-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The Committee Decision Problem
Eli Gafni, Sergio Rajsbaum, Michel Raynal, Corentin Travers

» To cite this version:

Eli Gafni, Sergio Rajsbaum, Michel Raynal, Corentin Travers. The Committee Decision Problem.
[Research Report] PI 1745, 2005, pp.17. inria-00000290

HAL Id: inria-00000290
https://hal.inria.fr /inria-00000290
Submitted on 23 Sep 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50484109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000290
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION

INTERNE
N° 1745

THE COMMITTEE DECISION PROBLEM

E. GAFNI S. RAJSBAUM M. RAYNAL

™ |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

C. TRAVERS

The Committee Decision Problem*

E. Gafni" S. Rajsbaum*** M. Raynal**** C. Travers

Systeémes communicants

Publication interne n ° 1745 — Septembre 2005 — 17 pages

Abstract: We introduce the (b, n)-Committee Decision Problem (CD) - a generalization of the consensus
problem. While set agreement generalizes consensus in terms of the number of decisions allowed, the CD
problem generalizes consensus in the sense of considering many instances of consensus and requiring a
processor to decide in at least one instance. In more detail, in the CD problem each one of a set of n
processes has a (possibly distinct) value to propose to each one of a set of b consensus problems, which
we call committees. Yet a process has to decide a value for at least one of these committees, such that all
processes deciding for the same committee decide the same value. We study the CD problem in the context of
a wait-free distributed system and analyze it using a combination of distributed algorithmic and topological
techniques, introducing a novel reduction technique.

We use the reduction technique to obtain the following results. We show that the (2,3)-CD problem is
equivalent to the musical benches problem of Gafni and Rajsbaum (DISC 2005), and both are equivalent to
(2, 3)-set agreement, closing an open question left there. Thus, all three problems are wait-free unsolvable in
a read/write shared memory system, and they are all solvable if the system is enriched with objects capable
of solving (2, 3)-set agreement. While the previous proof of the impossibility of musical benches was based
on the Borsuk-Ulam (BU) Theorem, it now relies on Sperner’s Lemma, opening intriguing questions about
the relation between BU and distributed computing tasks.

Key-words: Asynchronous distributed system, Wait-free computing, Shared memory, Consensus, Set
Agreement, Musical benches.

(Résumé : tsuvp)

* This work has been supported by grants from LAFMI (Franco-Mexican Lab in Computer Science) and PAPIIT-UNAM.
** Department of Computer Science, UCLA, Los Angeles, CA 90095, USA eli@cs.ucla.edu
“** Instituto de Matematicas, UNAM, D. F. 04510, Mexico rajsbaum@math.unam.mx
IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, raynal@irisa.fr
IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, travers@irisa.fr

ks

Centre National de la Recherche Scientifigue Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

ok ok K

EEETEY

Le probléeme des décisions de comités

Résumé : Ce rapport présente un probléme de prise de décisions multiples (qui généralise le probleme du
consensus) et étudie sa calculabilité (& 'aide de techniques de réductions).

Mots clés : Systemes répartis asynchrones, synchronisation sans attente, mémoire partagée, consensus,
accord ensembliste, bancs musicaux.

1 Introduction

In a distributed asynchronous system of n processes where at most ¢ of them can fail by stopping, the (k,n)-
set agreement problem [7] abstracts away a basic coordination problem: processes have input values, and
they must agree on at most k of these values. The problem has no solution if the shared-memory has only
read/write registers when k < ¢ [4, 16, 20] but is solvable if either k& > ¢ or else more powerful communication
primitives are available in the system. Set agreement and consensus, when k = 1, have motivated a lot of
research (e.g., [2, 17]) and helped to expand our understanding of distributed computing. The wait-free case
of t = n — 1 has been shown to be fundamental (e.g., [11, 12, 16]), because from this case results can be
derived for any value of ¢ [4, 6], and the wait-free techniques can be generalized to other synchronous and
partially synchronous models (e.g., [14, 15]), and even models with stronger communication primitives (e.g.,
[13]). In this paper we concentrate on the wait-free model.

One of the important uses of consensus arises in a distributed state machine (e.g., [19]): the processes
are executing a sequence of operations, and they need to agree on the result of each one of the operations,
before they can execute the next one. This and other forms of long-lived versions of consensus (e.g., [3])
that we are aware of are sequential, in that processes propose values, then they agree on one of them, and
only then they proceed to the next instance of consensus and propose another value. However, it is also very
natural to consider concurrent versions of the problem, where a process p; proposes a vector V; of values,
and each one of them is intended to one of b different consensus problems, called committees. We require
that processes deciding on the same committee must decide the same value for that committee. Thus, if the
processes participate concurrently in b different applications, we can guarantee wait-free progress in at least
one application, without using strong communication objects.

We call this generalization of consensus the committee decision problem (CD). Notice that the usual
termination requirement of consensus is weakened: a process has to decide a value v for only one of the
committees, which it can choose; that is, if its decision is the pair (j, v), then all processes choosing to decide
for the j-th committee decide the same value v. The decisions should satisfy the standard agreement and
validity requirements of consensus: the value decided for a committee was proposed by some process to that
committee, and every process deciding on the committee decides the same value. In addition to its possible
applications, there seem to be various interesting generalizations that may motivate new research, such as:

e The number of different committees that are decided is at most k.
e At most k different values are decided for each committee.
e A process that decides must decide in at least k& committees.

