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Title : Recursive Principal Components Analysis

Running title : Recursive PCA

Abstract : A recurrent linear network can be trained with Oja’s constrained

Hebbian learning rule. As a result, the network learns to represent the tempo-

ral context associated to its input sequence. The operation performed by the

network is a generalization of Principal Components Analysis (PCA) to time-

series, called Recursive PCA. The representations learned by the network are

adapted to the temporal statistics of the input. Moreover, sequences stored in

the network may be retrieved explicitly, in the reverse order of presentation,

thus providing a straight-forward neural implementation of a logical stack.

Keywords : Unsupervised Learning, Recursive PCA, Time Series, Recur-

rent Neural Network, Logical Stack.
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1 Introduction

Among the most interesting neural representations of time are recurrent net-

works, where neural activities in the recurrent loops reflect the past values of a

time-varying input. These representations are biologically plausible, robust to

noise and can handle temporal deformations of the signal. A very influential

example illustrating this is the Simple Recurrent Network [Elman, 1990].

The main difficulty with recurrent networks has been to find adequate and ef-

ficient training algorithms. Various supervised and unsupervised methods have

been proposed. In the supervised case, a network has to predict the next value of

a time series given its predecessors [Weigend et al., 1990], and error gradient de-

scent is classically used to train the network [Williams and Zipser, 1989,Hochre-

iter and Schmidhuber, 1997]. In general, these methods encounter difficulties to

learn long-term dependencies [Bengio et al., 1994]. In most unsupervised meth-

ods, sequences of inputs are stored as attractors of the dynamics of a recurrent

network [Hopfield, 1982,Morita, 1996]. However, attractor networks suffer from

very limited capacity.

One common aspect of these methods is that they optimize the internal

states of a recurrent network to a particular task. Recently, it has been argued

that this approach cannot account for the general ability of neural circuitry to

carry out several real-time computations in parallel [Maass et al., 2002]. This,

combined with the above mentioned difficulties to train recurrent networks, has

motivated so-called ’echo states’, or ’liquid states’ approaches. In this paradigm,

the rich non-linear dynamics of a randomly connected recurrent neural network
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provides an internal state. A supervised feed-forward classifier network, which

is the second part of the machine, uses this internal state as its input [Maass and

Markram, 2003]. Although these methods do provide interesting results, they

remain unsatisfactory from a descriptive point of view. Indeed, the synaptic

efficiencies of their recurrent connections are chosen at random; the difficulty of

learning a time-dependent task has been shifted from the recurrent network to

the feed-forward classifier, for which a better theory is available. At the same

time, the ambition of training a recurrent neural network has been given up,

which underlines our lack of understanding of these networks.

In this paper, an unsupervised learning algorithm for recurrent networks

is proposed. Following [Maass et al., 2002], we do not adapt the network to

a particular task, but we rather try to make its dynamics as rich as possible.

However, instead of relying on random connections and complex non-linear dy-

namics, we use a very simple linear network, and we propose a learning rule

that enhances the dynamics of the network. This learning rule is a generaliza-

tion of Oja’s Hebbian rule [Oja, 1989], which is known to extract the principal

components of a distribution. We demonstrate that this generalized Oja rule

results in a network that efficiently stores and retrieves arbitrary sequences of

inputs. In addition, stored sequences can be retrieved in reverse order, which

provides an implementation of a logical stack.

The paper provides a detailed analysis of the learning model. Although

the proposed network is very simple, understanding its learning dynamics does

provide useful insights on recurrent networks.

4



2 A simple recurrent neural network

Consider a simple recurrent neural network, whose linear dynamics are described

by the following equation:

yt = Wxxt +
√

αWyyt−1 (1)

Here t is a discrete time index, xt is a zero-mean input vector, and yt is an

output vector. We assume that the time series (xt) is bounded and stationary.

Let n and m denote the dimensions of x and y, respectively. Wx ∈ R
n×m and

Wy ∈ R
m×m are the matrices of synaptic efficiencies, which correspond to feed-

forward and recurrent connections, respectively. We assume that matrix Wy

has eigenvalues below or equal to one, and that α is a positive gain, strictly lower

than oneNote1. Therefore, yt is bounded, and asymptotically independent of its

initial valueNote2. Hence, the distribution of the series (yt) does not depend on

the initial condition.

Oja (1989) proposed a constrained Hebbian learning rule, that trains a feed-

forward neural network to extract the principal subspace of a distributionNote3.

Here, we generalize this learning rule to our recurrent network. Intuitively, we

may consider that Oja’s rule will try to maximize the variance of the output yt,

and that yt is a compressed representation of both xt and yt−1. Maximizing

variance can thus be seen as a way to provide a rich internal dynamics. Let us

consider vector zt = [xt;
√

αyt−1]
T , where T denotes the transpose. Equation

(1) may be rewritten as:

yt = Wzt (2)
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where W = [Wx;Wy]. Applying Oja’s rule to vector zt yields the following

equations:






∆wij
x = ηyi

t

(

xj
t −

∑m
k=1 wkj

x yk
t

)

∆wij
y = ηyi

t

(√
αyj

t−1 −
∑m

k=1 wkj
y yk

t

) (3)

where η is a learning rate, and connections are updated on each time step.

In the remainder of this paper, we will study this learning model both the-

oretically (in sections 3 and 4) and experimentally (in sections 5 and 6). In

section 3, convergence of the learning dynamics is studied. In section 4, we

demonstrate that the network is able to store and retrieve sequences of inputs,

and that an objective error function is associated to this capability. In section

5, the performance of the network on a number of time series is demonstrated.

