
HAL Id: hal-00008810
https://hal.archives-ouvertes.fr/hal-00008810

Submitted on 25 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gödel-Dummett counter-models through matrix
computation

Dominique Larchey-Wendling

To cite this version:
Dominique Larchey-Wendling. Gödel-Dummett counter-models through matrix computa-
tion. Electronic Notes in Theoretical Computer Science, Elsevier, 2005, 125 (3), pp.12.
�10.1016/j.entcs.2004.07.022�. �hal-00008810�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50484447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00008810
https://hal.archives-ouvertes.fr


WoD 2004 Preliminary Version

Gödel-Dummett counter-models
through matrix computation

Dominique Larchey-Wendling 1

LORIA – CNRS
Vandœuvre-lès-Nancy, France

Abstract

We present a new method for deciding Gödel-Dummett logic. Starting from a
formula, it proceeds in three steps. First build a conditional graph based on the
decomposition tree of the formula. Then try to remove some cycles in this graph by
instantiating these boolean conditions. In case this is possible, extract a counter-
model from such an instance graph. Otherwise the initial formula is provable. We
emphasize on cycle removal through matrix computation, boolean constraint solving
and counter-model extraction.

Key words: Counter-models, conditional graphs and matrices.

1 Introduction

Gödel-Dummett logic LC is the intermediate logic (between classical logic and
intuitionistic logic) characterized by linear Kripke models. It was introduced
by Gödel in [10] and later axiomatized by Dummett in [6]. It is now one
of the most studied intermediate logics for several reasons: among those, it
is one of the simplest “many-valued” logics, whose semantics is captured by
truth functions over the unit interval. It is one of the candidates (under the
name “Gödel” logic) for use as a fuzzy logic [11]. With respect to decision
procedures for intermediate logics, it witnesses some advantages of sequent
calculi over hyper-sequent systems.

Proof-search in LC has benefited from the development of proof-search in
intuitionistic logic IL with two important seeds: the contraction-free calculus
of Dyckhoff [1,7,8] and the hyper-sequent calculus of Avron [2,14]. Two of the
most recent contributions propose a similar approach based on a set of local
and strongly invertible proof rules (for either sequent [13] or hyper-sequent [2]
calculus,) and a semantic criterion to decide irreducible (hyper)-sequents and
eventually build a counter-model.

1 Email: larchey@loria.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



Larchey-Wendling

We have recently proposed a combination of proof-search in sequent cal-
culus and counter-model construction to provide a decision procedure for LC
which is based on a new principle: we are able to gather all the useful infor-
mation arising from all the proof-search branches into a semantic graph and
then we use an efficient counter-model search algorithm based on cycle detec-
tion. We have reduced the decision problem in LC to a combination of boolean
constraint solving and cycle detection. These results are presented in the up-
coming paper [12], and the present paper comes as a complement to it. We
will briefly recall the theoretical results, but we want to focus mainly on the
description of the decision procedure with an emphasis on the counter-model
generation algorithm.

Given a formula D of LC, the procedure proceeds in three steps at the
end of which one obtains a counter-model (in case D is not provable. 2 ) The
first step which is described in full details in section 3 consists in building a
particular bi-colored graph GD based on the decomposition tree of D. The
arrows of this graph may be indexed with boolean conditions. The second
step consists in searching for an instantiation of the boolean conditions on
arrows so that the instance graph has no remaining r-cycle. 3 This step is first
described informally in section 3.3; then we provide a decision algorithm for
this problem based on conditional matrix computation in section 4. For the
third step, described in section 5, given a particular instance Gv with no r-
cycle, we can extract a counter-model of D from this instance Gv by computing
a bi-height for it.

2 The syntax and semantics of Gödel-Dummett logic

The set of propositional formulae, denoted Form is defined inductively, starting
from a set of propositional variables denoted by Var and using the connectives
∧, ∨ and ⊃. 4 IL will denote the set of formulae that are provable in any in-
tuitionistic propositional calculus (see [7]) and CL will denote the classically
valid formulae. As usual an intermediate propositional logic [1] is a set of
formulae L satisfying IL ⊆ L ⊆ CL and closed under the rule of modus po-
nens and under arbitrary substitution. LC is the smallest intermediate logic
satisfying the axiom (X ⊃ Y ) ∨ (Y ⊃X).

