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Abstract: We introduce the (b; n)-Committee Decision Problem (CD) - a generalization of the consensusproblem. While set agreement generalizes consensus in terms of the number of decisions allowed, the CDproblem generalizes consensus in the sense of considering many instances of consensus and requiring aprocessor to decide in at least one instance. In more detail, in the CD problem each one of a set of nprocesses has a (possibly distinct) value to propose to each one of a set of b consensus problems, whichwe call committees. Yet a process has to decide a value for at least one of these committees, such that allprocesses deciding for the same committee decide the same value. We study the CD problem in the context ofa wait-free distributed system and analyze it using a combination of distributed algorithmic and topologicaltechniques, introducing a novel reduction technique.We use the reduction technique to obtain the following results. We show that the (2; 3)-CD problem isequivalent to the musical benches problem of Gafni and Rajsbaum (DISC 2005), and both are equivalent to(2; 3)-set agreement, closing an open question left there. Thus, all three problems are wait-free unsolvable ina read/write shared memory system, and they are all solvable if the system is enriched with objects capableof solving (2; 3)-set agreement. While the previous proof of the impossibility of musical benches was basedon the Borsuk-Ulam (BU) Theorem, it now relies on Sperner's Lemma, opening intriguing questions aboutthe relation between BU and distributed computing tasks.Key-words: Asynchronous distributed system, Wait-free computing, Shared memory, Consensus, SetAgreement, Musical benches.
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Le probl�eme des d�ecisions de comit�esR�esum�e : Ce rapport pr�esente un probl�eme de prise de d�ecisions multiples (qui g�en�eralise le probl�eme duconsensus) et �etudie sa calculabilit�e (�a l'aide de techniques de r�eductions).Mots cl�es : Syst�emes r�epartis asynchrones, synchronisation sans attente, m�emoire partag�ee, consensus,accord ensembliste, bancs musicaux.



The Committee Decision Problem 31 IntroductionIn a distributed asynchronous system of n processes where at most t of them can fail by stopping, the (k; n)-set agreement problem [7] abstracts away a basic coordination problem: processes have input values, andthey must agree on at most k of these values. The problem has no solution if the shared-memory has onlyread/write registers when k � t [4, 16, 20] but is solvable if either k > t or else more powerful communicationprimitives are available in the system. Set agreement and consensus, when k = 1, have motivated a lot ofresearch (e.g., [2, 17]) and helped to expand our understanding of distributed computing. The wait-free caseof t = n � 1 has been shown to be fundamental (e.g., [11, 12, 16]), because from this case results can bederived for any value of t [4, 6], and the wait-free techniques can be generalized to other synchronous andpartially synchronous models (e.g., [14, 15]), and even models with stronger communication primitives (e.g.,[13]). In this paper we concentrate on the wait-free model.One of the important uses of consensus arises in a distributed state machine (e.g., [19]): the processesare executing a sequence of operations, and they need to agree on the result of each one of the operations,before they can execute the next one. This and other forms of long-lived versions of consensus (e.g., [3])that we are aware of are sequential, in that processes propose values, then they agree on one of them, andonly then they proceed to the next instance of consensus and propose another value. However, it is also verynatural to consider concurrent versions of the problem, where a process pi proposes a vector Vi of values,and each one of them is intended to one of b di�erent consensus problems, called committees. We requirethat processes deciding on the same committee must decide the same value for that committee. Thus, if theprocesses participate concurrently in b di�erent applications, we can guarantee wait-free progress in at leastone application, without using strong communication objects.We call this generalization of consensus the committee decision problem (CD). Notice that the usualtermination requirement of consensus is weakened: a process has to decide a value v for only one of thecommittees, which it can choose; that is, if its decision is the pair (j; v), then all processes choosing to decidefor the j-th committee decide the same value v. The decisions should satisfy the standard agreement andvalidity requirements of consensus: the value decided for a committee was proposed by some process to thatcommittee, and every process deciding on the committee decides the same value. In addition to its possibleapplications, there seem to be various interesting generalizations that may motivate new research, such as:� The number of di�erent committees that are decided is at most k.� At most k di�erent values are decided for each committee.� A process that decides must decide in at least k committees.The CD problem cannot be solved when n = 2 and b = 1, since this is exactly equal to consensus fortwo processes, which has no solution [11]. On the other hand, it is easily solvable when b � n: pi decideson its own proposal, for the i-th committee, (i; Vi[i]). In this paper we concentrate on the binary (2; 3)-CDproblem, where the proposals are taken from the set V = f0; 1g, and there are b = 2 committees, andn = 3 processes. We state our results for this fundamental case to simplify the presentation (avoiding morealgebraic topology notation), and defer the most general phrasing to the full version. We prove that the(2; 3)-CD problem is equivalent to the musical benches problem of Gafni and Rajsbaum [10], and both areequivalent to (2; 3)-set agreement, closing an open question left there. Thus, all three problems are wait-freeunsolvable in a read/write shared memory system, and they are all solvable if the system is enriched withobjects capable of solving (2; 3)-set agreement (such as Test&Set).Our paper is a follow up to [10], that introduced the musical benches problem, and showed the �rstconnection between distributed computing and the Borsuk-Ulam theorem.1 In the musical benches problemthere are 3 processes, the �rst two, p�1; p1, wake up in the �rst bench (consensus instance), while a thirdone wakes up in the 2nd bench, either p�2 or p2, but not both. In executions without conict, namely whenonly one of p�1; p1 wakes up, each process decides its own index. Otherwise, the only requirement is thatprocesses decide at most one index in f�1; 1g and one index in f�2; 2g.The musical benches problem tries to model a new distributed coordination di�culty: processes jumpfrom bench to bench trying to �nd one in which they may be alone or not in conict with one another. Itresembles the consensus problem in the sense that at least two processes must agree on the value for onecommittee. However, it is not as clean a generalization as the CD is. Our �rst aim was to show that the1Although we do not use it in this paper, the reader may be interested to know that the theorem is \one of the most usefultools o�ered by by elementary algebraic topology to the outside world"[18]. It implies Sperner's lemma, but not the opposite.PI n�1745



