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Abstract: Computer-aided analysis of electrocardiogram (ECG) is widely used in cardiac
disease diagnosis. The purpose of this paper is to propose a new algorithm for T-wave
end location, which is known to be the most difficult one among ECG wave form detection
and location problems. The proposed algorithm mainly consists of the computation of an
indicator related to the area covered by the T-wave curve and delimited in a special manner.
Based on simple assumptions, essentially on the concavity of the T-wave form, it is formally
proved that the maximum of the computed indicator inside each cardiac cycle coincides
with the T-wave end. Moreover, the algorithm is robust to measurement noise, to wave form
morphological variations and to baseline wander. It is also computationally very simple: the
main computation can be implemented as a simple finite impulse response (FIR) filter. When
evaluated with the PhysioNet QT database in terms of the mean and the standard deviation
of the T-wave end location errors, the proposed algorithm outperforms the other algorithms
evaluated with the same data base, according to the most recent available publications up
to our knowledge.
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Un algorithme pour la localisation robuste et efficace de

fins d’ondes T dans l’électrocardiogramme

Résumé : L’analyse de l’électrocardiogramme (ECG) assistée par l’ordinateur est large-
ment utilisée en diagnostic de maladies cardiaques. Le but de cet article est de proposer
un nouveau algorithme pour la localisation de fins d’ondes T, connu d’être le plus difficile
des problèmes concernant la détection et localisation d’ondes dans l’ECG. L’algorithme pro-
posé consiste principalement à calculer un indicateur lié à la surface couverte par l’onde
T délimitée d’une manière spéciale. Sous des hypothèses simples, principalement sur la
concavité de l’onde T, il est démontré que le maximum de l’indicateur calculé dans chaque
cycle cardiaque cöıncide avec la fin de l’onde T. En plus, l’algorithme est robuste au bruit
de mesure, aux variations morphologiques et à la dérive de la ligne de base. Le calcul
numérique est très simple : le calcul principal peut être implémenté sous forme d’un filtre
à réponse impulsionnelle finie. Quand cet algorithme est évalué sur la base de données QT
de PhysioNet en termes de la moyenne et l’écart type des erreurs de localisation de l’onde
T, il obtient de meilleurs résultats par rapport à d’autres algorithmes évalués avec la même
base de données, d’après les publications les plus récentes à notre connaissance.

Mots clés : electrocardiogramme (ECG), localisation de fins d’ondes T, traitement de
signal
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Figure 1: ECG signal and P-Q-R-S-T wave forms

1 Introduction

Automatic processing of electrocardiogram (ECG) has been one of the earliest applica-
tions of modern digital computers. In this vast field, automatic detection of wave forms
in ECG signals is still an active research topic, as demonstrated by recent publications
(Kohler et al., 2002; Strumillo, 2002; Mart́ınez et al., 2004; Last et al., 2004). In an ECG
signal, each cardiac cycle is typically characterized by successive wave forms, known as P-
wave, QRS-complex and T-wave among the most important ones, as illustrated in Figure 1.
The detection of these wave forms and the location of their boundaries provide important
information about cardiac dysfunctions. For instance, the QT interval is a traditional mea-
surement for the diagnosis of ventricular arrhythmia (Schuartz and Wolf, 1978; Moss et al.,
1985). Because of the great morphological variations in ECG signals, it is difficult to design
automatic and widely applicable algorithms. This difficulty partly explains the continuous
efforts made by researchers on ECG signal processing.

It is widely acknowledged that T-wave end location is the most difficult one among wave
form boundary location problems, due to the slow transition in the signal around each T-
wave end, eventually corrupted by noise. It is not the purpose of this paper to review the
existing vast literature. However, some typical methods for T-wave end location are shortly
recalled in the following in order to contrast the novelty of the algorithm proposed in this
paper.