On the semantic side, LC is characterized by linear Kripke models. In this
paper, we will use the algebraic semantics characterization of LC [2] rather
than Kripke semantics. The algebraic model is the set of natural numbers
with its natural order 6, augmented with a greatest element ∞. An inter-
pretation of propositional variables [[·]] : Var → N is inductively extended to
formulae: the conjunction ∧ is interpreted by the minimum function denoted

2 As a decision procedure, it can also certify the validity of D in case it has a proof.
3 A kind of cycle described later in section 5.
4 We do not integrate the bottom ⊥ constant. A specific treatment for ⊥ is detailed in [13].
It can be easily integrated in the procedure described here.

2



Larchey-Wendling

∧, the disjunction ∨ by the maximum function ∨ and the implication ⊃ by the
operator _ defined by a _ b = if a 6 b then ∞ else b. A formula D is valid
for the interpretation [[·]] if the equality [[D]] = ∞ holds. This interpretation
is complete for LC. A counter-model of a formula D is an interpretation [[·]]
such that [[D]] < ∞.

3 A decision procedure for LC

In [12], we have described a procedure to decide the formulae of LC and to
build a counter-model when a formula is not valid. The first step of this
procedure is to build a graph with two kinds of arrows. Then the decision
problem is reduced to the detection of particular cycles in this graph.

3.1 Conditional bi-colored graph construction

We introduce the exact notion of graph we use and then show how to build
such a graph given a formula of LC.

Definition 3.1 A bi-colored graph is a (finite) directed graph with to kinds
of arrows: green arrows denoted by → and red arrows denoted by ⇒.

Definition 3.2 A conditional bi-colored graph is a bi-colored graph where
arrows may be indexed with (propositional) boolean expressions.

We point out that we consider these boolean expressions up to classical
equivalence, i.e. we consider them as representatives for boolean functions
over atomic propositional variables. These variables can be instantiated by
{0, 1} with a valuation v and a boolean expression e gets a value ev ∈ {0, 1}
computed in the obvious way. We thus obtain an instance graph: an arrow
indexed with a boolean expression e belongs to this instance if and only if
ev = 1. The case of an unconditional (i.e. not indexed) arrow can be treated
by considering that it has an implicit boolean conditional which is a tautology
(and then always values 1) and non-existing arrows have an implicit boolean
condition that always values 0.

Definition 3.3 Given a conditional bi-colored graph G and a valuation v of
boolean variables in {0, 1}, we define the instance graph Gv as the bi-colored
graph that one obtains when one evaluates boolean expressions indexing ar-
rows and keeping exactly those whose valuation equals 1.

Given a LC formula D, we build a conditional bi-colored graph GD by the
following process. First, the nodes of GD are obtained by considering the set
of nodes of the decomposition tree of D, or equivalently, the set of occurrences
of subformulae.

• If F is an occurrence of a subformula of D, we denote by XF the correspond-
ing node. Nodes are signed starting from − at the root D− and propagating

3



Larchey-Wendling

D− ♦

V + V −

V

x x

∧−

A− B−

∨−

A− B− x

x x

x⊃−

A+ B−

♦

∧+

A+ B+

x x

∨+

A+ B+

x

x

⊃+

A− B+

Fig. 1. Counter-model search system for LC

signs as usual. 5 We may write X+
F or X−

F to emphasize the sign.

• To this set of nodes, we add a node denoted V for each propositional variable
V occurring in D. Hence, multiple occurrences of V only generate one node
V but generate several X+

V or X−
V nodes.

• We add one new node denoted by ♦.

Then, the edges of GD are obtained as follows: we describe the set of green and
red arrows linking those nodes together and the boolean expressions indexing
those arrows. We begin by unconditional arrows (i.e. arrows implicitly indexed
with the tautology 1) introduced independently of the internal structure of the
formula D:

• We add the (unconditional) red arrow X−
D ⇒♦ from the root node to ♦.

• For a negative occurrence V of a variable, we add the green arrow V →X−
V .

• For a positive occurrence V of a variable, we add the green arrow X+
V → V .

These three rules are summarized on the left part of figure 1. Now we consider
arrow introduction rules for internal nodes. First, the unconditional cases:

• For a positive occurrence C ≡ A ∧ B of a subformula, we add the two
following green arrows X+

C →X+
A and X+

C →X+
B .

