
HAL Id: inria-00000344
https://hal.inria.fr/inria-00000344

Submitted on 4 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapting polarised disambiguation to surface realisation
Eric Kow

To cite this version:
Eric Kow. Adapting polarised disambiguation to surface realisation. 17th European Summer School
in Logic, Language and Information - ESSLLI 2005, Aug 2005, Edinburgh/UK. �inria-00000344�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50483985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000344
https://hal.archives-ouvertes.fr


in
ri

a-
00

00
03

44
, v

er
si

on
 1

 -
 4

 A
ug

 2
00

6

Adapting polarised disambiguation to

surface realisation

Eric Kow

Langue et Dialogue - LORIA

615 rue du jardin botanique

54600 Villers-Lès-Nancy, France

Eric.Kow@loria.fr

Abstract. The aim of surface realisation is to produce a string from an input semantics.
The task may be viewed as the inverse of parsing, and like parsing, it is made more
difficult by the problem of lexical ambiguity in natural language. (Bonfante, Guillaume,
and Perrier 2004) propose a polarisation technique for parsing that greatly reduces the
effects of ambiguity. We show how polarisation can be adapted for surface realisation and
how to address two complications which arise: multi and zero-literal semantic input.

1 Introduction

Surface realisation can be seen as parsing in reverse: given a grammar and
some semantic input, the task is to construct the parse trees associated by
the grammar with that semantics, and to output the resulting strings. Like
parsing, surface realisation is severely affected by the possibility for each part
of the semantics to be realised by several lexical entries. But unlike parsing,
surface realisation is NP-complete (Koller and Striegnitz 2002), so that a
solution to the lexical ambiguity problem becomes particularly desirable. A
common response is to disambiguate the input with a separate preprocessing
filter before parsing or realisation proper. The filter can be made to be very
fast by using probabilistic methods (Joshi and Srinivas 1994); however, such
methods carry the risk of discarding valid disambiguations along with the
incorrect ones. We aim for a surface realiser that can produce all possible
paraphrases, that is explore the entire search space, and so we eschew the use
of probabilities in favour of an “exact method” (Bonfante, Guillaume, and
Perrier 2004). The basic idea is to make the resource sensitivity of grammars
explicit by annotating lexical items with polarities and using a filtering step

Proceedings of the Ninth ESSLLI Student Session
Paul Egré and Laura Alonso i Alemany (editors)
Chapter 1, Copyright c© 2004, Eric Kow

1



to neutralise them. This has been successfully applied to parsing (Bonfante,
Guillaume, and Perrier 2003), but adapting it to generation reveals some
hidden complications which stem from lexical items spanning either multiple
pieces of input, or none at all.

In this paper, we propose some modifications to the filtering algorithm
that overcome these problems. The result is that the optimised surface re-
aliser retains its ability to produce output with such items as pronouns and
control verbs. We begin in sections 2 and 3 by briefly presenting the surface
realiser and a basic version of its polarity filter. Then in sections 4 and 5, we
discuss the modifications necessary to make the filter work for multi-literal
and zero-literal semantic input.

2 The surface realiser

The surface realiser uses a Feature Based Lexicalised Tree Adjoining Gram-
mar (FLTAG) (Vijay-Shanker and Joshi 1988) and a flat semantic repre-
sentation (Copestake, Lascarides, and Flickinger 2001). The properties of
FLTAG are largely irrelevant to this paper, except that a grammar is a set
of lexical items where each item is a tree with one or more anchors. A flat
semantics consists of a set of propositions called literals. A literal consists
of a predicate followed by a list of indices, its arguments. If two literals have
arguments with the same index, that index refers to the same entity. Below,
for example, the index p in picture(p) and cost(c,p,h) refers to the same
object.

(1) picture(p), cost(c,p,h), high(h) (The picture is expensive)

Given a semantics (the input semantics) and a set of lexical items re-
trieved from the FLTAG (the lexical input), the surface realiser produces
sentences whose semantics is equal to the input semantics. It uses a tabular
algorithm with bottom-up processing. The lexical input consists of the set
of lexical items whose semantics subsumes the input semantics. Several lex-
ical items may cover the same literal, raising ambiguities to be solved. For
example, the lexical input associated with (1) could be τpainting or τpicture for
picture(p); τcost (the noun) or τcosts for cost(c,p,h); and τhigh or τa lot for
high(h).

