the preeding mahine.2



When the exat time lag is positive, the job has to wait for a presribed amount of time between themahines. This may model a transportation time, a ommuniation delay or an additional proessingthat does not require any mahine. Detailed examples of industrial appliations of sheduling prob-lems with time lags an be found in [Deppner,04℄.Shop problems with time lags have been extensively studied in the sheduling literature, but inmost ases, only minimal time lags are onsidered (see for instane [Szwar,86℄, [Dell'Amio,96℄,[Bruker and Knust,99℄, [Janzewski and Kubale,01℄). [Bruker et al.,99℄ show that various shedulingproblems, inluding owshop with minimal and maximal time lags, an be redued to single-mahineproblems with minimal and maximal time lags between jobs. They propose a branh-and-bound al-gorithm to minimize the makespan. [Finke et al.,02℄ propose a general model for the two-mahinepermutation owshop with minimal time lags and show that this problem an be polynomially solvedusing an extension of Johnson's algorithm ([Johnson,54℄). [Fondrevelle et al.,05℄ study the problemof minimizing the makespan in a permutation owshop with minimal and maximal time lags. Spe-ial ases are disussed and a branh-and-bound proedure is developed for the m-mahine prob-lem. Conerning the no-wait ase, many artiles investigate sheduling problems with this onstraint.[Hall and Sriskandarajah,96℄ provide a survey of the researh on this topi. From a omputationalomplexity point of view, the two-mahine no-wait owshop problem of minimizing maximum late-ness has been shown to be NP-hard ([Roek,84℄). This implies that the problem under study isNP-hard as well. The two-mahine no-wait owshop with separate setup times and maximum late-ness as objetive funtion is addressed by [Dileepan,04℄. Only a dominane relation and speial asesare provided. [Fondrevelle et al.,04℄ study the same problem where separate removal times are alsoonsidered. Speial ases are presented and a branh-and-bound algorithm is proposed. To the bestof our knowledge, no solution method has been developed for the general problem onsidered in thispaper.The rest of the paper is organized as follows: setion 2 introdues the notations used and de�nesdi�erent types of jobs. In setion 3, polynomial ases are presented and a dominane relation isproposed for two-mahine problems. In setion 4, lower and upper bounds are developed and integratedin a branh-and-bound proedure and some omputational results are disussed in setion 5.
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2 Notations and de�nitionsIn this paper, we use the following notations:� n: number of jobs� m: number of mahines� pj;k: proessing time of job j on mahine k� �j;k: exat time lag for job j between mahine k and mahine k + 1� Cj;k: ompletion time of job j on mahine k� dj : due date of job j� Lj = Cj;m � dj : lateness of job jThe aim is to determine the job ompletion times on every mahine so that all the onstraints aresatis�ed and the riterion Lmax = maxfLj=1 � j � ng is minimized. Sine the maximum latenessis a regular riterion, semi-ative shedules (i.e. left-shifted shedules) are dominant and we will onlyonsider suh shedules.We state the following de�nition, whih will be useful in the rest of the paper.De�nition. 1 The lateness of eah job an be expressed depending on the ompletion time on anymahine as follows: Lj = Cj;k � d0j;k where d0j;k = dj �Pk�t�m�1(�j;t + pj;t+1) is the due date for jobj on mahine k.Proof. The lateness of job j is de�ned as Lj = Cj;m � dj . Due to the exat time lag onstraints, theompletion time of job j on any mahine i an be omputed from the ompletion time on the sueedingmahine: Cj;i = Cj;i+1 � pj;i+1 � �j;i. By indution, we have Cj;k = Cj;m �Pk�i�m�1(�j;i + pj;i+1),whih leads to the stated formula (see Figure 1). �Aording to the value of eah exat time lag, we will distinguish between the following job types:� The overing-shape jobs, for whih there exists a mahine k suh that the proessing period onany other mahine is inluded in the proessing period on mahine k: 8 1 � i � m;Cj;i � pj;i �4



pj;1 �j;1 �j;2
d0j;2d0j;1 dj

pj;2 pj;3
Figure 1: Due date on eah mahineCj;k � pj;k and Cj;i � Cj;k (see Figure 2). Depending on the mahine index k, suh a job will bealled k-overing-shape. pj;1�j;1 pj;2 �j;2pj;3 �j;3 pj;4