• For a negative occurrence C ≡ A ∨ B of a subformula, we add the two
following green arrows X−

A →X−
C and X−

B →X−
C .

We continue with conditional arrows. These arrows are indexed with selectors,
i.e. boolean expressions of the form x or x where x is a boolean propositional
variable. For each occurrence of subformula, we introduce a new boolean
variable. 6

• For a negative occurrence C ≡ A∧B of a subformula, given a new boolean
variable x, we introduce the two conditional green arrows X−

A →x X−
C and

X−
B →x X−

C .

• For a positive occurrence C ≡ A ∨B of a subformula, given a new boolean
variable x, we introduce the two conditional green arrows X+

C →x X+
A and

X+
C →x X+

B .

5 The connectives ∧ and ∨ preserve signs and ⊃ preserves the sign on the right subformula
and inverses the sign of the left subformula.
6 Indexing these variables with the subformula occurrence is a way to ensure uniqueness.

4



Larchey-Wendling

• For a negative occurrence C ≡ A⊃B of a subformula, given a new boolean
variable x, we introduce the two following green arrows X−

B →x X−
C and

♦→x X−
C and the two following red arrows X−

B ⇒x X+
A and X−

B ⇒x ♦.

• For a positive occurrence C ≡ A⊃B of a subformula, given a new boolean
variable x, we introduce the two following green arrows X+

C →x X+
B and

X−
A →x X+

B .

All the rules introducing (un)conditional arrows for internal nodes (corre-
sponding to subformulae of D that are not atomic) are summarized on the
right part of figure 1.

Given this construction procedure, it should be clear that the construction
of the graph GD from a formula D take linear time as at most four arrows
are introduced for each instance of a subformula of D. The validity of D is
related to the existence of some particular cycles in instances of GD.

Definition 3.4 A r-cycle in a bi-colored graph is a cycle composed of either
green (→) or red (⇒) arrows, containing at least one red arrow. Equivalently,
it is a chain of the form l (→+⇒)?⇒ l.

Theorem 3.5 Let D be a formula of LC and G be its associated conditional
bi-colored graph, built from the process previously described. Then D is prov-
able in LC if and only if every instance graph Gv of G contains at least one
r-cycle.

This result is proved in [12]. So in order to refute D, we have to find an
instance graph Gv which does not contain any r-cycle. Let us proceed with an
example.

3.2 Graph construction example

We consider the case of the classically valid Peirce’s formula ((A⊃B)⊃A)⊃A.
It is not provable in any intermediate logic but classical logic, so in particular,
it should have a counter-model in LC.

We index this formula as follows:(
(A+

5 ⊃−3 B−
6 )⊃+

1 A+
4

)
⊃−0 A−

2 . We construct
its associated conditional graph:

• We add the arrow ⊃−0 ⇒♦.

• We have two variables A and B for 4 oc-
currences, so we add A→ A−

2 , A+
4 → A,

A+
5 → A and B →B−

6 .

• For the internal node ⊃−0 , we choose a
new boolean variable x and add the four
conditional arrows A−

2 →x⊃−0 , ♦→x⊃−0 ,
A−

2 ⇒x ⊃+
1 and A−

2 ⇒x ♦.

⊃−0

⊃+
1 A−2

⊃−3 A+
4

A+
5 B−6

AB

♦

x

x
x

x

y

y

z

z

z

z

5



Larchey-Wendling

• For the internal node ⊃+
1 , we choose a new boolean variable y and add the

two conditional arrows ⊃+
1 →y A+

4 and ⊃−3 →y A+
4 .

• For the last internal node ⊃−3 , we choose a new boolean variable z and add
the four conditional arrows B−

6 →z⊃−3 , ♦→z⊃−3 , B−
6 ⇒z A+

5 and B−
6 ⇒z♦.