It is generally considered that T-wave end is related to some sudden change in the
variations of the ECG signal. Therefore, various methods have been proposed based on
numerical differentiation of ECG signal, since the time derivative is an indicator of signal
variation. For instance, in (Laguna et al., 1994) T-wave end location is based on linear
derivative filters, and in (Mart́ınez et al., 2004) wavelets are used to estimate derivatives at
different scales. Some similar work based on wavelet transforms has been presented in (Li
et al., 1995). The advantage of this method is its robustness to wave form morphological
variations. Its drawback is related to numerical differentiation which is generally known to
be noise-sensitive. Usually, low-pass smoothing filters are also used in order to limit noise
sensitivity.
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Pattern recognition techniques have been widely applied to ECG processing. In such an
approach, the basic idea for wave form detection is to first build a template of the form to
be detected and then to locate the corresponding form in the processed signal by looking for
signal segments highly correlated with the template (Abboud and Sadeh, 1984; Lindecrantz
and Lilja, 1988; Last et al., 2004). Such methods have the advantage to be robust to
measurement noise. However, due to the large morphological variations in wave forms,
it seems not reasonable to build a “universal” template to cover all different situations.
Building a specific template for each particular case may need the intervention of human
experts.

Mathematical models of ECG can also be applied to wave form detection (Malik and
Camm, 1989; Padrini et al., 1995). In (Vila et al., 2000), the T-wave and U-wave are
formulated as the differences of activation potentials described with a simple parametric
model. The model is fitted to ECG signal segments by tuning the model parameters through
a numerical optimization procedure. The fitted model is then used to locate wave form
boundaries. This method is in principle robust to noise and can be adapted to various
morphological forms, but it is highly expensive in terms of numerical computation, and may
be sensitive to parameter initializations.

The purpose of this paper is to propose a new algorithm for the location of T-wave end.
Its most remarkable difference from existing algorithms is its consistency proof based on
simple assumptions, essentially the concavity of the T-wave form. Moreover, it has the
following advantages:

• it is robust to measurement noise, since the computation in the algorithm mainly
consists of an integration operation;

• it is robust to wave form morphological variations and to baseline wander, since the
consistency of the algorithm is essentially based on the assumption of T-wave concavity,
and no threshold is needed to determine T-wave end location;

• it is computationally very simple: the main computation is an integration operation
over a sliding window and can be implemented as a simple finite impulse response
(FIR) filter.

When evaluated with manually annotated ECG signals of the QT database (Laguna
et al., 1997) available on the PhysioNet web site (Goldberger et al., 2000), the proposed
algorithm outperforms the other algorithms evaluated with the same data base, according
to the most recent available publications up to our knowledge. These numerical results
can be reproduced with the Matlab package (Zhang, 2005) which can be downloaded at
http://www.irisa.fr/sosso/zhang/biomedical/.

Notice that this paper considers only T-wave end location. For this purpose, the QRS
complex detection needs to be first performed in order to delimit an interval containing
the T-wave. Because the QRS complex is the easiest wave form to be detected, no further
discussion on this subject is pursued in this paper.

The paper is organized as follows. The proposed algorithm is first heuristically introduced
in Section 2.1, its consistency is then analyzed in Section 2.2. The classification of T-wave

Irisa
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Figure 2: Sliding window of size W for the computation of A(t)

morphological forms is discussed in Section 2.3. The complete algorithm in discrete time is
formulated in Section 2.4. The algorithm performance is then evaluated in Section 3 with
the PhysioNet QT database. Finally, some concluding remarks are drawn in Section 4.

2 The proposed algorithm and its consistency analysis

2.1 Notations and heuristics

In order to concentrate the presentation to the main elements of the proposed algorithm,
let us first consider positive T-waves (as those shown in Figure 1). The other T-wave
morphologies will be treated similarly later in this paper.

For the convenience of presentation, the ECG signal is first considered as a continuous
function of the time t, denote by s(t). Nevertheless, the full algorithm will be reformulated
in Section 2.4 for ECG signals sampled at discrete time instants.