The CD problem cannot be solved when n = 2 and b = 1, since this is exactly equal to consensus for
two processes, which has no solution [11]. On the other hand, it is easily solvable when b > n: p; decides
on its own proposal, for the i-th committee, (i, V;[¢]). In this paper we concentrate on the binary (2, 3)-CD
problem, where the proposals are taken from the set V = {0,1}, and there are b = 2 committees, and
n = 3 processes. We state our results for this fundamental case to simplify the presentation (avoiding more
algebraic topology notation), and defer the most general phrasing to the full version. We prove that the

(2,3)-CD problem is equivalent to the musical benches problem of Gafni and Rajsbaum [10], and both are
equivalent to (2, 3)-set agreement, closing an open question left there. Thus, all three problems are wait-free
unsolvable in a read/write shared memory system, and they are all solvable if the system is enriched with
objects capable of solving (2, 3)-set agreement (such as Test&Set).

Our paper is a follow up to [10], that introduced the musical benches problem, and showed the first
connection between distributed computing and the Borsuk-Ulam theorem.! In the musical benches problem
there are 3 processes, the first two, p_1,p1, wake up in the first bench (consensus instance), while a third
one wakes up in the 2nd bench, either p_s or ps, but not both. In executions without conflict, namely when
only one of p_1,p; wakes up, each process decides its own index. Otherwise, the only requirement is that
processes decide at most one index in {—1,1} and one index in {-2,2}.

The musical benches problem tries to model a new distributed coordination difficulty: processes jump
from bench to bench trying to find one in which they may be alone or not in conflict with one another. It
resembles the consensus problem in the sense that at least two processes must agree on the value for one

committee. However, it is not as clean a generalization as the CD is. Our first aim was to show that the

L Although we do not use it in this paper, the reader may be interested to know that the theorem is “one of the most useful
tools offered by by elementary algebraic topology to the outside world”[18]. It implies Sperner’s lemma, but not the opposite.

PIn~1745

two problems are equivalent, but while investigating the CD problem, we found that both are equivalent
to (2,3)-set agreement, while in [10] we only knew that musical benches is somewhere in between (2, 3)-
set agreement and read-write memory in terms of difficulty. We believe these equivalences are interesting,
because although the problems are equivalent in the sense that one can be reduced to any other, they are not
the same, a situation reminiscent of NP-complete problems. Having an arsenal of problems that we know
are not solvable in read-write memory allows us to judge other problems unsolvable through reductions [9],
rather than only through direct topological arguments. Indeed, distributed computing theory development,
has been promoted by the identification of problems that capture essential coordination difficulties.

The results in this paper are obtained through a novel reduction technique that combines distributed
algorithmic ideas with topological intuition. The reduction technique consists of taking a read/write shared
memory wait-free protocol, A, and identifying one or more executions, at the end of which an object solving
some problem B is invoked. If the resulting protocol solves a problem C' (for any object that implements a
solution to problem B), we have shown that a solution to B implies a solution to C'. Although reducing one
problem to another is an old idea, our version here has some novel features that stem from the topological
perspective of papers such as [14, 15, 16, 20]. We first consider the set of executions of A as a geometric
object, called a complex. In the case of n = 3, each execution is drawn as a triangle, or simplex, where
its corner vertices are labeled with the views (local states) of each one of the processes at the end of the
execution. We then identify the triangles (or sometimes edges corresponding to 2-process executions) on
which we are going to invoke the object B. Then we replace these triangles by the complex representing the
set of possible responses of an implementation instance of B, and obtain the combined complex representing
the protocol reduction. The goal is to obtain a protocol whose complex gives enough flexibility? to associate
a decision function with each one of its vertices and solve the desired problem, C'. See for example Figure
1, where we start with the simplex representing the inputs to the (2, 3)-set agreement problem, we then
execute a wait-free protocol where we identify two triangles to be removed and replaced by the set of
possible responses of an arbitrary musical benches implementation, and the vertices of the resulting complex
(obtained by gluing in the later complex into the hole of the former), can be colored with decisions (placed in
the figure by each one of the vertices) that map into the (2, 3)-set agreement outputs, represented by a hollow
triangle. We have thus created a hole, which gives the desired flexibility to the final complex, and allows
for an appropriate decision function to be designed. More details appear in Section 3.1, the corresponding
Figure 6, and in Appendix A that includes more formal topology definitions and explanations about Figure
1. A good introduction to basic topology is [1].

Input simplex to
(2,3)-set agreement

Musical benches object

Invocations

(2,3)-set agreement

Wait-free executions outputs

decisions

Figure 1: Solving (2, 3)-set agreement using (one example of) a musical benches object.

The rest of the paper is organized as follows. Section 2 defines the problems of CD, set agreement and
musical benches, and some additional preliminaries. Section 3 describes an algorithm to solve (2, 3)-set
agreement using a musical benches object, and an algorithm to solve (2, 3)-set agreement using a CD object.

2The actual complex obtained depends on the actual solution to B used, but any such complex should exhibit that flexibility.
Two features add flexibility: holes and more vertices.

Irisa

Section 4 shows that the CD problem is wait-free solvable using a (2, 3)-set agreement object. At the end of
the paper there is an Appendix where proofs and additional details are provided.

2 Three Problems and Preliminaries

This paper considers the usual asynchronous shared memory model, composed of single-writer/multi-reader
registers, and studies wait-free algorithms, where any number of processes can fail by crashing. A full
description of these concepts can be found in textbooks such as [2, 17].