In section 6, the existence of local minima of the error function is established

experimentally.

3 Recursive PCA

In this section we propose a theoretical study of the operation performed by the

network. Oja’s rule is known to extract the principal subspace of a distribution.

Here we applied this learning rule to vector z. Hence, we expect our network

to perform something related to principal components analysis (PCA), but in

the context of a recurrent network. The purpose of this section is to formally

define what this ’something related’ is.

Before proceeding with the theoretical analysis, we shall first say that nu-

merical convergence of the weights is observed experimentally, for any stationary

input time series, and for all α ∈ [0; 1[. Convergence should be understood in a
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broad sense here: the question is whether the expected values of the weights will

settle to a stable value, given a fixed and arbitrarily small value of the learning

rate. Hence, weights are approximately constant over a small interval of time,

and W refers to their average value over such an interval. In this broad sense,

convergence of the weights through Oja’s rule does imply that the rows of W

span the principal subspace of vector z. For this reason, we base our definition

on the PCA of vector z. We define Recursive PCA as follows:

Definition: Given an input time series (xt)t∈Z, a weight matrix W, and a

value of the gain α, the distribution of vector z is entirely defined by equation

(2). Let us assume that the lines of W are orthonormal vectors that form a

basis of the m-subspace of highest variance of z. Hence, WWT is the identity

matrix of size m, and WT W is a projection onto the m-subspace of highest

variance of z. We call Recursive Principal Components Analysis the operation

of finding such a matrix W.

3.1 Existence of solutions.

The above definition does properly describe the operation that is performed by

our network; if the weights settle to stable values, then the rows of W will span

the principal subspace of z.

However, this definition is self-referent, because the distribution of z is not

defined a priori. Instead, this distribution does depend on W. Therefore the

existence of a matrix W satisfying the constraints is not guaranteed, at least

from a theoretical point of view. In order to demonstrate the existence of such

a matrix, it would be sufficient to demonstrate that weights converge through
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our generalization of Oja’s rule, which is what we observe experimentally. This

would demonstrate the existence of solutions a posteriori.

Unfortunately, such a proof could not be established. In the following para-

graphs, we will present a different proof, which involves hypotheses that are not

satisfied by our learning algorithm. In addition, the proof does not hold for

the whole interval [0; 1[ of values of α. However, this proof still demonstrates

the existence of solutions, and it has the merit to shed light on an important

distinction, between objective and subjective error functions.

3.2 Objective and subjective errors

One quantity of interest for Recursive PCA is the mean-squared reconstruction

error E between vector z and its projection WT Wz:

E =< ||z − WT Wz||2 > (4)

where < . > denotes the mean over time. This error depends on the weights

and on the distribution of vector z. However, due to the recurrent connections,

the distribution of z also depends on the weights. It is therefore possible, for a

fixed input time series, to write E as a function of only the weights: E = E(W).

We call objective error this function.

Although the objective error obviously has minima, it is wrong to assert that

these minima satisfy the constraints of Recursive PCA. As we will see in section

6, it might happen that a minimum of E is unstable through the learning rule,

because it does not satisfy these constraints. In fact, the learning rule updates

the weights in a way that maximizes the variance of the output, assuming a
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fixed distribution of z. This means that the error landscape associated to our

learning rule is not the objective error landscape E(W), but a different one. To

see this, consider a fixed value, W̃, of the weight matrix. A unique distribution

of z, denoted by z̃, results from using the set of weights W̃ in equation (2). It

is possible to consider the mean squared error Esubj(W,W̃) that results from

using z̃, and another set of weights, W:

Esubj(W,W̃) =< ||z̃ − WT Wz̃||2 > (5)

We call subjective error this error landscape. Subjective error is the error that is

taken into account by the learning rule. Note that both objective and subjective

error functions coincide for W = W̃:

Esubj(W,W) = E(W) (6)

The distinction between objective and subjective error landscapes is due

to the fact that we use a learning rule that was designed for a feed-forward

network, in a recurrent architecture. Using this learning rule to update W

results in a moving-target problem, where the minimum of the subjective error

surface might change whenever weights are updated.

For any fixed value W̃ of the weights, the classical result by Baldi and

Hornik (1988) holds: Up to equivalence, the landscape of the subjective error

EEsubj(W,W̃) has a unique minimum in W, and all its other critical points

are saddle points. Let E?
subj denote this minimum. The “moving target” of

the learning algorithm is any orthonormal matrix W? that corresponds to this
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minimum :

E?
subj = min

W
{Esubj(W,W̃)} = Esubj(W

?,W̃) (7)

A property of PCA is that there are an infinity of matrices W? that satisfy this

condition. Given one of them, if we replace W̃ with W?, then the objective

mean squared error takes on a new value:

E(W?) = Esubj(W
?,W?) (8)

A crucial question is whether the error performed by the network at the current

target, E(W?), will be lower than the current error, E(W). If this was the

case, we could use this result to demonstrate convergence of a Newton method,

and establish the existence of solutions.

Unfortunately, this is not true. As we will see in section 6, it sometimes

happens that E(W?) > E(W). For our current purpose, this negative result

means that it is not possible to demonstrate the existence of solutions by New-

ton methods. For the same reason, a proof using infinitesimal quantities and

monotonic decrease of E is not possible: the objective error does not always

decrease along the path followed by the weights during learning.