4 E. Gafni & S. Rajsbaum & M. Raynal & C. Traverstwo problems are equivalent, but while investigating the CD problem, we found that both are equivalentto (2; 3)-set agreement, while in [10] we only knew that musical benches is somewhere in between (2; 3)-set agreement and read-write memory in terms of di�culty. We believe these equivalences are interesting,because although the problems are equivalent in the sense that one can be reduced to any other, they are notthe same, a situation reminiscent of NP-complete problems. Having an arsenal of problems that we knoware not solvable in read-write memory allows us to judge other problems unsolvable through reductions [9],rather than only through direct topological arguments. Indeed, distributed computing theory developmenthas been promoted by the identi�cation of problems that capture essential coordination di�culties.The results in this paper are obtained through a novel reduction technique that combines distributedalgorithmic ideas with topological intuition. The reduction technique consists of taking a read/write sharedmemory wait-free protocol, A, and identifying one or more executions, at the end of which an object solvingsome problem B is invoked. If the resulting protocol solves a problem C (for any object that implements asolution to problem B), we have shown that a solution to B implies a solution to C. Although reducing oneproblem to another is an old idea, our version here has some novel features that stem from the topologicalperspective of papers such as [14, 15, 16, 20]. We �rst consider the set of executions of A as a geometricobject, called a complex. In the case of n = 3, each execution is drawn as a triangle, or simplex, whereits corner vertices are labeled with the views (local states) of each one of the processes at the end of theexecution. We then identify the triangles (or sometimes edges corresponding to 2-process executions) onwhich we are going to invoke the object B. Then we replace these triangles by the complex representing theset of possible responses of an implementation instance of B, and obtain the combined complex representingthe protocol reduction. The goal is to obtain a protocol whose complex gives enough exibility2 to associatea decision function with each one of its vertices and solve the desired problem, C. See for example Figure1, where we start with the simplex representing the inputs to the (2; 3)-set agreement problem, we thenexecute a wait-free protocol where we identify two triangles to be removed and replaced by the set ofpossible responses of an arbitrary musical benches implementation, and the vertices of the resulting complex(obtained by gluing in the later complex into the hole of the former), can be colored with decisions (placed inthe �gure by each one of the vertices) that map into the (2; 3)-set agreement outputs, represented by a hollowtriangle. We have thus created a hole, which gives the desired exibility to the �nal complex, and allowsfor an appropriate decision function to be designed. More details appear in Section 3.1, the correspondingFigure 6, and in Appendix A that includes more formal topology de�nitions and explanations about Figure1. A good introduction to basic topology is [1].
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Figure 1: Solving (2; 3)-set agreement using (one example of) a musical benches object.The rest of the paper is organized as follows. Section 2 de�nes the problems of CD, set agreement andmusical benches, and some additional preliminaries. Section 3 describes an algorithm to solve (2; 3)-setagreement using a musical benches object, and an algorithm to solve (2; 3)-set agreement using a CD object.2The actual complex obtained depends on the actual solution to B used, but any such complex should exhibit that exibility.Two features add exibility: holes and more vertices. Irisa