2.1 The Problems

The usual notion of task is a one-shot decision problem specified in terms of an input/output relation A.
The processes start with private input values, and must eventually decide on output values, by writing to
a write-once variable. An input vector I specifies in its i-th entry, I[i], the input value of process p;, and
we say p; proposes I[i] in the execution; similarly, an output vector J specifies a decision value J[i] for each
process p;. The task defines a set of legal input vectors, and for each one, A specifies a set of legal output
vectors. Thus, given input vector I, the processes decide a vector J such that individually p; decides JJi].
It is sometimes convenient to consider inputless tasks, where a process has only one possible input value,
namely its own id. See Appendix B.1 for more details.

2.1.1 Set Agreement

The k-set agreement problem is a generalization of consensus (see Appendix B.2) where processes must
decide on at most k different values, out of the input values. The corresponding inputless version for three
processes, p1, P2, p3, and k = 2, denoted (2, 3)-set agreement, is illustrated in Figure 2 (ids associated to each
output value are omitted for clarity). It is defined by the set of input vectors consisting of (p1,p2,ps) and
all its subvectors, and the relation:

Alp)) = {6}
Alpipg) = {06,9),0,4), (0, 4), (6,0},

and A(p;, pj, px) equal to all vectors of 4, j, k with at most two different values (this requirement is represented
in the figure by the hole; the possible outputs have no triangle, only edges and vertices). Set agreement is not

Figure 2: The inputless (2, 3)-set agreement problem (some arrows of A omitted)

wait-free solvable [4, 16, 20], due to a generalization of the consensus impossibility connectivity argument to
higher dimensions; wait-free executions induce a “flat structure” subdividing the input triangle, and in the
figure one can see that a flat triangle is required to be mapped to a hollow one (preserving the boundary),
which is impossible.

2.1.2 Committee Decision Problem

In the (b, n)-committee decision (CD) problem n processes are trying to solve b consensus instances, called
committees, and each process is required to make a decision for at least one of them. More explicitly, in an
execution, each process p; proposes a vector V; of b entries: V;[f] is the value proposed by p; for committee £.

PIn~1745

A process decides a pair (¢,v) where £, 1 < £ < b denotes a committee, and v a value proposed by a process
for committee £. The problem is defined by the three requirements:

e Termination No process takes infinitely many steps without deciding.

e Validity If a process decides (¢,v) then 3 j such that v = V;[{].

e Agreement Assume p;,p; decide (¢;,v;) and (¢;,v;) respectively. Then ¢; = {; = v; = v;.
We concentrate our attention on the binary (2,3)-CD problem, where n = 3,b = 2 and the proposed values
are taken from V = {0,1}. We refer to this version as the CD problem.

2.1.3 Musical Benches

We can think of 2-process binary consensus as a bench with two places, designated 1 and —1. Processes
p1 and p_1, wake up at places 1 and —1, respectively. In a solo execution a process must return the place
it wakes up in. Otherwise, in an execution where both participate, they return the same place. We add a
second bench, with places 2, —2, and wake up either process ps at slot 2, or p_o at slot —2, but not both. In
executions with no conflict, i.e., either p_; or p; wake up but not both, the participating processes return
the places they wake up in. Only if both p_; and p; wake up, then any participating process can go to any
seat. This is the musical benches problem of [10], shown there to have no wait-free solution. One feels an
intuition as to why it should not be solvable, different from the set agreement impossibility: if a process from
bench 1 jumps to bench 2, it just creates the same problem in bench 2, since we have the freedom of who to
wake up in bench 2 as to try to defeat consensus there. Indeed, the problem has no wait-free solution, but
surprisingly, this intuition is not exactly right: in [10] it is shown that the problem is reducible to (2, 3)-set
agreement, and hence a higher dimensional connectivity argument is needed.

The musical benches problem is illustrated in Figure 3, disregarding ids and omitting the dotted arrows
of A for single vertices, to avoid cluttering the figure. In the figure there is also an example of an object
implementing the musical benches problem. Each vertex is labeled on the inside with a process p;, and on
the outside with the value d returned from the object to p;. The corner vertices correspond to executions
where the process invokes the object alone, and therefore, a p; vertex is labeled with value i. An edge
joining two such vertices represents an execution where both processes invoke the object alone. Notice that
there are two paths connecting the corners pq,p_1, with vertices labeled p; or p_1, representing executions
where only these processes invoke the object. For example, they are two edges incident to the p; corner,
one representing an execution where the object returns 1 to p_; and another where it returns —2 to p_;.
Executions where p_» participates appear on the left side of the hole, while executions where p, participates
appear on the right side of the hole. Notice also that no two vertices with the same id have the same value.
One can check that this object indeed satisfies the musical benches specification given by A. See Appendix
B.3 for more details.

2.2 Participating Set Problem
Preparing for the next section we recall the k-participating set problem [10], a generalization of the one in [5]
that can access a set agreement object. We present here the case of 3 levels, and either £ = 2, that has access
to (2, 3)-set agreement, or k = 3, the original problem of [5] that has no access to set agreement. That is, we
have our first simple example of a reduction, in this case from the 2-participating set problem to (2, 3)-set
agreement. The 3-participating set problem shows that read write shared memory complex can be flattened
to a subdivided simplex, as in the left side of Figure 4. Using a (2, 3)-set agreement implementation, as in
the right side of the figure, the center triangle is removed and we can create a subdivided simplex with a
hole. A process p; computes a set of ids S;, such that

1. Vi:i€eS;, 2. Vi7jZSigSjVSngi7

3. Vi,j:i€S;=5;,CS;, 4. |{j:|S;] =3} <k

The first three are the requirements of the participating set problem in [5]. Sets satisfying these properties
correspond to the subdivided simplex in Figure 4.