Figure 2: Covering-shape job� The no-overing-shape jobs, for whih the proessing periods on the mahines are all disjoint.This orresponds to the ase where the exat time lags are non-negative: 8 1 � i � m�1; �j;i � 0(see Figure 3).
�j;3 pj;4

pj;1 �j;1 pj;3�j;2 = 0pj;2
Figure 3: No-overing-shape job� The mix-overing-shape jobs, whih do not belong to the previous job lasses (see Figure 4).5



pj;1 �j;1 pj;2 �j;2pj;3pj;4 �j;3
Figure 4: Mix-overing-shape job3 Speial ases3.1 Polynomial asesTheorem. 1 If, for a given mahine k, all the jobs are k-overing-shape, then an optimal shedule isobtained by using the Earliest Due Date (EDD) rule on the due dates d0j;k on mahine k.Proof. Suppose that all the jobs are k-overing-shape. Consider an arbitrary shedule where thejob sequene on mahine k is � = (�(1); �(2); : : : ; �(n)). Due to the de�nition of k-overing-shapejobs, the earliest starting time for the �rst job sheduled �(1) will be on mahine k and the latestompletion time for that job will be on mahine k as well. Thus, without loss of generality, �(1) willstart on mahine k at time 0 and will �nish on this mahine at time C�(1);k = p�(1);k. The proessingon the other mahines will be imposed by the exat time lags. Similarly, the seond job �(2) willbe proessed on mahine k between C�(1);k and C�(1);k + p�(2);k, while the proessing periods on theother mahines are inluded in this time interval. More generally, the i-th job �(i) will be sheduledon mahine k between P1�h�i�1 p�(h);k and P1�h�i p�(h);k. Therefore, the problem is equivalent toa single-mahine problem with proessing times pj;k and due dates d0j;k on this mahine. It is a wellknown result that EDD provides an optimal shedule for this problem. �This result generalizes the speial ases presented in [Fondrevelle et al.,04℄ for only two mahines. Inase of no-wait owshop with separate setup and removal times, a job j with proessing, setup andremoval times on mahine k respetively denoted by tj;k, sj;k and rj;k and due date ej , an be replaedin our model by a job j with proessing time pj;k = sj;k + tj;k + rj;k on mahine k, exat time lag�j;k = �rj;k � sj;k+1 between mahines k and k + 1 and due date dj = ej + rj;m.
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3.2 Dominane relations for two-mahine problemsWe extend the dominane relations presented by [Dileepan,04℄ for the two-mahine no-wait owshopwith separate setup times to the two-mahine owshop with exat time lags. Consider a sequene� = (S1; i; j; S2) where job i preedes immediately job j, and a sequene � = (S1; j; i; S2) whih isidential to �, exept that j preedes immediately i (where S1; S2 denote partial sequenes). Theobjetive is to �nd onditions under whih � dominates �.As mentioned earlier, the no-wait owshop with setup times is a partiular ase of our problem.Following our notations, the onditions proposed in [Dileepan,04℄ an be expressed as follows:Property. 1 [Dileepan,04℄� Case A: If{ pi;1 + �i;1 � min1�u�nfpu;2 + �u;1g,{ pj;1 + �j;1 � min1�u�nfpu;2 + �u;1g,{ pi;2 + �i;1 � pj;2 + �j;1{ and di � dj.Then solution � dominates solution �.� Case B: If{ pi;1 + �i;1 � max1�u�nfpu;2 + �u;1g,{ pj;1 + �j;1 � max1�u�nfpu;2 + �u;1g,{ pj;2 + �j;1 � pi;2 + �i;1{ and d0i;1 � d0j;1.Then solution � dominates solution �.The general ideas used to establish this property are the following:� Case A: If 7



