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1. INTRODUCTION
The application of reinforcement learning principles to

the search of equilibrium policies in stochastic games (SGs)
has met with some success ([3], [4], [2]). The key insight
of this approach is that each agent can learn his own β-
discounted reward equilibrium policy by keeping track of
Q-values of all the agents including himself, and considering
the Q-value matrix for each state as his payoff matrix. Each
agent sees what actions other agents take, and what payoffs
they receive. There is some evidence that in practice, agents
that do not observe the actions and payoffs of other agents
(hereby denoted as imperfectly observing agents), can still
learn adversarial equilibrium (AE) policies in general-sum
SGs ([1]) using naive Q-learning. Considering the Prisoners’
Dilemma stage game (Table 1) as an abstraction of a SG,
this implies that, even by ignoring other agents’ play, agents
still learn to play DD, which is the adversarial equilibrium
joint action. The payoff received in DD can be thought of
as each agent’s security level.
It is of interest to inquire if imperfectly observing agents can
improve upon what they learn solipsistically in SGs without
global optima. In other words, whether they can get higher
payoffs than their security level. We observe that by setting
ǫ to any positive real, CC can be made arbitrarily better
for both the agents than DD. The distinguishing quality of
CC is that it affords the highest payoffs to both the agents
than any other joint-action. We define joint-actions such
as CC, with some abuse, as a best compromise equilibrium
or BCE. It is an (unstable) equilibrium, since both agents
have an incentive to deviate from it profitably, and both are
aware of this fact. Since CC is not a stable equilibrium, the
crux of learning is to make agents force one another into
playing it rather than DD. Toward this end, we present
a reinforcement learning algorithm that incorporates a sig-
naling faculty (endowed to the agents) and an additional
payoff interpretion rule. The objective of the learning agent
is to learn a BCE policy instead of an AE policy under the
β-discounted reward criterion.
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Table 1: Prisoners’ Dilemma game

C D

C 1 + ǫ, 1 + ǫ 1 - 2ǫ, 1 + 2 ǫ

D 1 + 2 ǫ, 1 - 2 ǫ 1 - ǫ, 1 - ǫ

2. FRAMEWORK
A two-agent general-sum stochastic game is represented

by a set of payoff matrices {U1, . . . , Uz}, corresponding to
a set of states {s1, . . . , sz}. Each payoff matrix is of size
A1 ×A2, where Ak is agent k’s action set. Each entry of Us

consists of: rk(i, j), the payoff agent k will get when the two
agents play actions i, j in s, and p(s, i, j), the state transition
probability vector, giving the probability of moving to every
state, from 1 to z, on taking actions i, j in s. A policy is a
mapping s → i. The β-discounted reward for agent 1 when
the game is in state s is,

v
1
β(s, π, σ) =
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n=0

β
n
r
1
n (1)

where π is agent 1’s policy and σ is agent 2’s and r1
n is

agent 1’s payoff in the state the game finds itself at step
n. β ∈ [0, 1). An analogous definition can be given for
agent 2. A pair of policies for the two agents, (π, σ), is a
Nash equilibrium for the stochastic game, if ∀s, v1

β(s, π, σ) ≥

v1
β(s, x, σ), and v2

β(s, π, σ) ≥ v2
β(s, π, y), where x and y are

other policies. In an adversarial equilibrium (AE), not only
may an agent not deviate profitably from its equilibrium
policy, but additionally the deviation will profit the other
agent if he does not deviate. Given an AE (π, σ), we define
the pair (π̂, σ̂) as a best compromise equilibrium (BCE) if
∀ s:

(π̂, σ̂) = arg max
(x,y) 6=(π,σ)

min
vk

(v1
β(s, x, y), v2

β(s, x, y)) (2)

As learning conditions, first of all, we assume that agents
are imperfectly observing. We assume that the SG has a
unique AE and a BCE. Naturally, we assume that it does
not have a global optimal. Given the imperfect observability,
we require that agents know at least their adversarial policy
payoffs as well as their payoffs when others deviate from
it; the latter we assume are individually maximum for the
agents. Finally, we assume that all payoffs are non-negative
reals. The learning task is a non-trivial one since payoffs in
the BCE might be lower for an agent than in some other
joint-action.