3.3 Convergence of an ideal procedure

In order to demonstrate the existence of solutions, we will demonstrate the

convergence of an iterative procedure, that finds a solution. However, the proof

involves hypotheses that are not satisfied by Oja’s learning rule. Therefore we

consider an ideal learning procedure, that has the properties we want. We shall

do this, because this proof is not about the convergence of Oja’s rule, but about
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the very existence of solutions. Indeed, this ideal procedure is a theoretical tool,

that does not correspond to a particular learning rule. The ideal procedure is

defined as follows:

• Let W denote the weights at a given time. The ideal procedure chooses a

target W?, and it updates W in the direction of W?, by a small amount.

The assumption that weights are updated in the direction of the target is

part of the ideal procedure. Note that this assumption is not true for most

learning rules. For example, during a gradient descent, the local direction

of the gradient might differ from the direction of the attractor, even if the

error surface is convex.

• Here is how the target is chosen: Given W, there exists an infinity of

possible targets W?, that minimize Esubj(W
?,W). These possible targets

belong to a subspace, which is characterized by P? = W?T W?, where the

projection P? is unique and does not depend on the choice of W?. We

assume that the ideal procedure picks the closest target, so that W−W?

is orthogonal to the subspace of possible targets.

We will compare a modification of P to the induced change of P?. If P moves

faster than P?, then the iterative procedure will converge, and the existence of

solutions to Recursive PCA will be ensured. Let δW denote an infinitely small

modification of W, that results from the ideal procedure. Let δP denote the

corresponding modification of P, and let δP? denote the resulting modification

of the target P?. Let ‖ ‖F denote the Frobenius norm (that is, the Euclidean
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norm of a vector that contains all the elements of a matrix). Given the preceding

assumptions, we shall demonstrate the following result:

Theorem 1: For all K ∈ [0; 1[, there exists αK ∈ [0; 1[ so that, if α ≤ αK

and if δP is in the direction of its target P?, then ‖δP?‖F ≤ K ‖δP‖F

Proof: See appendix A.

This theorem means that there exists an interval of values of α where P

moves faster than the target P?. For α in that interval, the ideal learning

procedure will reach the target, in no more than 1/(1 − K) times the number

of iterations it would need to converge if the target was not moving. This

demonstrates that P will reach a stable point through this ideal procedure, for

α in that interval.

The existence of a stable point for P implies that the corresponding value

of W does extract the principal components of the corresponding distribution

of z. This demonstrates the existence of solutions to the definition of Recursive

PCA, in an interval of values of α.

However, as mentioned earlier, we experimentally observe numerical conver-

gence of the learning rules (3) for any α ∈ [0; 1[. This suggests that solutions

always exist, which is a much stronger statement. A general proof of convergence

remains to be established.

4 Representing temporal context

In this section, we demonstrate how our network can be used to store and re-

trieve sequences of inputs, in the reverse order of presentation. We demonstrate
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that there exists a relation between the error function and the reconstruction

error of previous events.

4.1 A logical stack

In section 2, we briefly mentioned that yt can be seen as a compressed repre-

sentation of both xt and yt−1. We now elaborate on this idea. At any time t, it

is possible to reconstruct vector zt, by applying the transpose of W to yt. Let

z̄t denote the reconstruction of zt:

z̄t = WT yt = WT Wzt (9)

Vector z̄t can be separated into two sub-vectors, that are the reconstructions of

xt and of yt−1, respectively:

z̄t =

[

x̄t√
αȳt−1

]

(10)

In this expression, x̄t and ȳt−1 denote the reconstructions of xt and yt−1, respec-

tively. The reconstruction of yt−1 allows us to recursively reconstruct previous

events. Knowing an estimate ȳt−k of yt−k, we use WT to estimate yt−k−1.

Using the convention ȳt = yt, we may write, for all k ≥ 0:

z̄t−k =

[

x̄t−k√
αȳt−k−1

]

= WT ȳt−k (11)

In this notation, it is implicit that all reconstructions are performed at time t.

In fact, the reconstruction of a given vector will differ depending on when it

is performed. A rigorous notation should therefore include an additional time

index, that would indicate the starting point of the reconstruction process. For

simplicity, however, we do not use an additional index here. Hence, we always
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mean that reconstructions are performed at a given time t, after vector xt has

been measured and yt has been computed.

Recursive PCA can be viewed as a generative model of past events, where

estimates of the past events are retrieved in the reverse order of presentation.

This property implements a logical stack, with “push” and “pop” operators.

A “push” corresponds to reading a new vector in x, and applying W to z. A

“pop” corresponds to reconstructing z, by applying WT to y.

4.2 Context and contextual mean-squared error

Given the above reconstruction procedure, it is possible to see the output of

the network, yt, as a representation of all inputs measured so far. Formally,

we define the temporal context at time t, as this ordered sequence of inputs:

{xt;xt−1;xt−2; . . . }. For convenience, we consider that this sequence is infinite.

The question is now whether yt is a good representation of context. For that,

we shall examine whether reconstructed vectors are close to the corresponding

input vectors. This will be assessed numerically in the experimental sections.

Before that, we will demonstrate that the objective error associated to Recursive

PCA is a measure of the quality of a representation of context.

A good representation of temporal context should optimize its capacity, given

the temporal statistics of the input series. For each integer k, it is possible to

define the mean-squared error of the k-th previous event:

ek =< ‖xt−k − x̄t−k‖2
> (12)

To optimize capacity means to minimize the mean-squared errors ek. Note that
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joint-minimizing a sum of several ek’s, associated to different values of k, is

equivalent to finding the subspace of highest variance of a composite vector,

that contains the corresponding xt−k’s. If the input time-series is not i.i.d.,

such a joint-minimization will exploit its time-dependencies.