For completeness a protocol solving the k-participating set appears in Figure 5. The 4-th property is achieved
through the set agreement object, invoked by p; with the operation setAg(i), when k& = 2. Invoking the
set agreement operation has the effect of removing the simplex in the center of the subdivision (impossible

Irisa

Inputs

Decision map

Musical benches object

Figure 3: Musical benches task with a musical benches object

solo execution by p1 R

) when k=2
execution where

all participate

(removed when k=2)

executions where only p2,p3
participate

Outputs

Figure 4: The k-participating set views for k£ = 3; when k = 2 the center triangle is removed.

Initially: Level[j] =4 Vj € {1,2,3}; k=2 or k = 3;

Function k-PARTICIPATINGSET(7)

1) Init OK; < false;

2) repeat Levelli] + Level[i] — 1;

3) for j =1 to 3 do level;[j] < Level[j] enddo

4) Si < {J : level;[j] < Level[i],j € {1,2,3}};

5) if |S;| =3 and k = 2 then ans; < (2,3)-SETAG(3);
6) if ans; = i then OK; < true endif
7) else OK; « true endif
8) until (|S;| > Level;[i]) A OKj;
9) return(S;)

(0
(0
(
(
(
(
(
(
(

oo CcCoOC oo

Figure 5: From (2, 3)-set agreement to k-Participating set (code for p;)

that the three processes produce sets of size 3), and leaving just its boundary (at most two processes may

grodguce sets of size 3).
In~ 1745

3 Solving (2,3)-Set Agreement

An algorithm to solve musical benches using (2, 3)-set agreement is described in [10]. In Section 3.1 we
describe an algorithm to solve (2, 3)-set agreement using a musical benches object. Therefore, the musical
benches problem is equivalent to (2,3)-set agreement. In Section 3.2 we describe an algorithm to solve
(2, 3)-set agreement using a CD object.

3.1 Solving (2,3)-Set Agreement with Musical Benches

Informally, the idea is very simple. In the musical benches one of two combinations of 3 processors start
with 3 distinct inputs. They eventually halt with at most 2 distinct outputs. Thus the problem possess that
“narrowing of choices” property that set agreement exhibit. The only problem we face is how to interface
between the requirement of set agreement and those of musical benches. Resolving this is the crux of the
paper: Employ read-write first and then glue the musical benches to replace two adjacent simplexes.

A protocol that solves (2, 3)-set agreement using musical benches appears in Figure 7, and it is illustrated
in Figure 6. Each process p; starts by invoking the participating set protocol of Figure 5 with k£ = 3. Once
it gets back a set S;, it invokes a musical benches protocol with a parameter h,,; (i, S;) defined as follows:

-1 ifi=1and S;=1{1,2,3}

+1 ifi=3and S; ={1,2,3}
homp (3, 8;) = +2 ifi=2and S; ={1,2,3}

—2 ifi=2and S; = {2}

— otherwise

That is, the musical benches protocol is invoked only when h,,,;(4,.S;) # —, and if so, each process p; makes a
decision, f,(bench), that depends on the answer bench returned by the musical benches protocol, as follows

2 if bench = —1

1 if bench =1
fmp(bench) = 3 if bench = 2

2 if bench = -2

or if p; did not invoke the musical benches protocol, then it returns g(i,S;). The only requirement is that
9(i,S;) returns an id in S;, to satisfy the validity requirement of the set agreement problem (a decision was
proposed by somebody).

Each vertex on the left of Figure 6 is labeled in the inside with the corresponding process p;, and on the
outside with its decision. The boundary of the removed triangles fits the boundary of the musical benches
object. We stress that the object in the figure is just an example of one possible implementation of the
musical benches problem; the protocol works for any implementation. Each of the vertices of the musical
benches object is labeled in the inside with the corresponding process p;, and on the outside with the value
returned by the object. Thus, if we consider a vertex on the boundary of the hole (left side of the figure), say
the corner po, it corresponds to an execution where p, runs solo, gets So = {2} from the participating set
object, invokes the musical benches with h,,;(2, {2}) = —2, and gets back —2 (the label by the corresponding
vertex on the right side of the figure) and decides f,,5(—2) = 2 (the label by ps’s corner vertex on the left
side of the figure). A p; vertex of the left side of the figure where the musical benches object is not invoked
is labeled with g(i,S;) (this particular g is just an example).

Lemma 1 The (2,3)-SETAG-FROM-BENCHES protocol solves (2,3)-set agreement using any musical benches
implementation.

3.2 Solving (2,3)-Set Agreement with Committee Decision

The technique of Section 3.1 can be used to solve (2,3)-set agreement with CD. The SETAG-FROM-CD
protocol of Figure 9 is similar to the one in Figure 7, except that a CD object is invoked instead of invoking
a musical benches object, and the the functions h,p, fmp and g change.

Irisa

Figure 6: Solving (2, 3)-set agreement using musical benches. The two triangles are removed and replaced

by all the possible executions of a particular musical benches implementation.

Function (2,3)-SETAG-FROM-BENCHES(%)
01) S; < 3-PARTICIPATINGSET(%);
) if hps(i, S;) # — then
03) bench; + Musical Benches(hp(t, S:));
04) return f,,p(bench;)
05) else return g(i, S;) endif

Figure 7: From Musical Benches to (2, 3)-Set Agreement (code for p;)

Each process p; starts by invoking the participating set protocol of Figure 5 with & = 3. Once it gets
back a set S;, it checks if h.4(i,5;) = —. If so it decides according to the function g.q(i,S;) (values by the

vertices on the left side of Figure 8):
if |S;| =1 else:
9ea(i, Si) =

ifi =3 and 2 € S;,
otherwise.