The Committee Decision Problem 5Section 4 shows that the CD problem is wait-free solvable using a (2; 3)-set agreement object. At the end ofthe paper there is an Appendix where proofs and additional details are provided.2 Three Problems and PreliminariesThis paper considers the usual asynchronous shared memory model, composed of single-writer/multi-readerregisters, and studies wait-free algorithms, where any number of processes can fail by crashing. A fulldescription of these concepts can be found in textbooks such as [2, 17].2.1 The ProblemsThe usual notion of task is a one-shot decision problem speci�ed in terms of an input/output relation �.The processes start with private input values, and must eventually decide on output values, by writing toa write-once variable. An input vector I speci�es in its i-th entry, I [i], the input value of process pi, andwe say pi proposes I [i] in the execution; similarly, an output vector J speci�es a decision value J [i] for eachprocess pi. The task de�nes a set of legal input vectors, and for each one, � speci�es a set of legal outputvectors. Thus, given input vector I , the processes decide a vector J such that individually pi decides J [i].It is sometimes convenient to consider inputless tasks, where a process has only one possible input value,namely its own id. See Appendix B.1 for more details.2.1.1 Set AgreementThe k-set agreement problem is a generalization of consensus (see Appendix B.2) where processes mustdecide on at most k di�erent values, out of the input values. The corresponding inputless version for threeprocesses, p1; p2; p3, and k = 2, denoted (2; 3)-set agreement, is illustrated in Figure 2 (ids associated to eachoutput value are omitted for clarity). It is de�ned by the set of input vectors consisting of (p1; p2; p3) andall its subvectors, and the relation: �(pi) = f(i)g�(pi; pj) = f(i; i); (j; j); (i; j); (j; i)g;and �(pi; pj ; pk) equal to all vectors of i; j; k with at most two di�erent values (this requirement is representedin the �gure by the hole; the possible outputs have no triangle, only edges and vertices). Set agreement is not
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Figure 2: The inputless (2; 3)-set agreement problem (some arrows of � omitted)wait-free solvable [4, 16, 20], due to a generalization of the consensus impossibility connectivity argument tohigher dimensions; wait-free executions induce a \at structure" subdividing the input triangle, and in the�gure one can see that a at triangle is required to be mapped to a hollow one (preserving the boundary),which is impossible.2.1.2 Committee Decision ProblemIn the (b; n)-committee decision (CD) problem n processes are trying to solve b consensus instances, calledcommittees, and each process is required to make a decision for at least one of them. More explicitly, in anexecution, each process pi proposes a vector Vi of b entries: Vi[`] is the value proposed by pi for committee `.PI n�1745