3.3 Naive elimination of r-cycles

We now have to find a valuation vx, vy and vz in {0, 1} such that the corre-
sponding instance graph has no r-cycle. For this we identify all the r-cycles
and we try to find a valuation that simultaneously breaks each of the r-cycles.
We only have to consider r-cycles that do not repeat nodes because any r-cycle
contains at least one that does not repeat nodes. We find four such r-cycles:

⊃−0 ⇒♦→x ⊃−0
⊃−0 ⇒♦→z ⊃−3 →y A+

4 → A→ A−
2 →x ⊃−0

A−
2 ⇒x ♦→z ⊃−3 →y A+

4 → A→ A−
2

A−
2 ⇒x ⊃+

1 →y A+
4 → A→ A−

2

The first r-cycle is broken if and only if the condition x = 0 is satisfied,
which is equivalent to satisfy x. The second r-cycle is broken if and only if
the condition z + y + x is satisfied. 7 The third r-cycle is broken just in case
x + z + y is satisfied and the last r-cycle is broken when x + y is satisfied.

In order to break these four r-cycles in one valuation, we look for a valuation
v which satisfies x · (x + y + z) · (x + y + z) · (x + y). This gives us a unique
solution: vx = 1, vy = 0, vz = 1. Then, the reader could verify that the
instance graph Gv obtained from this valuation has no r-cycle. See section 5
for a representation of this graph and the associated counter-model of the
Peirce’s formula.

The naive procedure we have described for computing a valuation with no
r-cycles consists of searching all the possible r-cycles (without repeating nodes)
and solving a boolean constraint system associated with these cycles. Unfor-
tunately, such a procedure would be highly inefficient because there might be
exponentially many r-cycles for a given formula. This problem has also been
addressed in [12]. In the next section, we give a description of one possible
solution to the elimination of r-cycles.

4 Removing r-cycles in conditional bi-colored graphs

In section 3.1, we have introduced the notion of conditional bi-colored graph.
A natural way to represent a directed graph is by considering the matrix of
the underlying incidence relation. Usually, these matrices take there values

7 We denote by + the boolean disjunction and by · the boolean conjunction.

6



Larchey-Wendling

y

x

y

1
1

z

1
1

x z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦→

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦⇒

Fig. 2. The conditional matrices for Peirce’s formula.

in the boolean algebra {0, 1} and a 1 in the cell (i, j) means that there is an
arrow from the node i to the node j.

4.1 Conditional matrices

To represent conditional bi-colored graphs, we use conditional matrices : the
cells of these matrices take their values from the set of boolean functions.
These functions are represented by boolean expressions built from the boolean
selectors introduced during the conditional graph construction.

Definition 4.1 A conditional matrix on set S of size k is a k × k-array with
values in the free boolean algebra over the set of selectors.

There are two incidence relations for a bi-colored graph corresponding to
the green (→) and red (⇒) arrows. So a conditional bi-colored graph is
represented by a pair of conditional matrices. We use the same denotation
for the (conditional) incidence relation and for its corresponding matrix. So
GD is represented by a pair (→,⇒) of conditional matrices. Figure 2 presents
the two matrices corresponding to the graph GD when D is the Peirce formula
of section 3.2. We only write the cells whose values are different from 0: the
matrices are sparse because the number of non-zero cells is linear whereas the
total number of cell is quadratic.

4.2 R-cycle removal as a trace computation

The boolean operator of conjunction (or multiplication) · and disjunction (or
sum) + extend naturally to conditional matrices. So we may consider the
sum → + ⇒, product → · ⇒ of conditional matrices and the reflexive and
transitive closure →? =

∑
i>0→i. We also introduce the trace of a matrix:

tr(M) =
∑

x Mx,x. When boolean selectors are instantiated inside a condi-
tional matrix, we get a matrix with values in {0, 1} which is the incidence ma-

7



Larchey-Wendling

trix of the corresponding instance graph. Moreover, instantiation commutes
with algebraic operations on matrices. This leads to the following result:

Theorem 4.2 Let G = (→,⇒) be a conditional bi-colored graph represented
by a pair of conditional matrices. There exists a r-cycle in every instance Gv

of G if and only if tr
(
(→+⇒)?⇒

)
= 1 holds.

Moreover, when the boolean function tr
(
(→+⇒)?⇒

)
is not a tautology,

there exists a valuation v on selectors in {0, 1} such that this trace has value
0: tr

(
(→v +⇒v)

?⇒v

)
= 0. Then, the corresponding instance graph Gv has

no r-cycle.

Now, the problem is to compute this trace efficiently. Let us fix a size k > 0
of matrices. Let I denote the identity k × k matrix (Ix,x = 1 and Ix,y = 0
otherwise.) Let M be any conditional k × k matrix. Then M? = (I + M)k

(because any path of size k + 1 contains a sub-path of size k.) Moreover,
as I 6 I + M (cell-wise), I, I + M, (I + M)2 . . . is a (point-wise) increasing
sequence of conditional matrices which stabilizes in at most k steps.