W N = S

if i=1and2€S;)o0

r(i=2and 1€ S;)or (i=3and 1e€S;),

Else, h¢eq(i, S;) # —, and it invokes a CD protocol with the parameter h.4(i, S;) defined as follows. This is
illustrated in the right side of Figure 8, where an example of a CD object is presented (not all the object is
depicted, only the values returned for the proposed input vectors).

hea(i,Si) = ¢ (—

ifi=1andS; = {1,2,3),
if i =3 and S; = {1,2,3),
if i =2 and S; = {1,2,3),
if i =2 and S; = {2},

otherwise.

Once the CD object returns a value the process p; stores it in a local variable bench. In the right side of
Figure 8, the vectors proposed to the CD are depicted only in the 4 corners for lack of space; every vertex
is labeled with the value returned by the object. Notice that no two vertices with the same id and proposed
vectors have the same returned value associated (this is why the boundary can be subdivided here, but not

PIn~1745

A CD object

Figure 8: To solve set agreement each process p; invokes a CD object. On the left figure, decisions are the
values by the vertices; on the right figure values by the vertices are returned by the object.

in a musical benches object). The process then computes a decision f.4(i, bench), defined as follows:

/

if i =1 and bench = —1,

if i = 1 and bench = —2,

if i = 1 and bench = +1,

if i =1 and bench = +2,

if i = 2 and bench = —1 or bench = 2,
if i = 2 and bench = 1 or bench = —2,
if i = 3 and bench =1,

if 1 = 3 and bench = 2,

if 1 = 3 and bench = —1,

if i = 3 and bench = —2.

feali,bench) =

N WHFHNWRFRRFRDNDW

Function (2, 3)-SETAG-FROM-CD(%)

01) S; < 3-PARTICIPATINGSET(%);
) if hcd(i,Si) ;ﬁ — then

03) bench; «— CD(heq(i,Si));

04) return f.q(bench;)

05) else return g.q4(i, S;) endif

Figure 9: From CD to (2, 3)-Set Agreement (code for p;)

Lemma 2 The (2,3)-SETAG-FROM-CD protocol solves (2,3)-set agreement using any CD implementation.

4 Solving Committee Decision with (2,3)-Set Agreement

This section shows that the (2, 3)-CD problem is wait-free solvable using a (2, 3)-set agreement object. Since
in Section 3.2 we showed the opposite reduction, we have that both problems are equivalent. The wait-free
impossibility of solving (2, 3)-set agreement [4, 16, 20] implies that (2, 3)-CD is wait-free unsolvable.

Irisa

Function (2, 3)-CD-rrROM-SETAG(V;)

Init view; < 0;id; «+ [—,—,—];

(01) Propli] « V;

(02) S; < 2-PARTICIPATINGSET(i);

(03) if |S;| = 3 then id[i] + i;

(04) for j =1 to 3 do id;[j] < id[j] enddo
(05) view; < {j :id;[j] # —.j € {1,2,3}}
(06) endif

(07) return f(Si,view;)

Figure 10: From (2, 3)-set agreement to (2, 3)-CD (code for p;)

In [10] a protocol that solved the musical benches problem with access to a (2,3)-set agreement object
is described. This protocol can be adapted to solve the CD problem; the main difference is the decision
function. The protocol works as follows. Each process p; gets a vector V; as input to the CD problem.
It first writes it to a shared array, Prop, in position Prop[i]. Then p; invokes the 2-PARTICIPATINGSET(i)
function of Figure 5, and gets back a set S; of process ids, satisfying the 2-PARTICIPATINGSET properties:

1. Vi:i€S;, 2. VZ7]SZQS]VSJQSZ

3. Vi,j:1€8;=5,CS; 4. {j:|5;1=3} <2
Note that it follows from these properties that there is at most one index i such that |S;| = 1 and, at
most two indices i, j such that |S;| = |S;| = 2. There are also at most two indices such that 4, j such that

|Si| = |Sj] = 3. Notice also that if j € S; then, p; participates in the protocol. Once p; gets a set S;
back from the 2-PARTICIPATINGSET object, if |S;| = 3 it executes lines (03)—(05) which have the effect of
proposing its id to a read/write object, and gets back a set view; of ids, of processes that invoked the object.
This is seen in Figure 13 as subdividing the boundary of the removed center triangle (the read/write object’s
complex consists of a 3-edge path: in the middle edge both processes see each other, while in the 2 end edges
exactly one sees the other). Finally, process p; decides a value f(S;,view;). Due to space limitation, the
definition of the decision function f is given in the appendix (figure 12).

Lemma 3 The (2,3)-CD-FROM-SETAG protocol solves (2,3)-CD using any (2, 3)-set agreement object.

As a consequence of Lemmas 1, 2, and 3 we have our main result.

Theorem 1 Musical benches can be wait-free solved iff CD can be wait-free solved iff (2,3)-set agreement
can be wait-free solved.

References

[1] Armstrong M.A., Basic Topology, Springer-Verlag, 251 pages, 1983.

[2] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics,
McGraw Hill, 451 pages, 1998.

[3] Bar-Noy A., Deng X., Garay J., Kameda T., Optimal amortized distributed consensus. Info. and Comp.,
120(1):93-100, 1995. Prel. version in WDAG’91.

[4] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for ¢-Resilient Asynchronous Compu-
tations. Proc. 25th ACM Symposium on the Theory of Computing (STOC’938), ACM Press, pp. 91-100,
1993.