6 E. Gafni & S. Rajsbaum & M. Raynal & C. TraversA process decides a pair (`; v) where `, 1 � ` � b denotes a committee, and v a value proposed by a processfor committee `. The problem is de�ned by the three requirements:� Termination No process takes in�nitely many steps without deciding.� Validity If a process decides (`; v) then 9 j such that v = Vj [`].� Agreement Assume pi; pj decide (`i; vi) and (`j ; vj) respectively. Then `i = `j ) vi = vj .We concentrate our attention on the binary (2; 3)-CD problem, where n = 3; b = 2 and the proposed valuesare taken from V = f0; 1g. We refer to this version as the CD problem.2.1.3 Musical BenchesWe can think of 2-process binary consensus as a bench with two places, designated 1 and �1. Processesp1 and p�1, wake up at places 1 and �1, respectively. In a solo execution a process must return the placeit wakes up in. Otherwise, in an execution where both participate, they return the same place. We add asecond bench, with places 2;�2, and wake up either process p2 at slot 2, or p�2 at slot �2, but not both. Inexecutions with no conict, i.e., either p�1 or p1 wake up but not both, the participating processes returnthe places they wake up in. Only if both p�1 and p1 wake up, then any participating process can go to anyseat. This is the musical benches problem of [10], shown there to have no wait-free solution. One feels anintuition as to why it should not be solvable, di�erent from the set agreement impossibility: if a process frombench 1 jumps to bench 2, it just creates the same problem in bench 2, since we have the freedom of who towake up in bench 2 as to try to defeat consensus there. Indeed, the problem has no wait-free solution, butsurprisingly, this intuition is not exactly right: in [10] it is shown that the problem is reducible to (2; 3)-setagreement, and hence a higher dimensional connectivity argument is needed.The musical benches problem is illustrated in Figure 3, disregarding ids and omitting the dotted arrowsof � for single vertices, to avoid cluttering the �gure. In the �gure there is also an example of an objectimplementing the musical benches problem. Each vertex is labeled on the inside with a process pi, and onthe outside with the value d returned from the object to pi. The corner vertices correspond to executionswhere the process invokes the object alone, and therefore, a pi vertex is labeled with value i. An edgejoining two such vertices represents an execution where both processes invoke the object alone. Notice thatthere are two paths connecting the corners p1; p�1, with vertices labeled p1 or p�1, representing executionswhere only these processes invoke the object. For example, they are two edges incident to the p1 corner,one representing an execution where the object returns 1 to p�1 and another where it returns �2 to p�1.Executions where p�2 participates appear on the left side of the hole, while executions where p2 participatesappear on the right side of the hole. Notice also that no two vertices with the same id have the same value.One can check that this object indeed satis�es the musical benches speci�cation given by �. See AppendixB.3 for more details.2.2 Participating Set ProblemPreparing for the next section we recall the k-participating set problem [10], a generalization of the one in [5]that can access a set agreement object. We present here the case of 3 levels, and either k = 2, that has accessto (2; 3)-set agreement, or k = 3, the original problem of [5] that has no access to set agreement. That is, wehave our �rst simple example of a reduction, in this case from the 2-participating set problem to (2; 3)-setagreement. The 3-participating set problem shows that read write shared memory complex can be attenedto a subdivided simplex, as in the left side of Figure 4. Using a (2; 3)-set agreement implementation, as inthe right side of the �gure, the center triangle is removed and we can create a subdivided simplex with ahole. A process pi computes a set of ids Si, such that1: 8i : i 2 Si; 2: 8i; j : Si � Sj _ Sj � Si;3: 8i; j : i 2 Sj ) Si � Sj ; 4: jfj : jSj j = 3gj � k:The �rst three are the requirements of the participating set problem in [5]. Sets satisfying these propertiescorrespond to the subdivided simplex in Figure 4.For completeness a protocol solving the k-participating set appears in Figure 5. The 4-th property is achievedthrough the set agreement object, invoked by pi with the operation setAg(i), when k = 2. Invoking theset agreement operation has the e�ect of removing the simplex in the center of the subdivision (impossibleIrisa
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8 E. Gafni & S. Rajsbaum & M. Raynal & C. Travers3 Solving (2; 3)-Set AgreementAn algorithm to solve musical benches using (2; 3)-set agreement is described in [10]. In Section 3.1 wedescribe an algorithm to solve (2; 3)-set agreement using a musical benches object. Therefore, the musicalbenches problem is equivalent to (2; 3)-set agreement. In Section 3.2 we describe an algorithm to solve(2; 3)-set agreement using a CD object.3.1 Solving (2; 3)-Set Agreement with Musical BenchesInformally, the idea is very simple. In the musical benches one of two combinations of 3 processors startwith 3 distinct inputs. They eventually halt with at most 2 distinct outputs. Thus the problem possess that\narrowing of choices" property that set agreement exhibit. The only problem we face is how to interfacebetween the requirement of set agreement and those of musical benches. Resolving this is the crux of thepaper: Employ read-write �rst and then glue the musical benches to replace two adjacent simplexes.A protocol that solves (2; 3)-set agreement using musical benches appears in Figure 7, and it is illustratedin Figure 6. Each process pi starts by invoking the participating set protocol of Figure 5 with k = 3. Onceit gets back a set Si, it invokes a musical benches protocol with a parameter hmb(i; Si) de�ned as follows:hmb(i; Si) =8>>>><>>>>: �1 if i = 1 and Si = f1; 2; 3g+1 if i = 3 and Si = f1; 2; 3g+2 if i = 2 and Si = f1; 2; 3g�2 if i = 2 and Si = f2g? otherwiseThat is, the musical benches protocol is invoked only when hmb(i; Si) 6= ?, and if so, each process pi makes adecision, fmb(bench), that depends on the answer bench returned by the musical benches protocol, as followsfmb(bench) = 8>><>>: 2 if bench = �11 if bench = 13 if bench = 22 if bench = �2or if pi did not invoke the musical benches protocol, then it returns g(i; Si). The only requirement is thatg(i; Si) returns an id in Si, to satisfy the validity requirement of the set agreement problem (a decision wasproposed by somebody).Each vertex on the left of Figure 6 is labeled in the inside with the corresponding process pi, and on theoutside with its decision. The boundary of the removed triangles �ts the boundary of the musical benchesobject. We stress that the object in the �gure is just an example of one possible implementation of themusical benches problem; the protocol works for any implementation. Each of the vertices of the musicalbenches object is labeled in the inside with the corresponding process pi, and on the outside with the valuereturned by the object. Thus, if we consider a vertex on the boundary of the hole (left side of the �gure), saythe corner p2, it corresponds to an execution where p2 runs solo, gets S2 = f2g from the participating setobject, invokes the musical benches with hmb(2; f2g) = �2, and gets back �2 (the label by the correspondingvertex on the right side of the �gure) and decides fmb(�2) = 2 (the label by p2's corner vertex on the leftside of the �gure). A pi vertex of the left side of the �gure where the musical benches object is not invokedis labeled with g(i; Si) (this particular g is just an example).Lemma 1 The (2; 3)-SetAg-from-Benches protocol solves (2; 3)-set agreement using any musical benchesimplementation.3.2 Solving (2; 3)-Set Agreement with Committee DecisionThe technique of Section 3.1 can be used to solve (2; 3)-set agreement with CD. The SetAg-from-CDprotocol of Figure 9 is similar to the one in Figure 7, except that a CD object is invoked instead of invokinga musical benches object, and the the functions hmb, fmb and g change. Irisa
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fcd(i; bench) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
3 if i = 1 and bench = �1,2 if i = 1 and bench = �2,1 if i = 1 and bench = +1,1 if i = 1 and bench = +2,3 if i = 2 and bench = �1 or bench = 2,2 if i = 2 and bench = 1 or bench = �2,1 if i = 3 and bench = 1,1 if i = 3 and bench = 2,3 if i = 3 and bench = �1,2 if i = 3 and bench = �2.Function (2; 3)-SetAg-from-CD(i)(01) Si  3-ParticipatingSet(i);(02) if hcd(i; Si) 6= ? then(03) benchi  CD(hcd(i; Si));(04) return fcd(benchi)(05) else return gcd(i; Si) endifFigure 9: From CD to (2; 3)-Set Agreement (code for pi)Lemma 2 The (2; 3)-SetAg-from-CD protocol solves (2; 3)-set agreement using any CD implementation.4 Solving Committee Decision with (2; 3)-Set AgreementThis section shows that the (2; 3)-CD problem is wait-free solvable using a (2; 3)-set agreement object. Sincein Section 3.2 we showed the opposite reduction, we have that both problems are equivalent. The wait-freeimpossibility of solving (2; 3)-set agreement [4, 16, 20] implies that (2; 3)-CD is wait-free unsolvable. Irisa



