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Abstract. This paper provides some information regarding the winning
system at the GREC’2005 contest on arc segmentation. Important facts
are first recalled, then the changes made on the system since its first
presentation at GREC’2001 are detailed. The obtained results are briefly
commented, and the paper finally provides some clues about possible,
future improvements regarding the system.

1 Some historical notes

The system mentioned in this paper was first presented during the GREC’2001
workshop, and took part of the arc recognition contest held at the same time in
Kingston, Canada. At that time, results from the competition were not really
enthousiastic [6]: the average VRI value did not exceed 0.63, many arcs were
misdetected, and the presented prototype even crashed on an image.

Although the reader may find it suprising, the method has almost not changed

since that time; but its implementation definitely has.

Indeed, to the exception of what is presented in the next section, the system
described in this paper strictly follows what is detailed in [3] and [2]. It has been
reimplemented only recently as a 64-bit PowerPC application, and actually runs
on any Apple computer fit out with a G5 processor. The main goal of this short
paper is therefore to inform the reader that the average results obtained in 2001
are mostly explained by a poor implementation of the method, not by an intrinsic
default in the method itself.

2 The changes

Strictly speaking, there has been only two changes made on the vectorization
method since its first presentation in [3]: the former concerns the thickness eval-
uation, while the latter is a revision of the reconstruction procedure, and has
almost no incidence on the topic of arc extraction. We briefly describe them in
this section.



2.1 Thickness estimation

The first change made concerns the estimation of the thickness. To explain it,
let us first recall that a discrete circular ring R(x0, y0, ρ, w) with center (x0, y0),
radius ρ, and thickness w (all possibly real) is the set of integer points (x, y)
satisfying
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If (x0, y0) is known, and the ring is drawn without noise, then finding ρ and
w is straightforward. However, in real life we have to cope with noise, which
slightly complicates the problem. In [2], it has been proven, using Kanungo’s
document degradation model [4], that an elementary increment of the thickness
of any primitive due to noise was very unlikely. On the other hand, we also
know that a labeled skeleton, obtained with the (3, 4)-distance transform also
gives us a lower estimate of the thickness at any skeletal point, and that the
corresponding relative error decreases as the ground truth thickness increases
[1]... This rapidly suggests us what to do:

1. Build a set E from the labeled skeleton as follows: for each skeletal point p
with (3, 4)-DT value v, if p has less than 3 neighbours with value v, then
add v/3, else add 1/2 + v/3 to E;

2. Robustly estimate the thickness from E: ŵ = ⌊2LMS(E)⌋, where LMS
stands for least median of squares ;

3. Let I be the source image, |.| denote cardinality, and put

∆(X ,Y) = |X ∩ Y| − |X ∩ YC |

for any discrete sets X and Y. If ∆(R(x0, y0, ρ, ŵ+1), I) > ∆(R(x0, y0, ρ, ŵ), I)
then retain ŵ + 1 as the thickness, else retain ŵ.

In other words, the above procedure determines a lower bound ŵ ot the
thickness, and then checks wether it is more interesting to reconstruct the shape
using a ring with thickness ŵ or with thickness ŵ + 1.

2.2 Junction reconstruction

Another change made concerns the reconstruction of the junctions. The recon-
struction method presented in [3] assumes that the junctions can be recon-
structed by first determining the largest possible subsets of primitives with non-
empty intersection, and then by connecting these subsets one to each other.

Although this approach is valid at a pixel point of view, it does not always
lead to realistic results in practice, and has been replaced by a simplified proce-
dure – which, nevertheless, still lets the problem of the reconstruction open.

This change, however, only deals with junctions, and may have only very

limited influence on the obtained results when it comes to arc extraction. We
therefore do not think it is worth detailing it in the scope of this paper.



3 Parameter setup

An important aspect, often kept silent in the literature, is how to parametrize
a given recognition method in order to obtain acceptable results. Although the
method commented here uses a reduced number of parameters, we still have to
provide values for all of them. Keeping the notations of [3, 2], these parameters
are: the thickness f , the noise tolerance m, a lower bound τ for the probability
to achieve a correct extraction, and, most important, validity bounds for circular
patterns ρmin, θmin, and ρmax.

All parameters were set more or less empirically. For τ , the arbitrary value
of 0.9999 was used. On the opposite, setting m was driven by a clue observed
in Liu and Dori’s evaluation protocol [5]. To summarize this clue, let us simply
recall some equations from [5]: on the one side, we have

Qv(c) = (Qpt(c).Qod(c).Qw(c).Qsh(c).Qst(c))
1

5 (1)

and

Qpt(c) = exp−d1(c) + d2(c)

W (g)
(2)

Qod(c) = exp
−2doverlap(c)

W (g)
(3)

which define the basic quality of a candidate vector against its ground truth
g, given their overlapping vector c. On the other side

Qfr(k) =

√

∑

g∈G(k) l(k ∩ g)2

∑

g∈G(k) l(k ∩ g)
(4)

characterizes the fragmentation rate of a given candidate k. Now, consider
the two following situations:

(1) We detect a given arc without fragmentation, but with poor accuracy (d1(c)+
d2(c) + 2doverlap(c) 6= 0);

(2) We detect a given arc with fragmentation 1 : n, but with good accuracy
(d1(c) = d2(c) = 2doverlap(c) = 0).