{ in solution � there is no idle time on mahine 2 between the end of S1 and the ompletionof j,{ in solution � there is no idle time on mahine 2 between the end of S1 and the ompletionof i,{ mahine 1 beomes available sooner after j in solution � than after i in solution �,{ and i has a smaller due date than j on mahine 2,then solution � dominates solution �.� Case B: If{ in solution � there is no idle time on mahine 1 between the end of S1 and the ompletionof j,{ in solution � there is no idle time on mahine 1 between the end of S1 and the ompletionof i,{ mahine 2 beomes available sooner after j in solution � than after i in solution �,{ and i has a smaller due date than j on mahine 1,then solution � dominates solution �.In eah ase of Property 1, the �rst two onditions are suÆient to avoid idle time as mentionedpreviously. However, it is possible to state other onditions that are less restritive and for whih theresult still holds. These onditions apply to more instanes than the previous ones. Let x denote thelast job of the partial shedule S1 (if S1 is empty, let px;1 = px;2 = �x;1 = 0). The new onditions anbe expressed as follows:Property. 2 � Case A0: If{ pi;1 + �i;1 � min(px;2 + �x;1; pj;2 + �j;1),{ pj;1 + �j;1 � min(px;2 + �x;1; pi;2 + �i;1),{ pi;2 + �i;1 � pj;2 + �j;1{ and di � dj. 8



then solution � dominates solution �.� Case B0: If{ pi;1 + �i;1 � max(px;2 + �x;1; pj;2 + �j;1),{ pj;1 + �j;1 � max(px;2 + �x;1; pi;2 + �i;1),{ pj;2 + �j;1 � pi;2 + �i;1{ and d0i;1 � d0j;1.then solution � dominates solution �.A similar proof to that presented in [Dileepan,04℄ an be used to demonstrate that in ase A0 or inase B0, solution � dominates solution �.It would be possible to generalize this to a problem with an arbitrary number m of mahines, but asm inreases, the onditions beome more and more omplex and restritive.4 A branh-and-bound methodIn this setion, we propose a branh-and-bound algorithm to solve the problem of minimizing themaximum lateness in an m-mahine permutation owshop with exat time lags. As mentioned earlier,we an restrit the searh for an optimal solution to semi-ative shedules. For a given job sequene �,the optimal plaement of the jobs with respet to � on all the mahines an be determined polynomially,by sheduling the jobs �(1); �(2); : : : ; �(n) suessively as soon as possible. This result is similar tothat presented in [Fondrevelle et al.,05℄ and leads us to use a lassial sheme based on Ignall andShrage's method ([Ignall and Shrage,65℄). Nodes at depth k of the searh tree are assoiated withinitial partial sequenes of k jobs. At eah separation, a job is added at the end of the urrent partialsequene. A depth-�rst searh rule is adopted in the branhing proedure. An initial upper bound isprovided by the heuristis presented in Setion 4.2. The value of the upper bound is then updatedeah time a new solution with lower objetive value is found.4.1 Lower boundsSuppose that the initial partial sequene is � = (�(1); �(2); : : : ; �(h)), in whih the �rst h jobs havebeen sheduled. The ompletion times and the lateness of these jobs are exatly determined.9