The Committee Decision Problem 11Function (2; 3)-CD-from-SetAg(Vi)Init viewi  ;; idi  [?;?;?];(01) Prop[i] Vi;(02) Si  2-ParticipatingSet(i);(03) if jSij = 3 then id[i] i;(04) for j = 1 to 3 do idi[j] id[j] enddo(05) viewi  fj : idi[j] 6= ?; j 2 f1; 2; 3gg(06) endif(07) return f(Si; viewi)Figure 10: From (2; 3)-set agreement to (2; 3)-CD (code for pi)In [10] a protocol that solved the musical benches problem with access to a (2; 3)-set agreement objectis described. This protocol can be adapted to solve the CD problem; the main di�erence is the decisionfunction. The protocol works as follows. Each process pi gets a vector Vi as input to the CD problem.It �rst writes it to a shared array, Prop, in position Prop[i]. Then pi invokes the 2-ParticipatingSet(i)function of Figure 5, and gets back a set Si of process ids, satisfying the 2-ParticipatingSet properties:1: 8i : i 2 Si; 2: 8i; j : Si � Sj _ Sj � Si3: 8i; j : i 2 Sj ) Si � Sj 4: jfj : jSj j = 3gj � 2Note that it follows from these properties that there is at most one index i such that jSij = 1 and, atmost two indices i; j such that jSij = jSj j = 2. There are also at most two indices such that i; j such thatjSij = jSj j = 3. Notice also that if j 2 Si then, pj participates in the protocol. Once pi gets a set Siback from the 2-ParticipatingSet object, if jSij = 3 it executes lines (03){(05) which have the e�ect ofproposing its id to a read/write object, and gets back a set viewi of ids, of processes that invoked the object.This is seen in Figure 13 as subdividing the boundary of the removed center triangle (the read/write object'scomplex consists of a 3-edge path: in the middle edge both processes see each other, while in the 2 end edgesexactly one sees the other). Finally, process pi decides a value f(Si; viewi). Due to space limitation, thede�nition of the decision function f is given in the appendix (�gure 12).Lemma 3 The (2; 3)-CD-from-SetAg protocol solves (2; 3)-CD using any (2; 3)-set agreement object.As a consequence of Lemmas 1, 2, and 3 we have our main result.Theorem 1 Musical benches can be wait-free solved i� CD can be wait-free solved i� (2; 3)-set agreementcan be wait-free solved.References[1] Armstrong M.A., Basic Topology, Springer-Verlag, 251 pages, 1983.[2] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics,McGraw{Hill, 451 pages, 1998.[3] Bar-Noy A., Deng X., Garay J., Kameda T., Optimal amortized distributed consensus. Info. and Comp.,120(1):93-100, 1995. Prel. version in WDAG'91.[4] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Compu-tations. Proc. 25th ACM Symposium on the Theory of Computing (STOC'93), ACM Press, pp. 91-100,1993.[5] Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Extended Abstract).Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC'93), ACM Press, pp. 41-51, 1993.PI n�1745



12 E. Gafni & S. Rajsbaum & M. Raynal & C. Travers[6] Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algorithm. Dis-tributed Computing, 14(3):127{146, 2001.[7] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally AsynchronousSystems. Information and Computation, 105:132-158, 1993.[8] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One FaultyProcess. Journal of the ACM, 32(2):374-382, 1985.[9] Gafni E. DISC/GODEL presentation: R/W Reductions (DISC'04), 2004.http://www.cs.ucla.edu/~ eli/eli/godel.ppt[10] Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int. Symposium on Distributed Computing(DISC'05), Springer Verlag LNCS To Appear, Cracow (Poland), September 2005.[11] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Languages and Systems,11(1):124-149, 1991.[12] Herlihy M., Rajsbaum S., New Perspectives in Distributed Computing. Proc. 24th International Sym-posium Mathematical Foundations of Computer Science (MFCS), Springer Verlag LNCS #1672, pp.170{186, 1999.[13] Herlihy H., Rajsbaum S., Algebraic spans. Mathematical Structures in Computer Science, 10(4): 549{573, 2000.[14] Herlihy, M. Rajsbaum, S. and Tuttle, M. Unifying Synchronous and Asynchronous Message-PassingModels. Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC), pp. 133{142,1998.[15] Herlihy, M. Rajsbaum, S. and Tuttle, M. An axiomatic approach to computing the connectivity ofsynchronous and asynchronous systems. Proc. of the 6th workshop on Geometric and Topological Methodsin Concurrency and Distributed Computing (GETCO), 2004.[16] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of theACM, 46(6):858-923, 1999.[17] Lynch N., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.[18] Jiri Matousek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combinatoricsand Geometry, 2003, Springer.[19] Lamport L., The Part-Time Parliament.ACM Transactions On Computer Systems, 16(2):133-169, 1998.[20] Saks, M. and Zaharoglou, F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowl-edge. SIAM Journal on Computing, 29(5):1449-1483, 2000.A Topology NotionsThe unit ball fx 2 IRd : k x k� 1g is denoted by Bd, while Sd�1 = fx 2 IRd : k x k= 1g is the (d � 1)-dimensional unit sphere.A simplex is a set of vertices, a complex is a set of simplexes closed under containment. The dimensiond of a simplex � is one less than its number of vertices, and is said to be a d-simplex, sometimes denoted�d. A subset of a simplex is called a face. It is sometimes convenient to assume a simplex � is embeddedin Euclidean space. For this its vertices are supposed to be a�nely independent, and � is the convex hull ofits vertices. The union of all embedded simplices in a comlex C, called the polyhedron of C, is denoted jCj,and can be regarded as the (point-set) union of the simplexes in C. The boundary of an n-simplex is thesubcomplex of �n obtained by deleting the single n-dimensional simplex and retaining all its faces. Irisa