[5] Borowsky E. and Gafni E., Immediate Atomic Snapshots and Fast Renaming (Extended Abstract).
Proc. 12th ACM Symposium on Principles of Distributed Computing (PODC’93), ACM Press, pp. 41-
51, 1993.

PIn~1745

[6] Borowsky E., Gafni E., Lynch N. and Rajsbaum S., The BG Distributed Simulation Algorithm. Dis-
tributed Computing, 14(3):127-146, 2001.

[7] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous
Systems. Information and Computation, 105:132-158, 1993.

[8] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty
Process. Journal of the ACM, 32(2):374-382, 1985.

[9] Gafni E. DISC/GODEL presentation: R/W Reductions (DISC’04), 2004.
http://www.cs.ucla.edu/~ eli/eli/godel.ppt

[10] Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int. Symposium on Distributed Computing
(DISC’05), Springer Verlag LNCS To Appear, Cracow (Poland), September 2005.

[11] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on programming Languages and Systems,
11(1):124-149, 1991.

[12] Herlihy M., Rajsbaum S., New Perspectives in Distributed Computing. Proc. 24th International Sym-
posium Mathematical Foundations of Computer Science (MFCS), Springer Verlag LNCS #1672, pp.
170 186, 1999.

[13] Herlihy H., Rajsbaum S., Algebraic spans. Mathematical Structures in Computer Science, 10(4): 549
573, 2000.

[14] Herlihy, M. Rajsbaum, S. and Tuttle, M. Unifying Synchronous and Asynchronous Message-Passing
Models. Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC), pp. 133 142,
1998.

[15] Herlihy, M. Rajsbaum, S. and Tuttle, M. An axiomatic approach to computing the connectivity of
synchronous and asynchronous systems. Proc. of the 6th workshop on Geometric and Topological Methods
in Concurrency and Distributed Computing (GETCO), 2004.

[16] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of the
ACM, 46(6):858-923, 1999.

[17] Lynch N., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[18] Jiri Matousek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combinatorics
and Geometry, 2003, Springer.

[19] Lamport L., The Part-Time Parliament. ACM Transactions On Computer Systems, 16(2):133-169, 1998.

[20] Saks, M. and Zaharoglou, F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowl-
edge. SIAM Journal on Computing, 29(5):1449-1483, 2000.

A Topology Notions

The unit ball {z € R? :|| z||< 1} is denoted by B?, while S* ' = {z € R" ;|| z ||= 1} is the (d — 1)-
dimensional unit sphere.

A simplex is a set of vertices, a complex is a set of simplexes closed under containment. The dimension
d of a simplex o is one less than its number of vertices, and is said to be a d-simplex, sometimes denoted
o?. A subset of a simplex is called a face. It is sometimes convenient to assume a simplex o is embedded
in Euclidean space. For this its vertices are supposed to be affinely independent, and o is the convex hull of
its vertices. The union of all embedded simplices in a comlex C, called the polyhedron of C, is denoted |C|,
and can be regarded as the (point-set) union of the simplexes in C. The boundary of an n-simplex is the
subcomplex of ¢” obtained by deleting the single n-dimensional simplex and retaining all its faces.

Irisa

A triangulation of a topological space X is a complex C such that X = |X|, namely with homeomorphic
spaces. The simplest triangulation of the sphere $”~! is the boundary of an n-simplex.

A wvertex map carries vertices of one complex to vertices of another. A simplicial map is a vertex map
that preserves simplexes, that is, it sends a set of vertices that form a simplex into a (possibly smaller) set
of vertices that also form a simplex.

A complex o(K) is a subdivision of a complex K if:

e cach simplex in o(K) is contained in a simplex in X, and
e cach simplex of K is the union of finitely many simplexes in o (K).

Note that [K| = |o(K)|. If §is a point in |K|, the carrier of §, denoted carrier(3,K), is the unique smallest
T € K such that § € T. As an example, the complex in the left side of Figure 4 is a subdivision of a
2-dimensional simplex.

Consider Figure 1 representing the execution of the protocol of Figure 7. We start with a simplex labeled
with the three process ids p1, p2, p3 representig the input to the (2, 3)-set agreement problem (p;’s input is 7).
The corners correspond to executions where a process runs solo; the edges to executions where two processes
participate; and the solid triangle to executions where the three of them participate. After the read/write
wait-free 3-PARTICIPATINGSET protocol of Figure 5 is executed, we get the next figure, where all possible
executions of this protocol are represented. Each vertex has associated an id p; (drawn in the inside of the
vertex), a view .S; returned by the protocol (not drawn in the figure), and a decision value (drawn on the side
of the vertex). The corners represent solo executions (p; gets back S; = {i} from the PARTICIPATINGSET
protocol); the vertices along the boundary represent executions where only two processes participate, and
see each other (p;,p; get back S; = {i,j} from the PARTICIPATINGSET protocol); the triangle in the center
represents the execution where all three processes see each other (and they get back S; = {1,2,3} from the
PARTICIPATINGSET protocol). A process p; that gets back a set S; = {1,2,3} invokes the muscial benches
object, and also ps invokes it if it gets back the set Sy = {2}. Therefore, the center triangle and its adjacent
triangle with a corner to p,’s solo execution will be replaced by all possible executions of the object. In
the figure are depicted a set of such executions, of an object implementing the musical benches problem.
But we stress that other implementations of the musical benches problem are possible and would produce a
different complex (e.g. removing the two middle vertices labeled ps, p_o would also be an implementation
of the musical benches problem). The decisions made by the processes define a simplicial map that goes to
the hollow (because never are three different values decided) triangle at the right of the figure.