We �rst de�ne m lower bounds LB1; LB2; : : : ; LBm where LBk(k = 1; : : : ;m) proeeds as follows:for the jobs that have not been sheduled yet, we only take into aount the proessing on mahinek (by relaxing the apaity onstraints on all the mahines exept k and possibly aepting that theoperations on these mahines might start before time 0). As de�ned in Setion 2, the lateness Ljof eah job j an be omputed from the ompletion time on mahine k and the due date on thismahine, i.e. Lj = Cj;k � d0j;k. Using a similar argument as in the proof of Theorem 1, we ouldshow that the relaxed problem is equivalent to a single-mahine problem for the remaining jobs, withproessing times pj;k and due dates d0j;k and where the mahine beomes available at time C�(h);k(the last job sheduled in the urrent partial sequene is denoted by �(h)). An optimal solution tothis problem is provided by EDD applied on d0j;k. Let LEDDk be the orresponding maximum latenessvalue. Then lower bound LBk is given by LBk = max(L�; LEDDk ) where L� =maxfL�(i)=1 � i � hgdenotes the maximum lateness of the urrent partial shedule. The global lower bound LB is de�nedby LB = maxfLBk=1 � k � mg.4.2 Upper boundsFor 1 � k � m we de�ne the heuristi Hk as follows: apply EDD on the due dates d0j;k on mahine kand onstrut the orresponding shedule. The best riterion value obtained an be used as an initialupper bound and will be denoted by HEDD.We also propose to improve this value through an iterative proedure based on NEHmethod ([Nawaz et al.,83℄).The priniple of this frequently used sheme is as follows: starting from an initial job list, the sheduleis onstruted step by step by suessively inserting the jobs of the list at the best position in thepartial sequene, so as to minimize the objetive funtion. We hoose to apply NEH iteratively apresribed number of times: at eah iteration, the �nal sequene obtained at the previous step is usedas initial job list. The sequene with the best value throughout the iterations is kept as solution.Depending on the riterion used to onstrut the initial job list, we de�ne three heuristis NEH(TT ),NEH(JL) and NEH(HEDD):� In NEH(TT ), the initial list is sorted in dereasing order of total proessing time P1�k�m pj;kof jobs.� In NEH(JL), the initial list is sorted in dereasing order of total lengthP1�k�m�1(pj;k+�j;k)+10



pj;m of jobs.� In NEH(HEDD), the initial job list orresponds to the best sequene provided by the heuristiHEDD.5 Computational resultsWe onduted a omputational analysis to evaluate the performane of the proposed solution proe-dure. In the ase of two mahines, we also ompared this new general approah with the one that weused in [Fondrevelle et al.,04℄ for a more spei� problem. Our algorithms were oded in C, and theomputational experiments were run on a PC Pentium, 1.2 GHz.We �rst used the same instanes as in [Fondrevelle et al.,04℄ as benhmarks. These 10-instane lassesorrespond to two-mahine no-wait owshop problems with separate setup and removal times, whihwere shown to be partiular ases of our problem (mix-overing-shape jobs only, with partial overingbetween every ouple of suessive operations). Details about the generation of these lasses are givenin the Appendix A.We also generated new benhmark lasses for 5-mahine problems, aording to the lassi�ation givenin Setion 2. Eah lass ontains 10 instanes and the number of jobs is set to 16, exept for lass 12in whih n = 14.� Class 10 orresponds to no-overing-shape jobs only, the proessing times of whih are randomlydrawn between 20 and 50. The time lags are in the interval [0; 100℄.� Class 11 orresponds to mix-overing-shape jobs only, the proessing times of whih are randomlydrawn between 20 and 50. �j;k is generated between �pj;k+1 and 0 so as to have partial overingbetween every ouple of suessive operations of the jobs.� Classes 12 and 13 orrespond to overing-shape jobs only. For eah job j, a random integeris drawn between 1 and 5 to determine the mahine kj suh that j is kj-overing-shape. Theproessing times on all the mahines exept kj are generated between 20 and 50, and the timelags that are not related to kj are in the interval [�20; 20℄. pj;kj , �j;kj�1 and �j;kj are omputedsuh that j is kj-overing-shape. Although suh problems do not orrespond to real situations,11