The Committee Decision Problem 13A triangulation of a topological space X is a complex C such that X �= jX j, namely with homeomorphicspaces. The simplest triangulation of the sphere Sn�1 is the boundary of an n-simplex.A vertex map carries vertices of one complex to vertices of another. A simplicial map is a vertex mapthat preserves simplexes, that is, it sends a set of vertices that form a simplex into a (possibly smaller) setof vertices that also form a simplex.A complex �(K) is a subdivision of a complex K if:� each simplex in �(K) is contained in a simplex in K, and� each simplex of K is the union of �nitely many simplexes in �(K).Note that jKj = j�(K)j. If ~s is a point in jKj, the carrier of ~s, denoted carrier (~s;K), is the unique smallestT 2 K such that ~s 2 T . As an example, the complex in the left side of Figure 4 is a subdivision of a2-dimensional simplex.Consider Figure 1 representing the execution of the protocol of Figure 7. We start with a simplex labeledwith the three process ids p1; p2; p3 representig the input to the (2; 3)-set agreement problem (pi's input is i).The corners correspond to executions where a process runs solo; the edges to executions where two processesparticipate; and the solid triangle to executions where the three of them participate. After the read/writewait-free 3-ParticipatingSet protocol of Figure 5 is executed, we get the next �gure, where all possibleexecutions of this protocol are represented. Each vertex has associated an id pi (drawn in the inside of thevertex), a view Si returned by the protocol (not drawn in the �gure), and a decision value (drawn on the sideof the vertex). The corners represent solo executions (pi gets back Si = fig from the ParticipatingSetprotocol); the vertices along the boundary represent executions where only two processes participate, andsee each other (pi; pj get back Si = fi; jg from the ParticipatingSet protocol); the triangle in the centerrepresents the execution where all three processes see each other (and they get back Si = f1; 2; 3g from theParticipatingSet protocol). A process pi that gets back a set Si = f1; 2; 3g invokes the muscial benchesobject, and also p2 invokes it if it gets back the set S2 = f2g. Therefore, the center triangle and its adjacenttriangle with a corner to p2's solo execution will be replaced by all possible executions of the object. Inthe �gure are depicted a set of such executions, of an object implementing the musical benches problem.But we stress that other implementations of the musical benches problem are possible and would produce adi�erent complex (e.g. removing the two middle vertices labeled p2; p�2 would also be an implementationof the musical benches problem). The decisions made by the processes de�ne a simplicial map that goes tothe hollow (because never are three di�erent values decided) triangle at the right of the �gure.B More Details about ProblemsB.1 Inputless TasksIt is sometimes convenient to consider inputless tasks, where a process has only one possible input value,namely its own id. In this case, the di�culty of solving the task does not come from the uncertainty thatother processes have on what is the local values of each other, but rather on what are the processes that areparticipating (i.e., taking steps) in an execution. Consider an algorithm for some set of processes where the�rst operation by a process is to write its id to shared memory, and that includes an operation to a write-oncedecision variable. A process participates in an execution if it executes its �rst operation. The input vectorof an execution contains the ids of the participating processes. A process decides in an execution if it writesto the decision variable, and the value decided is the value written to the variable. The output vector of anexecution contains the values decided by the processes, or ? if the process did not decide. The algorithmsolves the task if in every execution with input vector I , the output vector O can be extended (by replacing? entries with other values) to a vector in �(I), and a process that does not fail decides.It turns out that both notions of tasks are equivalent. An inputless task is a task with just one possibleinput con�guration. Also, given a task, one can de�ne an equivalent inputless task by introducing moreprocesses. Namely, if there are x possible input values for a process p, then we introduce x copies ofprocess p, and consider only executions where the processes corresponding to di�erent original processesparticipate. Although both notions are equivalent, inputless tasks are convenient because one can concentrateon particular combinations of input values that make a problem di�cult to solve.PI n�1745