Assuming that Qw(c) = Qsh(c) = Qst(c) = 1, from equations 1,2, and 3, we
obtain that the penalty in the former situation is

exp−d1(c) + d2(c) + 2doverlap(c)

5

while that in the latter is 1/
√

n according to equation 4. If we put ε =
d1(c)+d2(c)+2doverlap(c), then a glance at table 1 rapidly tells us what happens:
situation 2 is more interesting than situation 1 for a majority of cases, especially
if we are concerned with thin vectors. Consequently, the m parameter of our



W (g) 1 2 3 4 5
ε

1 0.368 0.607 0.717 0.779 0.819
2 0.135 0.368 0.513 0.607 0.670
3 0.050 0.223 0.368 0.472 0.549
4 0.018 0.135 0.264 0.368 0.449
5 0.007 0.082 0.189 0.287 0.368

n 1 2 3 4 5 6

Qfr 1 0.707 0.577 0.500 0.447 0.408

Table 1. Left: values of Qv = exp−ε/W (g). Right: first values of Qfr = 1/
√

n assum-
ing a fragmentation ratio of 1 : n.

method was set to 1, the smallest possible value we can supply to properly
extract lines and circles without shifting.

Regarding the circular bounds ρmin, θmin, ρmax, the native implementation
of our method offers to set both ρmin and θmin independently. For the purpose
of the contest, we used a different version: the condition ρ ≥ ρmin∧θ ≥ θmin was
replaced by a simple test on length: to be accepted, a circular pattern must have
a length of 15 pixels or more – an arbitrary, but common-sense value. We also set
ρmax to max(w/2, h/2), where h and w are the image’s dimensions, which means
that any circular pattern should always have a supporting circle fully included
inside the smallest square image that contains the source image itself.

Finally, f was set automatically, following the estimation procedure detailed
in [2], with no prior thin/thick layer separation.

4 A short analysis

Although our system achieved the best overall performance, it is interesting to
note that concurrent systems did better in two cases: with image 8.tif for
Elliman system’s, and with image 8 rn.tif for Keysers’ system. These images,
as well as a rendering of the concurrent solutions, are presented at figure 1.

In both cases, the lack of accuracy of our system is only due to the fact that
the default setting max(h/2, w/2) for the upper bound ρmax was too small. As a
result, in image 8.tif, the largest arc is detected as 5 arcs and one fake segment.
In image 8 rn.tif, addition of noise worsens the situation (as m was set to 1),
and this time it is detected mostly as segments. The same result can be observed
on image 8 sp.tif.

It is also a questionable point why other participants did not output any

line in their solutions. As stated in section 3, even if a solution is fragmented
or approximate but close to the ground truth, then better is to output it than
keeping silent. For example, our system did not properly recognize the smallest
arc in each of the 8*.tif images, but reported a small segment instead. In image
8 rn.tif, for example, if we remove this segment in the solution, then the VRI
score drops from 0.693 to 0.687. If, furthermore, we remove all the remaining
lines, then it drops to 0.675.



(a)

(b)

Fig. 1. Comparison of results for two particular images. (a), from left to right: source
image 8.tif, Elliman’s result, our result; (b), from left to right: source image 8 rn.tif,
Keysers’ result, our result.

Finally, figure 2 illustrates the best case, which occured for image 9.tif,
and leaded to a VRI score of 0.970. The noisy versions 9 rn.tif and 9 sp.tif

also achieve the best relative performance compared to other images. In this
case, the system was well parametrized, and the result typically reflects the level
of accuracy the user can expect after some suitable, circular bounds have been
provided.

5 Concluding remarks

The system we presented is actually able to extract arcs with an average VRI
slightly greater than 0.8. To the best of our knowledge, it is the first time that
such a result is reached since the first arc recognition contest, organized in 2001.

Besides, we believe there is still room for enhancement in future versions:
although the system achieves optimal parameter estimation once the primitives
are identified, the risk that the primitives have not been correctly extracted is
still not null. Also, the system relies on skeletonization, and there are obvious
situations in which it is still impossible to provide a correct solution given that
fact. These are the two tracks currently followed to perfect the system.



Fig. 2. The best case obtained with our system: (a) source image, (b) recognized arcs.
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