However, it is not possible to minimize the sum of all ek’s, because this sum

will be infinite. It is therefore necessary to make a choice, to forget some of

events. We propose the following error criterion:

Eα =
∑

k≥0

αkek (13)

where 0 < α < 1 is a forgetting factor. Since the time series (xt)t∈Z is bounded,

the sum Eα is finite. Eα is called the contextual mean-squared error.

A representation that minimizes Eα will jointly minimize all terms of the

sum, and therefore it will learn the time dependencies of the input sequence.

The forgetting term α implies a geometrical loss of importance of past events.

Hence, a representation that minimizes Eα will progressively forget past events.

We introduced the contextual mean-squared error because it is related to the

error function of Recursive PCA. This relation is given by the following theorem:

Theorem 2. The mean-squared reconstruction error associated to Recursive

PCA is proportional to the contextual mean-squared error. More precisely :

E = (1 − α)Eα.

Proof: See Appendix B.

This theorem implies that it is equivalent to minimize E and Eα. Hence, the
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objective error function of our network is a measure of how well past events are

represented. However, it is not true that Recursive PCA always minimizes E,

due to the difference between the objective and subjective errors. In the next

sections, we will investigate this experimentally.

5 Computer simulations

In this section, we assess the performance of our network, trained on several

time series. In each experiment, the initial value of y was zero, and the network

was tested on a part of the time series different from the part that was used for

training. The mean-squared reconstruction errors of previous events were mea-

sured, as explained in paragraphs 4.1 and 4.2. Reconstructions of the previous

events were computed on each time step. For computational convenience, mean-

squared reconstruction errors (ek) were not computed, but estimated, using the

following leaky averages:

êk(t) = (1 − γ)êk(t − 1) + γ ‖xt−k − x̄t−k‖2
(14)

with γ = 0.001. The reconstruction of previous events and estimation of mean-

squared errors was a pure monitoring process, that used separate memory buffers

and did not interfere with the network.

5.1 Binary time series

In a first experiment, the network was trained on two binary random time series.

The input x was one-dimensional and it took on values +1 and −1. The output

vector y used m = 10 neurons.
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We compared two conditions. In condition A the input was generated by

picking +1 or −1 with probability 0.5 (coin toss). This i.i.d. series was used as

a control condition. In condition B the input was generated by a state machine

with two states, labeled +1 and −1. On every time step the probability of

transition from one state to the other was equal to 0.3, while the probability of

staying in a given state was 0.7. Hence, series B was not i.i.d.

After 20000 training iterations the mean-squared errors êk reached stable

values, for 0 ≤ k < 20. These values are plotted on Figure 1. In condition

A (coin toss), the error curve has the shape of a step function. It means that

exactly 10 events (0 ≤ k < 10) are recovered with an error close to zero. For

k ≥ 10, the mean-squared error is equal to the variance of the input, which

means that performance is not better than chance. Hence, the network is able

to unambiguously represent context of length 10. The shape of curve A was

independent from the value of the gain α.

In condition B (state machine), different curves are obtained, that corre-

spond to different values of the gain. Their general shape is a sigmoid, with a

slope that depends on α. This means that temporal context can be retrieved

beyond the former limit of 10 events. The counterpart is that reconstructions

for 0 ≤ k < 10 are no longer perfect. This is consistent with the theory pre-

sented in section 4.2, which predicted that temporal dependencies of the input

should be exploited by the network, in order to optimize its representation of

context.

When α decreases, the shape of the sigmoid B(α) approaches the shape of
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curve A. Hence, the gain seems to control a trade-off between the quality of

the reconstructions and the depth of the neural stack. If there are no temporal

dependencies, the representation is restricted to 10 events because no additional

information can be gained from the statistics of the input. If there are temporal

dependencies, higher values of the gain seem to favor the representation of older

events, at the expenses of more recent events.

5.2 Mackey-Glass series

The Mackey-Glass time-series models the dynamics of white blood cell produc-

tion in the human body [Mackey and Glass, 1977]. This series is defined by the

following differential equation, where time is continuous:

dx

dt
= bx(t) +

ax(t − d)

1 + x(t − d)10
(15)

For d > 16.8, both chaos and periodicity are present in the dynamics of the

series. We used a = 0.2, b = −0.1, d = 17, and random initial conditions.

A linear network using m = 30 and n = 1 was trained on the Mackey-Glass

series. The input was zero-centered, and sampled every time unit. The network

was trained for 106 iterations, for different values of α. The input series at a

given time step and its reconstruction, obtained after training, are shown on

Figure 2, for α = 0.99. Mean-squared reconstruction errors of the 500 previous

events were estimated. The value of êk versus k is plotted on the bottom of

Figure 2, for α = 0.7, α = 0.9 and α = 0.99. The variance of the input was

0.051.

For α = 0.7, êk increases by thresholds. The interval between two thresholds
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corresponds to the periodicity of the time series. Eventually, the reconstruction

error becomes equal to the variance, as in the previous case. For α = 0.9, the

reconstruction error is much smaller; êk is significantly lower than the variance

of x for values of k up to 500. Unlike in the previous experiment, êk does not

increase monotonically with k; some past events are better reconstructed than

other more recent events. This suggests that some periodic properties of the

series have been learned.

For α = 0.99, the reconstruction error is further reduced, except for recent

events (0 ≤ k ≤ 40). Here too, the representation of older events is made

at the expenses of the representation of recent events. About 300 events are

reconstructed with fairly good accuracy, while the representation uses only 30

neurons. Hence, the number of events that can be accurately reconstructed is

significantly higher than the size of the network. This suggests that the repre-

sentation of context devised by the network is highly compressed. According to

theory, the network achieved this compression by learning the temporal statis-

tics of the Mackey-Glass series.