14 E. Gafni & S. Rajsbaum & M. Raynal & C. TraversB.2 ConsensusIn the consensus problem each process starts with a local input value out of some set of possible inputvalues, V , and must decide on an output value such that the following agreement and validity requirementsare satis�ed: (i) if v1 and v2 are the decision values of two processes in an execution, then v1 = v2, and (ii) ifv is the decision value of a process, then v is the input value of some process in the execution. In the binaryconsensus problem V = f0; 1g.We will consider also an inputless version of consensus: a process must decide on the id of a participatingprocess. The binary consensus case for two process, p�1; p1, illustrated in Figure 11(a), is de�ned formallyby the set of input vectors f(p�1; p1); (p1); (p�1)g, and the relation:�(p�1; p1) = f(�1;�1); (1; 1)g;�(p�1) = f(�1)g;�(p1) = f(1)g:It is sometimes convenient to consider only the output values, and disregard the processes ids, as depicted
Figure 11: The inputless consensus problemin Figure 11(b). It is well-known that consensus is wait-free unsolvable [8, 11]. The reason is that wait-freeexecutions preserve the connectivity of the input con�gurations. In the �gure we can observe that whilethe input con�gurations are connected, the output con�gurations are not, and � requires to send di�erentregions of a connected object to two disconnected output con�gurations.B.3 Musical BenchesThe musical benches problem of size b is a task speci�ed in terms of a relation �. The input vectors are overfp�i; pij1 � i � bg, and the output vectors over f�i; i;?j1 � i � bg. In this paper we consider the case ofb = 2. Formally, � is:�(p�1; p1; p2) = f(x1; x2; x3) j8i; j; xi 2 f1;�1; 2;�2g; xi + xj 6= 0g�(p1; p2) = f(1; 2)g�(p�1; p2) = f(�1; 2)g�(p�1; p1) = f(x1; x2; ) j8x1; x2 2 f1;�1; 2;�2g; x1 + x2 6= 0g�(p�1) = f(�1)g�(p1) = f(1)g�(p2) = f(2)gand so on for �(p�1; p1; p�2), �(p1; p�2), �(p�1; p�2), �(p�1; p2), �(p�2), and �(p2). Notice that itincludes the �rst bench, and a restriction of the 2nd bench that disallows p�2 and p2 participating together.C Decision Function of the Protocol CD-from-SetAgThe decision function is described in Figure 12. Irisa



The Committee Decision Problem 15(leveli) id. Si viewi f(Si; viewi)1 1,2 f1g, f2g ; (i; i)1 3 f3g ; (2; 3)2 1 f1; 2g ; (2; 2)2 1 f1; 3g ; (2; 3)2 2 f1; 2g ; (1; 1)2 2 f2; 3g ; (1; 3)2 3 f1; 3g ; (1; 1)2 3 f2; 3g ; (2; 2)3 1 f1; 2; 3g f1g (1; 3)3 1 "" f1; 2g (2; 3)3 1 "" f1; 3g (1; 3)3 2 "" f2g (2; 3)3 2 "" f1; 2g (2; 3)3 2 "" f2; 3g (1; 1)3 3 "" f3g (2; 2)3 3 "" f1; 3g (1; 3)3 3 "" f2; 3g (1; 1)Figure 12: Decision function of the (2; 3)-CD-from-SetAg protocolD ProofsLemma 1 The (2; 3)-SetAg-from-Benches protocol solves (2; 3)-set agreement using any musical bench-es implementation.Proof We need to check that in any execution at most 2 di�erent ids are decided. On executions wherethe musical benches object is not invoked this can be checked directly from Figure 6, noticing that along theboundary decisions are consistent. For example, consider the boundary of the removed triangles connectingp2 and p3 to the corner (solo execution) vertex p1. In any vertex here p2 decides 3, because any musicalbenches implementation must return +2 (p2; p1 are in no conict), and the map fmb(2) returns 3. In general,along the boundary, the musical benches object returns to a process that invokes it with id i the same id i,and the map fmb transform it into a value j such that at most 2 di�erent values are returned by processesthat did not invoke the object, together with the processes that did invoke it.The other case that needs to be checked is for executions where the three processes invoke the musicalbenches object. In this case, assume for contradiction that in one execution 3 di�erent values are decided.This is impossible because by the de�nition of fmb this implies that the musical benches object returnedeither �1;+1, or �2;+2. 2Lemma 1Lemma 2 The (2; 3)-SetAg-from-CD protocol solves (2; 3)-set agreement using any CD implementation.Proof We need to check that in any execution at most 2 di�erent ids are decided. We �rst check itfor executions where at least one process does not invoke the CD object, namely, when it decides in line(05). Assume for contradiction that 3 values are decided. When we consider the possible cases below, weuse the following notation. For hcd(i; Si) 6= ?, we use pi; (a; b) : j ! k to denote pi with view Si hashcd(i; Si) = (a; b), gets back from the CD the value j and decides k because fcd(i; j) = k. For hcd(i; Si) = ?,we use simply gcd(i; Si) ! k. We start with the cases where at least one process does not invoke the CDobject:1. A process on the boundary decides 1 (i.e., gcd(i; Si)! 1).(a) Assume i = 1 with view S1. If S1 = f1g then hcd(2; S2) 6= ? and hcd(3; S3) 6= ?. The onlyprocess that can decide 2 in this situation is p2 with p2; (�1; 2) : 1! 2, but then for p3 to decide3 it must get back �1 from the CD, i.e., p3; (1; 2) : �1! 3 which is impossible, because the CDcannot return �1; 1.PI n�1745