B More Details about Problems

B.1 Inputless Tasks

It is sometimes convenient to consider inputless tasks, where a process has only one possible input value,
namely its own id. In this case, the difficulty of solving the task does not come from the uncertainty that
other processes have on what is the local values of each other, but rather on what are the processes that are
participating (i.e., taking steps) in an execution. Consider an algorithm for some set of processes where the
first operation by a process is to write its id to shared memory, and that includes an operation to a write-once
decision variable. A process participates in an execution if it executes its first operation. The input vector
of an execution contains the ids of the participating processes. A process decides in an execution if it writes
to the decision variable, and the value decided is the value written to the variable. The output vector of an
execution contains the values decided by the processes, or — if the process did not decide. The algorithm
solves the task if in every execution with input vector I, the output vector O can be extended (by replacing
— entries with other values) to a vector in A(I), and a process that does not fail decides.

It turns out that both notions of tasks are equivalent. An inputless task is a task with just one possible
input configuration. Also, given a task, one can define an equivalent inputless task by introducing more
processes. Namely, if there are x possible input values for a process p, then we introduce x copies of
process p, and consider only executions where the processes corresponding to different original processes
participate. Although both notions are equivalent, inputless tasks are convenient because one can concentrate
on particular combinations of input values that make a problem difficult to solve.

PIn~1745

B.2 Consensus

In the consensus problem each process starts with a local input value out of some set of possible input
values, V, and must decide on an output value such that the following agreement and wvalidity requirements
are satisfied: (i) if v; and vo are the decision values of two processes in an execution, then vy = vy, and (ii) if
v is the decision value of a process, then v is the input value of some process in the execution. In the binary
consensus problem V = {0, 1}.

We will consider also an inputless version of consensus: a process must decide on the id of a participating
process. The binary consensus case for two process, p_1,p1, illustrated in Figure 11(a), is defined formally
by the set of input vectors {(p_1,p1), (p1), (p—1)}, and the relation:

A(pflypl) = {(71771)7(171)}7
Alp-1) = {1}
Alpr) = {(W)}

It is sometimes convenient to consider only the output values, and disregard the processes ids, as depicted

(a) (b)
Figure 11: The inputless consensus problem

in Figure 11(b). It is well-known that consensus is wait-free unsolvable [8, 11]. The reason is that wait-free
executions preserve the connectivity of the input configurations. In the figure we can observe that while
the input configurations are connected, the output configurations are not, and A requires to send different
regions of a connected object to two disconnected output configurations.

B.3 Musical Benches

The musical benches problem of size b is a task specified in terms of a relation A. The input vectors are over
{p—i,pill <i < b}, and the output vectors over {—i,i, —|1 < i < b}. In this paper we consider the case of
b = 2. Formally, A is:

Alp—1,p1,p2) = {(z1,22,23) Vi, j, z; € {1,—-1,2,-2}, z; +z; # 0}
Alpr,p2) = {(1,2)}
Alp-1,p2) = {(-1.2)}
Alp_1,pm) = {(561,332,) Vzq, 20 € {1,-1,2, -2}, 1 + 22 # 0}
Alp-1) = {(-1)}
Alp) = {(D}
) {(

2)}

and so on for A(p_1,p1,p2), A(p1,p-2), A(p-1,p—2), A(p-1,p2), A(p_2), and A(ps). Notice that it
includes the first bench, and a restriction of the 2nd bench that disallows p_, and p- participating together.

A(p2

C Decision Function of the Protocol CD-from-SetAg

The decision function is described in Figure 12.

Irisa

(level;) | id. S; view; | f(S;, view;)
1 12 {1}, {2} | 0 (i, 1)
1 3 (3}] 2,3)
2 1| {12}] 2,2)
2 T | {1,3)] 2,3)
2 2 | {12}] 1,1
2 2 | 12,3}] (1,3)
2 3 {1,3} 0 (1,1)
2 3 {2,3} 1] (2,2)
3 1 [{1,2,3} | {1} 1,3)
3 1 1,2} 2,3)
3 1 " {1,3} (1,3)
3 2 2] 2,3)
3 2 1,2} 2,3)
3 2 v {2,3} (1,1)
3 3 7 {3} (2,2)
3 3 11,3) (1,3)
3 3 " {2,3} (1,1)

Figure 12: Decision function of the (2, 3)-CD-FROM-SETAG protocol

D Proofs

Lemma 1 The (2,3)-SETAG-FROM-BENCHES protocol solves (2, 3)-set agreement using any musical bench-
es implementation.

Proof We need to check that in any execution at most 2 different ids are decided. On executions where
the musical benches object is not invoked this can be checked directly from Figure 6, noticing that along the
boundary decisions are consistent. For example, consider the boundary of the removed triangles connecting
p2 and p3 to the corner (solo execution) vertex p;. In any vertex here p, decides 3, because any musical
benches implementation must return +2 (po, p; are in no conflict), and the map f,,5(2) returns 3. In general,
along the boundary, the musical benches object returns to a process that invokes it with id ¢ the same id 1,
and the map f,,p transform it into a value j such that at most 2 different values are returned by processes
that did not invoke the object, together with the processes that did invoke it.

The other case that needs to be checked is for executions where the three processes invoke the musical
benches object. In this case, assume for contradiction that in one execution 3 different values are decided.
This is impossible because by the definition of f,,; this implies that the musical benches object returned
either —1,+1, or —2,+2. OLemma 1

Lemma 2 The (2,3)-SETAG-FROM-CD protocol solves (2, 3)-set agreement using any CD implementation.