6 Local minima

The results presented in the previous section suggest that Recursive PCA pro-

vides a good representation of context. However, we have not demonstrated

that Eα is minimized. The purpose of this section is to show that this is almost

the case.

A stable set of weights minimizes the “subjective” error Esubj . However,
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there is no guarantee that this set of weights will minimize the objective error

E. We will experimentally demonstrate the following results :

• The objective error landscape E(W) is not convex, and it may have local

minima.

• A minimum of the objective function E(W) may not be a minimum of

the subjective function Esubj(W,W̃).

• A minimum of the subjective function Esubj(W,W̃) may not be a mini-

mum of the objective function E(W).

These results mean that Recursive PCA does not minimize Eα. However, our

experiments also suggest that the behaviour of the network improves when its

dimension is increased. That is, if m increases, local minima tend to vanish and

the error gets close to the global minimum.

6.1 Expression of E

In order to find local minima, it is useful to have an expression of E that is easy

to measure. E is equal to the variance of z minus the variance of y. Given the

definition of z, E can be expressed as a function of the variances of x and y

only:

E = var(x) − (1 − α)var(y) (16)

where var() denote the variance of a random vector, that is, the trace of its

covariance matrix. In this expression, var(x) is a constant, so it is equivalent

to maximize the variance of y, and to minimize the mean-squared error E. In
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order to show the existence of local minima of E, we will show that the variance

of y has local maxima.

6.2 Existence of local minima of E

In paragraph 5.1, we used a state machine in order to generate a non-i.i.d. time

series. Since this machine had only two states, the temporal structure of the

input was very simple. It seems that this structure is too simple for the error

function to have local minima.

However, it is possible to observe local minima by using a slightly more

complex machine, with three states:

• State 0: The value of the input is 0.25. The probability of transition to

state 1 is 0.1, and of transition to state 2 is 0.9.

• State 1: The value of the input is -0.4. The probability of transition to

state 0 is 0.9, and of transition to state 2 is 0.1.

• State 2: The value of the input is 0.7. The probability of transition to

state 1 is 0.25, and to stay in state 2 is 0.75.

These values were chosen so that the mean value of the input is close to zero,

and so that it is possible to observe local minima. If the representation uses a

single neuron (m = 1), then only two weights are present. Although the initial

value of the weight vector is random, learning imposes that the weight matrix

is orthonormal. Orthonormality is observed relatively quickly during learning,

and it is maintained during the search for a minimum. Hence, we will consider

that the matrix is orthonormal for visualization purposes. For m = 1, this
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means that the constrained weight vector [wx, wy] can be parameterized with

one single scalar θ :
[

wx

wy

]

=

[

cos(θ)
sin(θ)

]

(17)

We use this parameterization because it facilitates visualization. The variance

of y as a function of θ is plotted on figures 3 and 4, for four different values of

the gain α: 0.4, 0.62, 0.76, and 0.9. For α = 0.62, 0.76, and 0.9, it is possible to

see on the figures that the variance has two maxima. This demonstrates that

the objective error function has local minima. For α = 0.4, there is only one

maximum of the variance. This suggests that local minima occur for higher

values of α.

In addition to variance, each graph displays the eigenvalues of the covariance

matrix of z, denoted by Σ. If the variance of y is lower than the first eigenvalue

of Σ, we can deduce that the minimum of the subjective error function is not

reached. Experimentally, we observe that all points where this minimum is not

reached are unstable. Attractors are points where the first eigenvalue of Σ and

the variance of y are equal.

• For α = 0.4, there is only one attractor. This point also maximizes objec-

tive variance.

• For α = 0.9, there are three different points where variance and the first

eigenvalue of Σ are equal. Two of these points correspond to maxima of

objective variance, and are attractors of the learning dynamics. The third

point is at the limit between the two corresponding basins of attraction,
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and is unstable.

• The situations for α = 0.62 and α = 0.76 are intermediate, and a bit more

complex. For α = 0.62, there is only one point of contact between the

two curves, although this is difficult to see on the figure. Neither the local

maximum of variance, at θ = 0.6, nor its global maximum, at θ = −0.9,

are attractors of the learning dynamics. There is only one attractor, which

is the point where variance is equal to the first eigenvalue of Σ, and it is

located between the two maxima, at θ = −0.53. Although this point not

a maximum of objective variance, it does maximize subjective variance.

• For α = 0.76 the variance curve and the curve of the first eigenvalue have

two points of contact, and both are attractors. Although these points are

maxima of subjective variance, they do not maximize objective variance.

Figure 5 shows more details for α = 0.62. The objective and subjective

variance curves are plotted, as well as the attractor. The sinus-like curve is the

subjective variance, i.e. the variance that y would have if the distribution of z

was unchanged, equal to the distribution it has for θ = 0.6 (local maximum).

It shows that subjective variance is maximal for a value θ? 6= 0.6. As a conse-

quence, the local maximum of the objective variance is unstable. Although the

subjective variance at the global maximum θ = −0.9 is not plotted, it would

display a similar situation. Hence, the maxima of the objective variance are

unstable. The only stable point is the attractor at θ = −0.53, where subjective

variance is maximized.
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6.3 Effect of the gain

We have seen that the shape of the error function depends on the value of the

gain, α. For smaller values of α, there are no local minima, which is consistent

with the limit case of standard PCA. Local minima appear when α is increased.

Therefore the attractor of E should display a bifurcation when α is increased.