16 E. Gafni & S. Rajsbaum & M. Raynal & C. TraversOtherwise, S1 = f1; 2g, and then hcd(2; S2) 6= ? and hcd(3; S3) 6= ?. If process p2 decides 2 inthis situation then p2; (1;�2) : 1 _ �2! 2, but then for p3 to decide 3 it must get back �1 fromthe CD, which is impossible because neither p2 nor p3 proposed �1 (and p1 does not propose tothe CD).(b) Assume i = 2, then the only view is S2 = f1; 2g. This case is trivial because the two neighbors ofp2 decide 1.(c) Finally, assume i = 3 with view S3 = f1; 3g. This case is again trivial because no neighbor of p3decides 2.2. A process on the boundary decides 2 (i.e., gcd(i; Si)! 2).(a) Assume i = 2 with view S2. Then S2 = f2g and hcd(2; S2) 6= ?. The neighbor p3 with S3 = f2; 3galso decides 2, so this case is trivial. Consider then process p1 with S1 = f1; 2g, that decides 1.In this situation p3; (1; 2) : 1 _ 2! 1 _ 2, and then nobody decides 3.(b) Assume i = 3 with view S3. Then S3 = f2; 3g. The only process that can decide 1 in this situationis p1 with p1; (�1;�2) : 1! 1 (it cannot get back 2 because nobody proposes 2 to the CD). Butthen for p2 to decide 3 it must get back �1 from the CD (cannot get back 2), which is impossiblebecause the CD cannot return �1; 1.3. A process on the boundary decides 3 (i.e., gcd(i; Si)! 3).(a) Assume i = 2 with view S2. Then S2 = f2; 3g and this case is trivial because its neighbors do notdecide 1.(b) Assume i = 1 with view S1. Then S1 = f1; 3g and this case is trivial because its neighbors do notdecide 2.We now consider the cases where all processes invoke the CD object. We consider two cases, according towhich process decides 1 (p2 never decides 1):1. Process p1 decides 1. We have two cases depending on why it decides 1:(a) p1; (�1;�2) : 1 ! 1. Then p2 or p3 propose 1 to the CD. We analyze who decides 3. Firstnotice that p3 cannot decide 3 because it would have to get �1 from the CD. Hence, p2 decides3: p2; (1;�2) : 2! 3, because it cannot get back �1. Then p3 has to decide 2, but the only wayis if it gets �2, a contradiction because the CD returns �2; 2.(b) p1; (�1;�2) : 2 ! 1. Then p2 or p3 propose 2 to the CD. We analyze who decides 2. Firstnotice that p3 cannot decide 2 because it would have to get �2 from the CD. Hence, p2 decides2: p2; (�1; 2) : 1! 2, because it cannot get back �2. Then p3 has to decide 3, but the only wayis if it gets �1, a contradiction because the CD returns �1; 1.2. Process p3 decides 1. We have two cases depending on why it decides 1:(a) p3; (1; 2) : 1 ! 1. If p2 decides 2, it is because it got back 1 or �2. Then p1 cannot decide 3because it would have to get back �1. Thus, assume the one deciding 2 is p1. This is because itgot back �2. But then p2 cannot decide 3 because it would have to get back �1 or 2, and theCD would return either �1; 1 or �2; 2.(b) p3; (1; 2) : 2 ! 1. If p2 decides 2, it is because it got back 1 (it cannot get back �2). Then p1cannot decide 3 because the CD would return �1; 1. Thus, assume the one deciding 2 is p1. Thisis because it got back �2, and the CD would return �2; 2. 2Lemma 2Lemma 3 The (2; 3)-CD-from-SetAg protocol solves (2; 3)-CD using any (2; 3)-set agreement object.Proof The proof of the protocol follows from the �gure 13 which represents the �nal views of the processeswith their decision. 2Lemma 3E The CD-from-SetAg views Irisa



The Committee Decision Problem 17

(f2; 3g; ;)

( ; f1; 2g)

(f1; 3g; ;)
( ; f2g)( ; f3g) ( ; f2; 3g) ( ; f2; 3g)

( ; f1; 2g)( ; f1g)( ; f1; 3g)( ; f1; 3g)

(f2; 3g; ;)

(f1; 2g; ;)

process at level 2 (jSij = 2)process at level 3 (jSij = 3)process at level 1 (jSij = 1, i.e., Si = fig)pipipi (f1; 3g; ): �nal state (Si; viewi).

(f1; 2g; ;) (f1; 3g; ;)

(1 ; 1 ) (1 ;1 ) (1 ; 1 )
(2 ; 2 ) (2 ;2 ) (1 ;1 ) (1 ; 1 ) (2 ;3 ) (2 ; 3 )(1 ;3 ) (2 ;3 )(1 ;3 ) (2 ;3 )(2 ;2 ) (1 ;3 ) (2 ; 3 )

(1 ; 3 )(2 ;2 )
(2 ; 1 ) : decision (pi decides in committee 2 the value proposed for committee 2 by p1)

p3p1p2
p1 p3 p2 p1

p1p2 p3
p2p3

p2 p3p1 p1p3 p2

Figure 13: The CD-from-SetAg views.
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