Table 1: Performane of the heuristisClass HEDD NEH(HEDD) NEH(TT ) NEH(JL)1 22.1 11.9 8.6 8.92 24.3 9.1 6.3 7.33 17.7 4.1 2.4 2.94 12.9 4.9 5.1 4.25 9.8 4.8 3.3 4.86 32.9 12.5 10.9 10.97 25.9 10.3 12.9 8.68 29.1 13.7 8.0 8.49 14.8 4.1 3.3 5.310 38.9 5.6 5.8 5.311 33.5 11.5 7.4 9.412 26.2 7.1 5.5 6.013 32.5 9.1 6.4 8.0Average 24.7 8.4 6.6 6.9it ould be interesting to apply our solution method to them in order to evaluate its eÆienyin these ases.Following the method proposed in [Potts and Van Wassenhove,82℄, we generated the due dates in arange [Px; Py℄, where P is a lower bound on the makespan and x = 1 � T � R=2, y = 1 � T + R=2.T is the tardiness fator, whih was set to 0.6 and R is the due date range set to 0.75.We �rst ompared the performane of the heuristis presented in 4.2. For eah instane, the relativeerror (in %) between the solution found by the heuristi onsidered and the optimal solution, obtainedwithout time limit, was omputed. The average values for eah lass are given in Table 1. Sine theCPU times for the heuristis are very small (less than 0.1 seond), we do not report them here.As an be seen from Table 1, HEDD is outperformed by the iterative NEH-based methods. Thisresult holds for every instane. NEH(HEDD) is slightly outperformed by NEH(TT ) and NEH(JL),the average relative errors of whih are in the same range and do not inrease with the number ofmahines. Moreover, for eah of these heuristis, there exists at least one instane in eah lass onwhih the heuristi dominates the two others.To evaluate the quality of the branh-and-bound proedure, we performed it on eah instane witha omputational time limit of 1200 seonds. For eah lass, we report in Table 2 the number Nof problems for whih the algorithm ahieved the time limit, the average omputational time t (in12



Table 2: Performane of the branh-and-bound algorithmClass N t tdom N 0 t0 t0dom1 0 13.8 9.2 1 107.1 /2 0 13.2 10.7 1 171.6 /3 0 22.4 19.4 2 121.6 /4 0 13.6 8.5 4 251.7 /5 0 35.5 14.2 1 59.7 /6 0 0.4 0.3 0 99.7 /7 0 3.7 2.9 1 88.2 /8 0 8.9 6.5 0 166.4 153.69 1 10.2 5.7 3 182.5 139.710 0 155.3 / / / /11 0 115.7 / / / /12 0 71.2 / / / /13 3 209.4 / / / /seonds) for the problems optimally solved before the time limit, and the average omputational timetdom (in seonds) when the dominane relation is taken into aount (only for 2-mahine problems).The orresponding values obtained with the method proposed in [Fondrevelle et al.,04℄ are indiatedwith a prime symbol. Note that the dominane test used in [Fondrevelle et al.,04℄ is more restritivethan the one we use here and onerns only lasses 8 and 9.If we ompare the performane of our new branh-and-bound proedure and that of the one proposedby [Fondrevelle et al.,04℄, we an note a signi�ant improvement in omputational time: all the two-mahine problems exept 1 are optimally solved by the new algorithm and the average omputationaltime is divided by a fator between 5 and 250 exept for lass 5. It ould be surprising that a methoddevelopped for a more general problem outperforms a solution approah dediated to a partiular ase.Suh a gain is partly due to the improvement of the lower bound. Moreover, the dominane relation,whih is more frequently used than the previous one, appears to perform quite well sine it results insaving 25% of the omputational time in average. As far as the 5-mahine problems are onerned,it seems that problems with overing-shape jobs only are more diÆult to solve than problems withno-overing-shape jobs only or problems with mix-overing-shape jobs only.We also onduted another series of experiments to evaluate the inuene of the number of mahinesm on the performane of the branh-and-bound. Three new lasses denoted by 11A, 11B and 11Cwere generated similarly as lass 11, with m equal to 2, 10 and 15 respetively. Table 3 presents the13