In order to see this, the two eigenvalues of the covariance matrix Σ are

displayed on Figure 6, for α ∈ [0; 1[. For each point of the curve, a network

was trained with random initial weights, and eigenvalues were measured once a

stable value was reached. The figure shows that a bifurcation occurs between

α = 0.6 and 0.7. For 0 ≤ α ≤ 0.6, there is only one attractor, while there are

two attractors for 0.7 ≤ α < 1. This corresponds to what was shown in Figure

3. In the interval 0.6 ≤ α < 0.7, there is only one attractor, although the curves

have a different shape than between 0 and 0.6. This interval corresponds to

the region where the objective error function has local minima, but where these

minima are unstable, as shown in Figure 5.

6.4 Influence of the network’s size

The previous bifurcation diagram is an efficient method to visualize local min-

ima, because it scales well to higher dimensions. Figure 7 shows the eigenvalues

of Σ for four networks of higher dimension (m = 2, 3, 5 and 7). No bifurcation

is observed for m = 2. Bifurcations occur again for m = 3, 5 and 7. However,

if one considers an eigenvalue of a given order, bifurcations tend to disappear

when m is increased. This is balanced by the apparition of new bifurcations for
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higher-order eigenvalues.

The general picture is that bifurcations tend to disappear when the network’s

size is increased. This suggests that local minima tend to vanish. Because

the mean-squared error can be expressed as a sum of eigenvalues, bifurcations

that occur for higher-order eigenvalues will have a smaller effect on the error.

Therefore the overall effect of increasing the network’s size should be a reduction

of the influence of local minima. This suggests that local minima should not

impair the performance of this type of network in large scale applicationsNote4.

7 Conclusion

Using Oja’s learning rule in a recurrent linear network, we have demonstrated

that the network could store and retrieve arbitrary sequences. Our experiments

demonstrate that an explicit recovery of sequences is possible, in reverse order.

A trade-off between the representation of recent and older events is controlled

by the gain α.

Our experiments also demonstrate that the network learns a representation

that is adapted to the statistics of the input time series. If the input is i.i.d., then

the network simply learns to store m previous vectors. If statistical dependencies

are present in the input, then the network exploits them, in order to increase

the number of events that it can accurately represent.

We made the assumption that the input series is stationary, in order to

study learning in stable conditions. However, since our model is learning, this

assumption may be removed, as long as the network has enough time to adapt

25



to the changing dynamics of a non-stationary series. Although the learning

rule does not always find the global minimum of the error function, we have

demonstrated the following results:

• The mean-squared error associated to Recursive PCA is proportional to an

exponentially weighted sum of reconstruction errors, called the contextual

mean-squared error.

• Learning is a moving-target problem, where the error function minimized

by the algorithm (subjective error) differs from the objective error func-

tion. Although the subjective function is convex, the objective function

may have local minima.

• Local minima of the objective error function tend to vanish when the

dimension of the network is increased.

One could argue that using Oja’s rule was a bad choice, and that we should

have tried to find a method that actually minimizes the objective error function.

Although it is perhaps possible to derive such a method, it does not seem to be

simple; in any case, we believe that such a procedure would be computationally

intensive, and that its complexity would be difficult to concile with a simple

recurrent neural network, using a local Hebbian learning rule. Indeed, our goal

was to study the learning dynamics of Oja’s learning model, rather than to find

a method that minimizes E at any cost.

A major emergent property of our algorithm is that it allows one to explicitly

retrieve input sequences, in the reverse order of presentation. This provides a
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straight-forward implementation of a logical stack. This result has implications,

both from a theoretical and from a practical point of view. On the theory

side, implementing a stack with neurons has been a research topic of its own,

because it demonstrates the equivalence between artificial neural networks and

other models of computation [Pollack, 1987,Koiran et al., 1994,Siegelmann and

Sontag, 1995,Moore, 1998]. In this context, our method is original, and the size

of its memory does not depend on the level of precision of computations, as in

most other models, but on the size of the network.

On the application side, a stack capability has been needed in several models

of natural language processing [Miikkulainen, 1996,Sun et al., 1997], and for the

representation of complex structured objects [Pollack, 1990]. Concerning this

latter application, we have used our modified Oja rule in Pollack’s Recursive

Auto-Associative Memory network, in replacement of the standard error back-

propagation procedure. We have shown that this learning model outperforms

the original one on a language task [Voegtlin and Dominey, 2005].
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Footnotes

Note 1: The reason why we consider the gain not to be part of Wy, and why

we use a square root, is convenience, as will become clear later.

Note 2: The influence of the initial condition decays geometrically, and

does not affect the results presented in this paper.

Note 3: The networks proposed by Sanger and Oja both involve feedback

connections. However, the operation of these networks is feed-forward, and feed-

back is only considered for the propagation of a learning signal.

Note 4: In a previous application [Voegtlin, 2000], local minima were not

observed numerically, probably because the dimension of the network was too

high.
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A Proof of Theorem 1.

A.1 Notations

We will use the following notations. Let Σxx, Σyy, Σzz, denote the covariance

matrices of vectors x, y and z, respectively. We may also denote the covariance

of z simply by Σ:

Σ = Σzz =< zzT > (18)

For this proof, we make the hypothesis that Σ is invertible, and that the norm

of its inverse is bounded. This assumption reflects the fact that a learning

procedure that maximizes output variance should not result, in general, in a

singular covariance matrix. This is in fact an assumption on the initial values

of the weights, and on the complexity of the input time series.