Based on QRS-complex detection (this task can be accomplished with any well estab-
lished QRS detection method; see, e.g., (Kohler et al., 2002)), for each cardiac cycle, a
interval [ta, tb] is roughly delimited so that the T-wave end is inside this interval, with no
overlap with the other wave forms (QRS and P). The following presentation assumes that
such an interval is already chosen for each cardiac cycle.

Throughout this paper, the time instants corresponding to the beginning and the end of
a T-wave are respectively denoted by t1 and t2. The T-wave length, denoted by L = t1 − t2,
is generally an unknown value.

The proposed algorithm mainly consists of the computation of an indicator A(t) which
reaches its maximum value when t = t2. It is computed mainly through an integration
operation in a sliding window. The window size W should be chosen such that 0 < W < L.
It is possible to choose such a value with some rough knowledge on L. At each time instant
t, define the indicator

A(t) =
∫ t

t−W

[s(τ) − s(t)]dτ (1)

PI n˚1744
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which can be understood as the area in the interval [t−W, t] under the signal s(t), but above
the horizontal line crossing the point s(t), as illustrated in Figure 2(a).

Remark 1 For presentation convenience, and by abuse of language, the term “area A(t)”
will mean both the value defined by the integral in (1) and the corresponding geometric
object. For instance, with its second meaning, the left side edge and the bottom line of the
area A(t) can be talked about. �

Before the detailed proof presented later, let us first intuitively explain why the area A(t)
reaches its maximum value when t = t2. From this position, as illustrated in Figure 2(b),
when the window (of size W < L) is moved to the right side, part of the window is covering
the baseline instead of the T-wave, then A(t) decreases. When the window is moved to the
left side, the bottom line of the area moves up with the value of s(t), then the area A(t) also
decreases. Therefore, intuitively, the T-wave end can be located by looking for the time t
maximizing A(t).

Let us introduce some other useful notations: the time instant when the T-wave reaches
its maximum

ttop = arg max
t∈[t1,t2]

s(t) (2)

the left edge height of the area A(t)

h(t) = s(t − W ) − s(t) (3)

and the maximum height of the area A(t2):

hmax(t2) = max
t∈[t2−W, t2]

[s(t) − s(t2)] (4)

2.2 Assumptions and consistency analysis

Assumption 1 A T-wave is a differentiable concave function of the time in the interval
[t1, t2]. It is followed by a straight-line in the interval [t2, tb] (a piece of the baseline).

This assumption is only approximatively true, since a typical T-wave may not be concave
in the neighborhoods of t1 and t2 and the baseline following the T-wave may not strictly
form a straight-line. However, despite this approximation, the resulting algorithm proposed
in this paper produces accurate results when evaluated with the PhysioNet QT database,
as shown in Section 3.

Assumption 2 If the straight-line segment of s(t) in the interval [t2, tb] has a negative
slope K, then it is weak enough such that |K| ≤ h(t)/W for any t ∈ [t2, tb]. Graphically,
this assumptions means that the left extension of this straight-line intersects with the left
edge of the area A(t) (see Figure 4(c)).

Irisa
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Remark that the straight-line in the interval [t2, tb] may have a positive, zero, or negative
slope. The restriction on its slope applies only in the negative slope case.

Assumption 3 The segment of the signal in the interval [ta−W, t1] preceding the T-wave
is not necessarily a straight-line, but is upper bounded such that

s(t) ≤ s(ttop) (5)

and satisfies the Lipschitz condition

|s(t) − s(τ)| ≤ hmax(t2)
W

|t − τ | for any t, τ ∈ [ta−W, t1] (6)

Remind that the interval [ta, tb] is assumed to contain the T-wave end instant t2, not the
entire T-wave interval [t1, t2].

Now it is ready to establish the main result for T-wave end location.