In order to evaluate (→+⇒)?⇒, we compute α = I +→+⇒ and β = ⇒
and then the increasing sequence β, αβ, α2β, α3β, . . . until it stabilizes to α?β.
This can be done column by column on β. Let βi denote the column i of
β then α?βi is the column i of α?β. The computation of the column 1 for
Peirce’s formula is the following:

1
1

1
1

1
1

1
1

1
1

y

x

y

1
1

z

1
1

x z

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦α

x

β1

x

x

αβ1

x

x

x

x

α2β1

x.y

x

x.y

x

x

x.z

x

α3β1

x.y

x

x.y

x

x

x.z

x

x.z

x.y.z

α4β1

x.y.z

x.y

x

x.y

x

x

x.z

x

x.z

x.y.z

α?β1

Most of the columns of β contain only 0 in which case there is no need for
computation: the fixpoint is this zero column. In the Peirce example, only
column 1, 5 and ♦ contain values which are different from zero.

When evaluating the trace, it is possible to share computation between
the columns of β. Let T be the column matrix composed of 1 on each cells.
We consider the following sequence: t0 = 0 and ti =

[
α?(ti−1T + βi)

]
i

for
i = 1, . . . , k. Then tk = tr(α?β). For example, in the case of Peirce’s formula,
we get t0 = 0 and then t1 = x.y. Columns β2, β3 and β4 are empty (i.e. contain
only 0) so t2 = t3 = t4 = t1 = x.y. Then t5 =

[
α?(x.y.T +β5)

]
5

and we obtain

8



Larchey-Wendling

t5 = x.y. Then columns β6, βA and βB are empty and t6 = tA = tB = t5 = x.y.
Finally we compute t♦ =

[
α?(x.y.T + β♦)

]
♦. Let γ = x.y.T + β♦:

1
1

1
1

1
1

1
1

1
1

y

x

y

1
1

z

1
1

x z

1

x x

z z

0
1
2
3
4
5
6
A

B

♦

0 1 2 3 4 5 6 A B ♦α

1
x.y

x

x.y

x.y

x.y

x.y + z

x.y

x.y

x.y

γ

1
x.y

x

x.y

x.y

x.y

x.y + z

x

x.y + z

x + x.y

αγ

1
x.y

x

x.y

x

x

x.y + z

x

x.y + z

x + x.y

α2γ

1
x.y

x

x

x

x

x.y + z

x

x.y + z

x + x.y

α3γ

1
x.y

x

x

x

x

x.y + z

x

x.y + z

x + x.y + x.z

α?γ

and we obtain t♦ = x + x.y + x.z. This the trace of α?β = (→ + ⇒)?⇒
and it is not a tautology. The only valuation that falsifies this trace is vx =
1, vy = 0, vz = 1. This is of course the same valuation we obtained by hand
(by looking up for r-cycles) in section 3.3.

5 Counter-model extraction

Now we explain how to extract a counter-model from the corresponding in-
stance bi-colored graph Gv. The reader can easily check that it can be repre-
sented by:

⊃−0

⊃+
1

A−2

⊃−3 A+
4

A+
5

B−6

A

B

♦

In this graph, red arrows are always strictly climbing up and green arrows
never go down so no r-cycle could exist. The counter-model is very easy to
compute: give the variable A and B their height in this graph. So [[A]] = 1
and [[B]] = 0 is a counter-model to the Peirce’s formula which can be checked
by [[((A⊃B)⊃A)⊃A]] = ((1_ 0)_ 1)_ 1 = (0_ 1)_ 1 = ∞_ 1 = 1 < ∞

Now we explain how to extract a counter-model out of an instance graph
lacking r-cycles in the general case. We give a characterization of the lack of
r-cycles based on the notion of bi-height :

Definition 5.1 Let G be a bi-colored graph. A bi-height is a function h :
G → N such that for any x, y ∈ G, if x → y ∈ G then h(x) 6 h(y) and if
x⇒ y ∈ G then h(x) < h(y).