Let Σ1
xy denote the covariance matrix of vectors xt and yt−1, and Σ1

yx the

transpose of Σ1
xy. More generally, let Σi

xy denote the covariance of xt and yt−i,

for all i > 0 :

Σi
xy =< xty

T
t−i > (19)

and let Σi
yx = (Σi

xy)T . Similarly, let Σi
xx denote the covariance of xt and xt−i,

for all i > 0 :

Σi
xx =< xtx

T
t−i > (20)

A.2 Speed of the projection matrix

In order to characterize the target, we will use the following property, which is

a sufficient condition of PCA [Baldi and Hornik, 1988]:

P?Σ = ΣP? = P?ΣP? (21)
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Let δΣ denote the small modification of Σ that results from a modification δW

of the weights. Differentiating P?Σ = P?ΣP? yields :

(P? + δP?)(Σ + δΣ) = (P? + δP?)(Σ + δΣ)(P? + δP?) (22)

We shall keeping only first-order terms:

δP?Σ + P?δΣ = P?ΣδP? + P?δΣP? + δP?ΣP? (23)

which is identical to :

δP?Σ − δP?ΣP? − P?ΣδP? = P?δΣ(P? − I) (24)

where I is the identity matrix of size m. Since P? and P? + δP? must be

symmetric, δP? is symmetric too. Therefore δP?ΣP? = P?ΣδP?. We may

thus write :

δP?Σ − 2δP?ΣP? = P?δΣ(P? − I) (25)

which yields :

δP?Σ(I − 2P?) = P?δΣ(P? − I) (26)

Matrix (I − 2P?) is idempotent, and (I − 2P?)(P? − I) = (P? − I). Therefore:

δP? = P?δΣ(P? − I)Σ−1 (27)

Equation (27) describes how the target moves with the distribution. Since both

P? and P? − I are projectors, multiplying a matrix by these projectors does not

increase the Euclidean norm of its column vectors. It is therefore possible to

give the following bound for the modification of the target:

‖δP?‖F ≤
∥

∥δΣΣ−1
∥

∥

F
(28)
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where ‖ ‖F denotes the Frobenius norm.

The above inequality relates a modification of the distribution δΣ and the

modification of the target δP? it induces. In order to compare the speed of P

and P?, it is now sufficient to bound the modification of the distribution, δΣ,

that results from a small modification of the weights δP.

A.3 Speed of the distribution

The covariance matrix of z reads :

Σ = Σzz =

[

Σxx

√
αΣ1

xy√
αΣ1

yx αΣyy

]

(29)

Considering a small modification of the distribution of z, it is possible to differ-

entiate the covariance matrix :

δΣ =
√

α

[

0 δΣ1
xy

δΣ1
yx

√
αδΣyy

]

(30)

Developing the Frobenius norm yields :

‖δΣ‖2
F = 2α

∥

∥δΣ1
xy

∥

∥

2

F
+ α2 ‖δΣyy‖2

F (31)

Since y is a projection of z, the covariance of y is smaller than the covariance

of z :

‖δΣyy‖F ≤ ‖δΣ‖F (32)

Replacing ‖δΣyy‖F with its value in (31) yields :

‖δΣ‖F ≤
√

2α

1 − α2

∥

∥δΣ1
xy

∥

∥

F
(33)

In order to bound the right term, it is necessary to express the covariance Σ1
xy.

Given the dynamics of the network (1), it is possible to express the covariance
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Σ1
xy as :

Σ1
xy = Σ1

xxW
T
x +

√
αΣ2

xyW
T
y (34)

Equation (34) can be developed recursively, by applying the equality to all

previous events. This yields the following sum :

Σ1
xy =

∞
∑

i=0

αi/2Σi+1
xx WT

x (WT
y )i (35)

In this expression, all the Σi
xx are constant and do not depend on the weights.

Hence, it is possible to differentiate this expression with respect to a small

change of the weights:

δΣ1
xy =

∞
∑

i=0

αi/2Σi+1
xx

(

δWT
x (WT

y )i + iWT
x δWT

y (WT
y )i−1

)

(36)

Since W is a projection, the Euclidean norm of (WT
y )i−1 is strictly lower than

one. Therefore :

∥

∥δΣ1
xy

∥

∥

F
≤

∞
∑

i=0

αi/2
∥

∥Σi+1
xx

(

δWT
xWT

y + iWT
x δWT

y

)
∥

∥

F
(37)

We want to compare the norms of δP? and δP. We shall differentiate P =

WT W :

δP = δWT W + WT δW (38)

We assumed that, using our ideal procedure, δW is orthogonal to the space

of matrices that correspond to P?. Therefore changes to W that leave P un-

changed should not be considered. Such changes are characterized by δP =

0, i.e. δWT W = −WT δW. This set of constraints defines a subspace of

R
n×(n+m), namely the eigenvector subspace of the linear application A →

WAT W, associated to eigenvalue -1. For WWT = I, this application has only
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two eigenvalues, +1 and -1. Therefore, a change δW orthogonal to the -1 eigen-

vector subspace, must belong to the +1 eigenvector subspace, i.e. δWT W =

WT δW. Therefore:

δP = 2δWT W (39)

which can be developed:

δP = 2

[

δWT
xWx δWT

xWy

δWT
yWx δWT

yWy

]

(40)

Considering the Frobenius norm of δP, we obtain the following lower bounds:

‖δP‖F ≥
√

2
∥

∥δWT
xWy

∥

∥

F
(41)

‖δP‖F ≥
√

2
∥

∥δWT
yWx

∥

∥

F
(42)

Using these bounds and the fact that the Frobenius norm is sub-multiplicative

we obtain from (37):

∥

∥δΣ1
xy

∥

∥

F
≤

√
2 ‖δP‖F

∞
∑

i=0

αi/2(1 + i)
∥

∥Σi+1
xx

∥

∥

F
(43)

Because x is stationary and bounded, the following upper bound is finite:

C1 = sup
i≥0

∥

∥Σi+1
xx

∥

∥ (44)

We have made the assumption that Σ is invertible, and never gets too close to

a singular matrix, so that there exists another bound C2 such that:

∥

∥Σ−1
∥

∥ ≤ C2 (45)

Combining inequalities (28), (33) and (37) yields:

‖δP?‖F ≤
√

2α

1 − α2

√
2C1C2

∞
∑

i=0

(
√

α)i(1 + i) ‖δP‖F (46)
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which can be further simplified as :

‖δP?‖F

‖δP‖F

≤ 2C1C2

√

α

1 − α2

1

(1 −√
α)2

(47)

The right term is a monotonically increasing function of α, that takes the value

zero in zero. Therefore there exists an interval where is is strictly lower than

one, which completes the proof.