3 Polarity filtering

We attempt to resolve all input lexical ambiguities into a set of disambigua-
tions where each disambiguation is a combination of selected lexical items.

2



Given a lexical input, the number of lexical combinations is a priori expo-
nential:

∏
1≤i≤n ai with ai the degree of lexical ambiguity of the i-th literal

and n, the number of literals in the input semantics. In practice, however,
many of these combinations are syntactically invalid: either some items have
syntactic requirements which cannot be met, or some of the lexical items
cannot be combined with others and stitched into a successful realisation
(Perrier 2003). To reduce the combinations resulting from lexical ambiguity,
we introduce a single filtering step whose role is to efficiently detect these
invalid combinations so that they are not explored during realisation proper.

We identify the syntactic requirements of each lexical item and only retain
the lexical combinations in which the requirements of every item are met.
More precisely, each lexical item is assigned a bag of labels that have either a
polarity + or −. These labels provide hints about which trees may combine
with each other. For instance, an intransitive verb will have the label -np,
meaning it “requires” a noun phrase (the subject), whereas a transitive verb
will have the labels -np -np (the subject and object), requiring two noun
phrases. In the case of TAG grammars, these polarities can be automatically
extracted (Bonfante, Guillaume, and Perrier 2004) by awarding each tree
with a −f polarity for every foot or substitution node with category f and
a +r polarity, where r is the category of its root node. For instance, a tree
like s(np↓,vp(v(hates),np↓)) would have the polarities -np -np +s.

In the table below, we show how these polarities can be put to use for
generation. Each column contains a single literal from the input semantics
picture(p), cost(c,p,h), high(h), along with the lexical items that realise
that literal as well as their associated polarities. To simplify this example,
we only consider a single label, np.

picture(p) cost(c,p,h) high(h)

τpicture +np τcost +np -np τhigh -np

τpainting +np τcosts -np τa lot

The problem at hand is to choose a combination that covers the entire
semantics, that is, one lexical item per column. We can avoid the syntac-
tically invalid combinations by counting polarities. If the sum of polarities
(or charge) is greater than zero, then the lexical combination overall has
more trees than it can use. Similarly, if the charge is less than zero, then the
combination requires more trees than it can provide. The charge must be
equal to zero or else the combination is syntactically invalid. For instance,
the combination τpainting τcost τa lot has a charge of +1np, so it is clearly not
a solution. In contrast, τpainting τcosts τa lot has a charge of 0np, which does
not guarantee syntactic compatibility but suggests that the combination is
worth exploring.

3



Figure 1.1: A minimised polarity automaton

Rather than performing a separate polarity count for every lexical combi-
nation, we factorise the work into an automaton which calculates the lexical
combinations and their net charge. We arbitrarily impose an order on the in-
put semantics into a list we call InputSemantics. Each automaton state has
the form 〈L, C〉 and represents the set1 of lexical combinations whose seman-
tics is L and whose polarity charge is C. The approach is to construct the
automaton in steps, one literal at a time, starting with the initial step 〈∅, 0〉.
At each step, we build upon the states 〈L, C〉 created in the previous step.
We select the next literal l from InputSemantics; for each lexical item lexl

which realises literal l, we add a transition to the state 〈L+ l, C +pol〉 where
pol is the polarity of lexl. When there are no more literals left to select, we
complete the process by declaring the final state to be 〈InputSemantics, 0〉
and performing automaton minimisation (Hopcroft and Ullman 1979). What
remains is a representation of all the lexical combinations that cover the in-
put semantics with zero net charge (figure 1.1). 2 As shown in (Kow 2004),
polarity filtering is an efficient method for dealing with lexical ambiguity.
Given an input with 438 272 possible combinations, the polarity filter only
passes 232 of these combinations on. As a result, the surface realisation time
drops from 93.8 to 14.7 seconds (Gardent and Kow 2005).