9



Larchey-Wendling

It is clear that the preceding graph has a bi-height given by h(B) =
h(B−

6 ) = h(⊃−3 ) = h(A+
4 ) = 0, h(A+

5 ) = h(A) = h(A−
2 ) = h(⊃+

0 ) = 1 and
h(♦) = h(⊃+

1 ) = 2. In [12], you will find a constructive proof of the following
result which states the existence of a bi-height whenever no r-cycle exist:

Theorem 5.2 Let D be a formula of LC, G the corresponding conditional
bi-colored graph and v a valuation such that the instance graph Gv does not
contains any r-cycle. Then it is possible to compute a bi-height h for Gv in
linear time. 8 Moreover, if we define [[·]] : Var → N by [[V ]] = h(V ) for V
variable of D then [[·]] is a counter-model of D, i.e. [[D]] < ∞.

6 Implementation remarks and conclusion

The procedure described throughout this paper has been implemented com-
pletely in the Objective Caml language and is accessible at

http://www.loria.fr/~larchey/LC

The reader interested in the proofs of the results presented here can also find
them there.

For the prototype implementation, we have chosen to represent conditional
matrices by sparse arrays. The boolean functions which compose them are rep-
resented by the nodes of a shared BDD [5] for efficient boolean computations
and extraction of boolean counter-models. The algorithm for the computation
of bi-heights is a slightly modified version of a depth first search procedure.

In further work, we will deeper investigate the relationships between the
notion of r-cycle and the G-cycles of [3] and analyze if our conditional graphs
also fit in the hyper-sequent setting. We will also investigate the relationships
between our parallel counter-model search and other approaches based for
example on parallel dialogue games [4,9].

References

[1] Alessendro Avellone, Mauro Ferrari, and Pierangelo Miglioli. Duplication-Free
Tableau Calculi and Related Cut-Free Sequent Calculi for the Interpolable
Propositional Intermediate Logics. Logic Journal of the IGPL, 7(4):447–480,
1999.

[2] Arnon Avron. A Tableau System for Gödel-Dummett Logic Based on a
Hypersequent Calculus. In TABLEAUX 2000, volume 1847 of LNAI, pages
98–111, 2000.

[3] Arnon Avron and Beata Konikowska. Decomposition Proof Systems for Gödel-
Dummett Logics. Studia Logica, 69(2):197–219, 2001.

8 Linearity is measured with respect to either the size of D or the number of nodes and
arrows of Gv.

10

http://www.loria.fr/~larchey/LC


Larchey-Wendling

[4] Matthias Baaz and Christian Fermüller. Analytic Calculi for Projective Logics.
In TABLEAUX’99, volume 1617 of LNCS, pages 36–50, 1999.

[5] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[6] Michael Dummett. A Propositional Calculus with a Denumerable matrix.
Journal of Symbolic Logic, 24:96–107, 1959.

[7] Roy Dyckhoff. Contraction-free Sequent Calculi for Intuitionistic Logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

[8] Roy Dyckhoff. A Deterministic Terminating Sequent Calculus for Gödel-
Dummett logic. Logical Journal of the IGPL, 7:319–326, 1999.

[9] Christian Fermüller. Parallel Dialogue Games and Hypersequents for
Intermediate Logics. In TABLEAUX 2003, volume 2796 of LNAI, pages 48–64,
2003.

[10] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. In Anzeiger Akademie des
Wissenschaften Wien, volume 69, pages 65–66. 1932.

[11] Petr Hajek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers,
1998.

[12] Dominique Larchey-Wendling. Counter-model search in Gödel-Dummett logics.
To be published in the proceedings of IJCAR 2004.

[13] Dominique Larchey-Wendling. Combining Proof-Search and Counter-Model
Construction for Deciding Gödel-Dummett Logic. In CADE-18, volume 2392
of LNAI, pages 94–110, 2002.

[14] George Metcalfe, Nicolas Olivetti, and Dov Gabbay. Goal-Directed Calculi for
Gödel-Dummett Logics. In CSL, volume 2803 of LNCS, pages 413–426, 2003.

11


	Introduction
	The syntax and semantics of Gödel-Dummett logic
	A decision procedure for LC
	Conditional bi-colored graph construction
	Graph construction example
	Naive elimination of r-cycles

	Removing r-cycles in conditional bi-colored graphs
	Conditional matrices
	R-cycle removal as a trace computation

	Counter-model extraction
	Implementation remarks and conclusion
	References