B Proof of Theorem 2.

The proof is based on the following lemma :

Lemma. for all k > 0,

< ||zt−k − z̄t−k||2 > − < ||yt−k − ȳt−k||2 >= E

Proof of the lemma. W is of rank m and WWT is equal to the identity

matrix of size m. This allows us to develop and simplify the expression of the

reconstruction error of z, At = ||zt − z̄t||2 :

At = ||zt − WT Wzt||2

At = ||zt||2 − 2zT
t WT Wzt + zT

t WT WWT Wzt

At = ||zt||2 − ||Wzt||2

Matrix W can be decomposed using Wx and Wy:

yt = Wxxt +
√

αWyyt−1 (48)

W = [Wx;Wy] (49)
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We may express the reconstructions using the transposes WT
x ,WT

y of Wx and

Wy, for k ≥ 0. Remember that we use the convention ȳt = yt :

x̄t−k = WT
x ȳt−k (50)

ȳt−k−1 = WT
y ȳt−k (51)

Now let us develop the left term of the lemma, which we denote by Bt, for all

k > 0 :

Bt = ||zt−k − z̄t−k||2 − ||yt−k − ȳt−k||2

Bt = ||xt−k − x̄t−k||2 + α||yt−k−1 − ȳt−k−1||2

−||yt−k − ȳt−k||2

We develop the squared norms into dot products :

Bt = ||xt−k||2 − 2xT
t−kx̄t−k + ||x̄t−k||2

+α||yt−k−1||2 − 2αyT
t−k−1ȳt−k−1 + α||ȳt−k−1||2

−||yt−k||2 + 2yT
t−kȳt−k − ||ȳt−k||2

Several terms can be replaced using (50) and (51) :

Bt = ||xt−k||2 − 2xT
t−kW

T
x ȳt−k + ||WT

x ȳt−k||2

+α||yt−k−1||2 − 2
√

αyT
t−k−1W

T
y ȳt−k + ||WT

y ȳt−k||2

−||yt−k||2 + 2yT
t−kȳt−k − ||ȳt−k||2
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In this expression, ȳt−k can be factored :

Bt = ‖xt−k‖2 − 2
(

Wxxt−k +
√

αWyyt−k−1

)T
ȳt−k

+ȳT
t−k

(

WxW
T
x + WyW

T
y

)

ȳt−k

+α||yt−k−1||2 − ||yt−k||2 + 2yT
t−kȳt−k − ||ȳt−k||2

The sum WxW
T
x + WyW

T
y is equal to the identity matrix, and yt−k can be

identified in the second term. After simplification, we obtain:

Bt = ||xt−k||2 + α||yt−k−1||2 − ||yt−k||2

Bt = ||zt−k||2 − ||Wzt−k||2

The last expression does not contain any reconstruction. Therefore the statis-

tical expectation < Bt > of Bt does not depend on the index k. For k = 0 this

expression is equal to < At >= E.

Proof of the Theorem.

Let us develop E =< ||zt − z̄t||2 > :

E =< ||xt − x̄t||2 + α||yt−1 − ȳt−1||2 >

Using the lemma for k = 1, we can replace the second term :

E =< ||xt − x̄t||2 > +α < ||zt−1 − z̄t−1||2 > −αE

If we develop zt−1, we obtain the two first terms of Eα :

E =< ||xt − x̄t||2 > + < α||xt−1 − x̄t−1||2 >

+ < α2||yt−2 − ȳt−2||2 > −αE
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This operation can be performed recursively, applying the lemma for each value

of k > 0. Eventually, this yields:

E =<
∞
∑

k=0

αk||xt−k − x̄t−k||2 > −
∞
∑

k=1

αkE

which can be simplified as:

E = (1 − α)Eα
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Figure Captions

Figure 1: Mean-squared reconstruction error, ek, versus k, for binary random

sequences. A: random input with no temporal structure. B(α): input generated

by the state machine, using different values of the gain α.

Figure 2: Top: The (centered) Mackey-Glass chaotic series and its recon-

struction for α = 0.99. Bottom: Mean-squared reconstruction errors of the

Mackey-Glass series, for k ≤ 500.

Figure 3: Variance of y, and eigenvalues of the covariance of z, for α = 0.4

and α = 0.62.

Figure 4: Variance of y, and eigenvalues of the covariance of z, for α = 0.76

and α = 0.9.

Figure 5: Objective and subjective variance of y, for α = 0.62. The sinusoidal

curve is the subjective variancefor θ = 0.6. The unique attractor is indicated

by a circle. This attractor is not a minimum of E.

Figure 6: Eigenvalues of the covariance matrix Σ of z. The mean-squared

error E is equal to the second eigenvalue. Bifurcations denote the existence of

multiple attractors.
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Figure 7: Eigenvalues of the covariance matrix of z, for m = 2, 3, 5 and 7.
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