4 Multi-literal semantic lexical items

Certain lexical items could have a semantics that spans multiple literals,
for example cost(c,p,h), high(h) for the item τexpensive. These items are
not correctly handled because the automaton construction algorithm relies
on the assumption that at any given state 〈L, C〉, the lexical combinations

1We will use the following notation for lists: ∅ indicates the empty list and L + i

indicates appending item i to L. We also take the liberty of comparing sets and lists, e.g,
if we say that a set S is equal to a list L, we merely treat L as a set.

2See (Kow 2004) for a description of how this technique can be generalised for multiple
labels.

4



represented by that state all have a semantics equal to L. The assumption
breaks down when one of the combinations has an item lexm whose semantics
includes some literal x which is not in L. If the algorithm later visits literal x,
whatever representative it selects for the literal will cause a polarity miscount:
either lexm is reselected and its polarities are double-counted, or some other
item with a redundant semantics is selected and its polarities are included
in the count. The correct behaviour in this case is neither to double-count
polarities nor build lexical combinations with redundant lexical items, but
not to select any item at all.

We achieve this by augmenting the automaton states with a third element
E, used to keep track of the lexical combinations with extra semantic literals.
Given a state 〈L1, C1, E1〉, the literal being visited l1 and the selected lexical
item lex1 with polarity pol and semantics {l1} ∪ extra; we build a transition
via lex1 to the state 〈L1 + l1, C1 + pol, E1 ∪ extra〉. Now, given a step with
state 〈L2, C2, E2〉; if the literal being visited l2 ∈ E2, we build a null transition
to the state 〈L2 + l, C2, E2 \ {l2}〉.

Figure 1.2: A minimised polarity automaton with multi-literal semantics

It may seem desirable to simplify this mechanism by replacing the track-
ing of semantic literals and use of null transitions with a single transition
that spans all the semantic literals covered by a lexical item. In figure 1.2
above, this would mean a direct transition expensive between the first +1 and
final 0 states. But this simplification is not viable, because lexical items
may span overlapping sets of semantics literals. In (Shemtov 1996) for ex-
ample, quickly moved into can also be expressed as rushed into or quickly entered.
Given the ordering below, it would not be possible to build a direct transition
for τentered across move(m,x), into(x,y) without erroneously skipping over the
literal quick(m).

lexical item semantics

moved move(m,x)

rushed move(m,x) quick(m)

entered move(m,x) into(x,y)

5



5 Null and zero-literal semantic lexical items

Lexical items with a null semantics typically correspond to function words:
complementisers (John likes to read.), subcategorised prepositions (Mary accuses

John of cheating.). Such items need not be lexical items at all. We can ex-
ploit TAG’s support for trees with multiple anchors, by treating them as
co-anchors to some primary lexical item. The English infinitival to, for ex-
ample, can appear in the tree τto take as s(comp(to),v(take),np↓).

On the other hand, pronouns have a zero-literal semantics, one which
is not null, but which consists only of a variable index. For example, the
pronoun her in (2b) has semantics s and in (3), he has the semantics j.

(2) a. joe(j), sue(s), book(b), lend(l,j,b,s), boring(b)

Joe lends Sue a boring book.

b. joe(j), sue(s), book(b), lend(l,j,b,s), boring(b)

Joe lends her a boring book.

(3) a. joe(j), sue(s), leave(l,j), promise(p,j,s,l)

Joe promises Sue to leave.
or Joe promises Sue that he would leave.

In figure 1.3, we compare the construction of polarity automata for (2a,
left) and (2b, right). Building an automaton for (2b) fails because τsue is not
available to cancel the negative polarities for τlends; instead, a pronoun must
be used to take its place. The problem is that the selection of a lexical item
is only triggered when the construction algorithm visits one of its semantic
literals. Since pronoun semantics have zero literals, they are never selected.
Making pronouns visible to the construction algorithm would require us to
count the indices from the input semantics. Each index refers to an entity.
This entity must be “consumed” by a syntactic functor (e.g. a verb) and
“provided” by a syntactic argument (e.g. a noun).