Proof We need to check that in any execution at most 2 different ids are decided. We first check it
for executions where at least one process does not invoke the CD object, namely, when it decides in line
(05). Assume for contradiction that 3 values are decided. When we consider the possible cases below, we
use the following notation. For h.q(i,S;) # —, we use p;,(a,b) : j — k to denote p; with view S; has
hea(i, Si) = (a,b), gets back from the CD the value j and decides k because f.q4(i,7) = k. For h.4(i,S;) = —,
we use simply g¢.q4(i,5;) — k. We start with the cases where at least one process does not invoke the CD
object:
1. A process on the boundary decides 1 (i.e., gcq(7,S;) — 1).
(a) Assume i = 1 with view S;. If S; = {1} then h.q(2,52) # — and h.q(3,53) # —. The only
process that can decide 2 in this situation is po with po, (—1,2) : 1 — 2, but then for p3 to decide
3 it must get back —1 from the CD, i.e., p3,(1,2) : —1 — 3 which is impossible, because the CD
cannot return —1, 1.

PIn~1745

Otherwise, S1 = {1,2}, and then h.4(2,S2) # — and h.q(3,S3) # —. If process p» decides 2 in
this situation then po, (1, —2) : 1V —2 — 2, but then for p3 to decide 3 it must get back —1 from
the CD, which is impossible because neither ps nor p3 proposed —1 (and p; does not propose to

the CD).

(b) Assume i = 2, then the only view is So = {1,2}. This case is trivial because the two neighbors of
po decide 1.

(c) Finally, assume i = 3 with view S3 = {1,3}. This case is again trivial because no neighbor of ps
decides 2.

2. A process on the boundary decides 2 (i.e., gcq(i,S;) = 2).
(a) Assume i = 2 with view Sy. Then Sy = {2} and h.q(2, S2) # —. The neighbor p; with S3 = {2, 3}
also decides 2, so this case is trivial. Consider then process p; with Sy = {1,2}, that decides 1.

In this situation ps3,(1,2) : 1V 2 — 1V 2, and then nobody decides 3.
(b) Assume i = 3 with view Ss3. Then S3 = {2,3}. The only process that can decide 1 in this situation

is p; with p1,(—1,-2): 1 — 1 (it cannot get back 2 because nobody proposes 2 to the CD). But
then for ps to decide 3 it must get back —1 from the CD (cannot get back 2), which is impossible
because the CD cannot return —1,1.

3. A process on the boundary decides 3 (i.e., gca(i,Si;) = 3).

(a) Assume i = 2 with view S,. Then Sy = {2,3} and this case is trivial because its neighbors do not
decide 1.

(b) Assume i = 1 with view S;. Then S; = {1, 3} and this case is trivial because its neighbors do not
decide 2.

We now consider the cases where all processes invoke the CD object. We consider two cases, according to
which process decides 1 (p» never decides 1):
1. Process p; decides 1. We have two cases depending on why it decides 1:

(a) p1,(—1,-2) : 1 —» 1. Then py or p3 propose 1 to the CD. We analyze who decides 3. First
notice that ps cannot decide 3 because it would have to get —1 from the CD. Hence, ps decides
3: pa,(1,-2) : 2 = 3, because it cannot get back —1. Then ps has to decide 2, but the only way
is if it gets —2, a contradiction because the CD returns —2, 2.

(b) p1,(=1,—-2) : 2 = 1. Then p,y or ps propose 2 to the CD. We analyze who decides 2. First
notice that ps cannot decide 2 because it would have to get —2 from the CD. Hence, ps decides
2: pa,(—1,2) : 1 = 2, because it cannot get back —2. Then p3 has to decide 3, but the only way
is if it gets —1, a contradiction because the CD returns —1, 1.

2. Process p3 decides 1. We have two cases depending on why it decides 1:

(a) p3,(1,2) : 1 — 1. If py decides 2, it is because it got back 1 or —2. Then p; cannot decide 3
because it would have to get back —1. Thus, assume the one deciding 2 is p;. This is because it
got back —2. But then ps cannot decide 3 because it would have to get back —1 or 2, and the
CD would return either —1,1 or —2, 2.

(b) ps3,(1,2) : 2 — 1. If py decides 2, it is because it got back 1 (it cannot get back —2). Then p;
cannot decide 3 because the CD would return —1, 1. Thus, assume the one deciding 2 is p;. This
is because it got back —2, and the CD would return —2, 2.

I:‘Lemma 2

Lemma 3 The (2,3)-CD-FROM-SETAG protocol solves (2, 3)-CD using any (2, 3)-set agreement object.

Proof The proof of the protocol follows from the figure 13 which represents the final views of the processes
with their decision. ULemma 3

E The CD-from-SetAg views

Irisa

(z,1) (1) (1,1)
p2 p1 s
({1.2},0) ({1,3},0)
(2.2) (2,2) (1,1) (1,1) 2.9 (2,3)
p1 p3 p2 p3 p2 p1
(- {31 {2}
({1.2}.0) (12,3} (- {2,3}) ({1,3},0)
(1,3) (2,3)
s A7 P1){1.2})
® (2,9)
p3 D2
(=
(2,2) (- {1,2})
| (1,3) (2,3)
| /—/ }
(2,2) (1,9)
b3 p2
({2’3}7@) {273}79))

process at level 1 (|S;] =1, i.e., S; = {i})

PIn~1745

ri | process at level 2 (|S;| = 2)

process at level 3 (|S;] = 3) ({1,3},.): final state (S;, view;).

(2,1)| decision (p; decides in committee 2 the value proposed for committee 2 by p;)

Figure 13: The CD-FROM-SETAG views.