Table 3: Inuene of m on the omputational timeClass m N � Q � = �=Q � = �=m11A 2 0 5.6 5:086 � 106 1:10� 10�6 0:55 � 10�611 5 0 115.7 47:50 � 106 2:44� 10�6 0:48 � 10�611B 10 1 500.9 111:85 � 106 4:48� 10�6 0:45 � 10�611C 15 5 1449.9 223:35 � 106 6:49� 10�6 0:43 � 10�6number N of problems (out of 10) for whih the algorithm ahieved the time limit (1200 seonds)and the average omputational time � (in seonds) when no time limit is imposed. Additionnally, wereport the average number Q of nodes evaluated (i.e. how many times the lower bound is omputed),� = �=Q and � = �=m. Therefore � orresponds to the average time to evaluate one node (in seonds).Without time limitation, the maximum CPU time was 3720 seonds for an instane with 15 mahines.We an onsider the value of � as onstant sine it varies from 0:43 � 10�6 to 0:55 � 10�6. Thisdoes not only hold on average, but also for every instane. By de�nition, this means that the averagetime for the branh-and-bound algorithm to evaluate one node inreases linearly with the numberof mahine, whih is in agreement with the omputational omplexity of the lower bound (O(m)).Besides, the number of nodes Q seems also to be roughly linear in m. This empirial result needs tobe on�rmed or ontradited by further experiments. The inrease in the number of visited nodes ispartially explained by the fat that the lower bound beomes less tight as the number of mahinesgrows.6 ConlusionWe study the problem of minimizing maximum lateness in m-mahine permutation owshops withexat time lags between onseutive operations of the jobs. The exat time lags generalize the lassialno-wait onstraint and may be used to model no-wait problems with separate setup and removal times.A branh-and-bound method is proposed to solve optimally this NP-hard problem. The omputationalresults show that it outperforms previous algorithms and that it may be improved signi�antly in aseof two mahines using a dominane relation.
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A Appendix - Generation of the benhmarks in [Fondrevelle et al.,04℄This setion desribes how the benhmarks used in [Fondrevelle et al.,04℄ were generated. We reallthat this model orresponds to a two-mahine no-wait owshop with separate setup and removal times.Job j (j 2 f1; : : : ; ng) has a proessing time tj;k, a setup time sj;k and a removal time rj;k on mahinek (k 2 f1; 2g) and a due date ej that applies to the ompletion time on mahine 2 (the removal timeis not taken into aount to ompute the lateness of the job).9 lasses were generated aording to the following parameters:� n: the number of jobs� g: the perentage of jobs belonging to the �rst group. Jobs are divided into two groups. Pro-essing times of jobs in the �rst (resp. seond) group are in a range [1; 100℄ (resp. [40; 60℄)� ks: the ratio of maximum setup time. Setup times are generated in a range [0; ks � tmax℄ wheretmax denotes the maximum proessing time (100 or 60 depending on the group)� kr: the ratio of maximum removal time, whih is de�ned similarly as ks� R: the due date range� T : the tardiness fator.The due dates are generated as in the new benhmarks, following the method of [Potts and Van Wassenhove,82℄.All data were drawn from disrete uniform distributions and eah lass ontains 10 instanes. Table 4reports the values of the parameters for eah lass.
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Table 4: Classes of instanes used in [Fondrevelle et al.,04℄Class n g ks kr T R1 16 50% 0.5 0.5 0.6 0.752 16 50% 0.5 0.5 0.6 0.63 16 50% 2 2 0.6 0.754 16 50% 2 0.5 0.6 0.755 16 0% 0.5 0.5 0.6 0.756 16 100% 0.5 0.5 0.6 0.757 18 50% 0.5 0.5 0.6 0.758 16 50% 0.5 0 0.6 0.759 16 50% 2 0 0.6 0.75
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