Figure 1.3: Difficulty with zero-literal semantics.

We make this explicit by annotating the semantics of the lexical input
(that is, the set of lexical items selected on the basis of the input semantics)
with a form of polarities. Roughly, nouns provide indices3 (+), modifiers
leave them unaffected, and verbs consume them (−). Predicting pronouns

3except for predicative nouns, which like verbs, are semantic functors

6



is then a matter of counting the indices. If the positive and negative indices
cancel each other out, no pronouns are required. If there are more negative
indices than positive ones, then as many pronouns are required as there
are negative excess indices. In the table below, we show how the example
semantics above may be annotated and how many negative excess indices
result:

semantics b j s

joe(+j) sue(+s) book(+b) lend(l,-j,-b,-s) boring(b) 0 0 0

joe(+j) sue(+s) book(+b) lend(l,-j,-b,-s) boring(b) 0 0 1

joe(+j) sue(+s) leave(l,-j,-s) promise(p,-j,-s,l) 0 0 0

joe(+j) sue(+s) leave(l,-j,-s) promise(p,-j,-s,l) 0 1 0

Counting surplus indices allows us to establish the number of pronouns
used and thus gives us the information needed to build polarity automata. We
implement this by introducing a virtual literal for negative excess index, and
having that literal be realised by pronouns. Building the polarity automaton
as normal yields lexical combinations with the required number of pronouns,
as in figure 1.4.

Figure 1.4: Constructing a polarity automaton with zero-literal semantics.

This becomes more complicated when the lexical input contains lexical
items with different annotations for the same semantics. For instance, the
control verb promise has two forms: one which solicits an infinitive as in
promise to leave, and one which solicits a declarative clause as in promise that he

would leave. This means two different counts of subject index j in (3) : zero
for the form that subcategorises for the infinitive, or one for the declarative.
But to build a single automaton, these counts must be reconciled, i.e., how
many virtual literals do we introduce for j, zero or one?

The answer is to introduce enough virtual literals to suppport the largest
count (in this case one), and to balance them by adding the virtual literals
to the lexical semantics of the smaller counts. To handle example (3), we
introduce one virtual literal for j in order to select the pronoun he in promise

that he would leave. This extra pronoun is not selected for the infinitive form
promises to leave, because it is accounted for in the semantics of lexical item
τpromise to, which now consists of promise(p,j,s,l) as well as the virtual literal
j.

7



Figure 1.5: Constructing a polarity automaton with zero-literal semantics.

6 Related work

Polarity filtering is not the only mechanism for dealing with ambiguity. (Kay
1996) proposes a chart generation algorithm which groups intermediate re-
sults into equivalence classes according to their semantic coverage, syntac-
tic category and a distinguished semantic index. (Shemtov 1996) improves
on this approach by using a coarser representation of semantic coverage to
produce larger classes. Equivalence classes allow for the variants of an in-
termediate solution, for example those which arise from lexical ambiguity, to
be packed together and processed as a single group. The more structures
are recognised as equivalent, the more redundant computation is avoided.
Our surface realisation algorithm does not keep track of equivalence classes,
but we plan to investigate how they can be incorporated, how usefully they
would combine with polarity filtering in practice.

A more similar approach is that of (Koller and Striegnitz 2002). The
TAG lexical input is converted into a set of lexical entries of a dependency
grammar. These entries are then parsed by an efficient constraint-based de-
pendency parser and the output is converted back into a set of TAG derived
trees representing the surface realisation output. The main similarity be-
tween this and our approach is that they both use a global mechanism for
filtering out combinations of lexical entries that cannot possibly lead to a
syntactically valid sequence. Both approaches involve the cancelling out of
syntactic resources and requirements. Interestingly, Koller et al. take ad-
junction into account, whereas our approach largely ignores auxiliary trees.
Their treatment of auxiliary trees could be a useful addition to the polarity
filter. A key difference is that though Koller et al. handle null semantics,
and offer some thoughts on multiple literal semantics, they do not account
for zero-literal semantics. It would be worthwhile to see if semantic index
counting can also be used within a constraint propagation framework.