3. THE ALGORITHM
The agents are given a certain number of rounds L to learn

by playing the SG, and another number of rounds P , to ex-
ecute fixed policies of their choosing. Each round consists
of a fixed number of agent joint-actions; in fact it approxi-
mates an “episode”. The objective manifests in the form of
maximizing average payoff in the P rounds. At the heart of
our algorithm lies a signaling faculty that we endow to the
agents. Each agent has the option of executing an action
with or without sending a message to the other agent. Thus
each action has a boolean variable, M , to indicate if the ac-
tion is with or without a message. Similarly, each state has
a boolean variable, N to indicate if a message was received
in the state or not. The action and state space of each agent
thus doubles. Each agent maintains Q-values for all states
and all individual actions, which are initialized to 0. During
the L learning rounds, agents update Q-values using naive
Q-learning. However, before updating a Q-value, each learn-
ing agent k assigns a new value to received payoff rk using
the following rule, which we label BCE Q: (Rk

ae is his AE
payoff, while Rk

max, his payoff when the other agent deviates
from the AE):

If the agent neither sends nor receives a message, his
payoff is unchanged if it is less than Rk

max, otherwise
it is set to 0. If the agent either only sends a message
without receiving one or receives one, without sending
one, his payoff is (rk −Rk

max) if rk is higher than Rk
ae,

otherwise rk is set to -Rk
max. If the agent receives as

well as sends a message, his payoff is (Rk
max − rk), if it

is less than Rk
max but higher than Rk

ae, otherwise it is
set to 0.

The principle of this algorithm is as follows: agents can avoid
the AE by negating severely the effect of deviating from
it. Then, of the remaining joint-actions, there remains the
problem of assymetrical payoffs in which one agent gets less
than what he would in the BCE. Communication can poten-
tially give him a much higher payoff, but it also risks giving
him a much lower payoff if the other agent does not wish
to communicate. Only if the payoffs are symmetrical would
both agents want to communicate. In the P rounds, agents
execute their optimal policies just as in naive Q-learning.

4. EXPERIMENTAL RESULTS
We conducted experiments on a stochastic game with 5

states, numbered 0 to 4. In each state, each agent can take
two actions, 0 or 1. Each of four joint-actions from state
0, leads a specific state (and to no other) from 1 to 4 with
probability 1. Any joint action from any other state leads
to state 0. Payoffs are (0, 0) for any joint-action in state
0, and they are according to Table 2 in other states (agent
1 is row). Each “action” in this table represents a 2-step
agent policy. The exponents indicate state number. For
example, the action pair {00, 10} implies that starting in
state 0, agent 1 took two successive 0 actions, while agent
2 took a 1 followed by a 0. The AE of the SG is thus the
policy {11, 11} when starting in state 0, while the BCE is
{00, 00}. AE gives a 2-step payoff of (5, 5) while BCE gives
(7.5, 7.5). We compared a pair of BCE Q learners with a
pair of naive Q and Nash Q learners on this SG. Results of
the agents’ performance in the P rounds is shown in Table
3. L and P equaled 50,000 each, and there were a 100 runs.
Round length was 3.

Table 2: Payoff matrix for the SG

00 01 10 11

00 (15,15)1 (0,50)1 (2,2)2 (1,400)2

01 (50,0)1 (1,1)1 (1,1)2 (2,2)2

10 (2,2)3 (1,1)3 (1,1)4 (2,2)4

11 (400,1)3 (2,2)3 (2,2)4 (10,10)4

Table 3: Performance during P rounds

Average Payoff Variance
(Q, Q) 3.90, 3.90 0.02, 0.02
(Nash Q, Nash Q) 5.23, 6.22 4.64, 4.82
(BCE Q, BCE Q) 7.51, 7.34 0.21, 0.34

5. CONCLUSIONS
In game-theoretic terms, agents can improve upon their

equilibrium payoffs by signing a contract of playing chosen
joint-actions, if the payoff matrix is known. A contract has
a correlational property; it requires the participation of all
the agents for it to be self-enforceable as an equilibrium
is, and centralized mediation. The idea of contracts ex-
tends to that of a correlated equilibrium, and this idea has
been utilized in the Correlated Q-learning algorithm [2] for
SGs with perfectly observing agents and a central mediator.
Learning non-equilibrium policies that are self-enforceable,
when agents are imperfectly observing and there is no cen-
tral mediator, is thus a challenging problem. In this paper
we have attempted to address this issue by introducing the
notion of payoff evaluation or interpretation and BCE. To
relate BCE to typical reinforcement learning problems such
as grid-games, considering the example of Chicken, a BCE is
the joint-policy where both agents eschew the corridor and
go for the barrier. The BCE Q rule for payoff interpreta-
tion demands a certain knowledge of the SG which normally
agents are expected to learn, and that the SG have certain
restrictive properties; this limits the applicability of the al-
gorithm. This should not be surprising for such an algo-
rithm considering that self-enforcement of non-equilibria in
SGs can be shown to be impossible in the general case for
imperfectly observing agents. Our research is more veered
toward distributed reinforcement learning of goal-oriented
tasks, and hence the rules proposed are meant to exploit
the structure of the SGs that model these tasks.
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