8



7 Conclusion

Polarity filtering was introduced for parsing in (Bonfante, Guillaume, and
Perrier 2004). In (Kow 2004), we transpose this approach to surface realisa-
tion and show that it greatly enhances efficiency. However, several linguistic
issues arise which stem from lexical items displaying multi-literal semantics,
null semantics or zero-literal semantics. In this paper, we show how the
polarity algorithm can be extended to deal with such items. Briefly, multi-
literal semantic items are catered for by introducing a sort of literal counting
in the automaton; null semantic lexical items by using TAG support for mul-
tiple anchors and zero-literal lexical items by introducing index counting and
modifying automaton construction accordingly.

One point is worth noting. Whereas null semantic and multiple literal
items have been discussed before (Shieber 1988; Calder et al. 1989; Carroll
et al. 1999), zero-literal items have been paid scant attention in the surface
realisation literature. Their handling, however, is important for both linguis-
tic and computational reasons. Linguistically, it is required to support the
generation of sentences containing pronouns and control verbs as well as full
noun phrases and non-control verbs. Computationally, it is necessary to re-
strain the semantic wildcard behaviour of pronouns. In a naive algorithm, a
pronoun is selected for every index in the input semantics, which means any
intermediary structure created during surface realisation can be combined
with a pronoun, correctly or not. This is further aggravated because every
lexical combination is explored and the number of intermediary structures is
itself very large. The approach presented here addresses these two problems
as follows. On the one hand, the wildcard effect is eliminated because index
counting only allows pronouns to be selected if they can be associated with
a specific “excess” index in the semantics. On the other hand, polarity fil-
tering is used to drastically reduce the number of lexical combinations to be
explored.

9



Bibliography

Bonfante, G., B. Guillaume, and G. Perrier (2003). Analyse syntaxique
électrostatique. Évolutions en analyse syntaxique, Revue TAL (Traite-
ment Automatique des Langues) 44 (3).

Bonfante, G., B. Guillaume, and G. Perrier (2004). Polarization and ab-
straction of grammatical formalisms as methods for lexical disambigua-
tion. In Proceedings of CoLing 2004.

Calder, J., M. Reape, and H. Zeevat (1989). An algorithm for generation in
unification categorial grammar. In Proceedings of the fourth conference
on EACL, pp. 233–240. ACL.

Carroll, J., A. Copestake, D. Flickinger, and V. Poznański (1999). An
efficient chart generator for (semi-)lexicalist grammars. In Proceedings
of EWNLG ’99.

Copestake, A., A. Lascarides, and D. Flickinger (2001). An algebra for
semantic construction in constraint-based grammars. In Proceedings of
the 39th ACL, Toulouse, France.

Gardent, C. and E. Kow (2005). Generating and selecting grammatical
paraphrases. ENLG (in submission).

Hopcroft, J. and J. D. Ullman (1979). Introduction to Automata Theory,
Languages and Computation. Addison-Wesley Publishing Company.

Joshi, A. and B. Srinivas (1994). Disambiguation of super parts of speech
(or supertags): almost parsing. In Proceedings of the 15th conference
on Computational linguistics, pp. 154–160. ACL.

Kay, M. (1996). Chart Generation. In 34th ACL, Santa Cruz, California,
pp. 200–204.

Koller, A. and K. Striegnitz (2002). Generation as dependency parsing. In
Proceedings of the 40th ACL, Philadelphia.

Kow, E. (2004). Optimising a surface realiser. Master’s thesis, Université
de Nancy I.

Perrier, G. (2003). Les grammaires d’interaction. Habilitation à diriger les
recherches en informatique, université Nancy 2.

10



Shemtov, H. (1996). Generation of paraphrases from ambiguous logical
forms. In COLING, pp. 919–924.

Shieber, S. (1988). A uniform architecture for parsing and generation. In
Proceedings of the 12th conference on Computational linguistics, pp.
614–619. ACL.

Vijay-Shanker, K. and A. Joshi (1988). Feature based tags. In Proceedings
of the 12th ACL, Budapest, pp. 573–577.

11