Proposition 1 Under Assumptions 1, 2 and 3, the T-wave end satisfies the property

t2 = arg max
t∈[ta,tb]

A(t)

Proof. Depending on the size of [ta, tb], either ta < ttop or ta ≥ ttop is true. The following
proof considers only the situation ta < ttop as illustrated in Figure 3. Whenever ta ≥ ttop
happens, ta can be simply replaced, in the following proof, by t′a = ttop − ε with some
small value ε > 0. If t2 maximizes A(t) within [t′a, tb], the maximization holds also for
[ta, tb] ⊂ [t′a, tb].

In order to prove that A(t) reaches its maximum value within [ta, tb] at t = t2, it will be
shown that A(t) < A(t2) for any t ∈ [ta, tb] and t 6= t2. For this purpose, the interval [ta, tb]
is divided into 3 pieces, separated by ttop and t2. Each case with t falling into one of these
3 sub-intervals are considered in detail.
Case 1, t ∈ [ttop, t2).

This is the middle sub-interval. Consider any value of t ∈ [ttop, t2). From this position,
move the sliding window an infinitesimal distance dt > 0 to the right (such that t+dt ≤ t2).
Accordingly, the bottom line of the area A(t) is moved down a distance ds > 0. See Figure 3
where the dashed lines illustrate the border of the area A(t + dt) after the movement.

Denote with s′(t) the derivative of s(t), then

ds = |s′(t)|dt

where the absolute value |s′(t)| is used because dt and ds have been taken as positive values
for a simple graphical interpretation of the proof. After this movement, the area is decreased
at its left edge, but increased at its bottom. The total area increment is

dA(t) = Wds − h(t)dt

PI n˚1744
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Figure 3: Illustration of A(t) in case 1.

Then

dA(t) = W |s′(t)|dt − h(t)dt

= W

(
|s′(t)| − h(t)

W

)
dt

Because s(t) is a concave function inside the interval [t1, t2], the tangent line of the T-
wave stays above the T-wave, as illustrated in Figure 3 with the dotted line. If t − W ≥ t1
, the slope of the tangent line s′(t) satisfies the inequality |s′(t)| > h(t)

W . If t − W < t1, by
Assumption 3, s(t − W ) < s(ttop), then the inequality |s′(t)| > h(t)

W also holds. It follows
that dA(t) > 0.

Notice that dA(t) > 0 has been proved for the movement to the right from any position
t ∈ [ttop, t2). In other words, for any t ∈ [ttop, t2), when the sliding window is slightly moved
to the right, the area A(t) increases. It then follows by continuity of A(t) that A(t) < A(t2)
for any t ∈ [ttop, t2).

Case 2, t ∈ (t2, tb].
In this case, three sub-cases have to be considered, according to the sign of the slope of

the straight-line ECG segment in the interval [t2, tb].
If the slope in the interval [t2, tb] is zero (horizontal baseline), as illustrated in Figure 4(a),

then the area A(t) decreases when it is moved to the right side, since the area at the right
end disappears, and the area at the left end decreases.

If the slope is positive (see Figure 4(b)), then the part of the area A(t) below s(t) (the
positive part of A(t), illustrated in Figure 4(b) with the gray area) is certainly smaller
than A(t2), since from the t2 position to the current position, the left edge of this part
has been moved to the right and the bottom edge has been moved up. Moreover, there
is also a negative part of A(t) (illustrated in Figure 4(b) with the white area). Therefore,
A(t) < A(t2) certainly holds.

If the slope is negative, as illustrated in Figure 4(c), the proof is similar to that of Case 1.
For any t ∈ [t2, tb), move the sliding window an infinitesimal distance dt > 0 to the right.

Irisa
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Figure 4: Illustrations of A(t) in case 2.

Accordingly, s(t) is moved down of the distance ds = |s′(t)|dt. Once again, the absolute
value |s′(t)| is used for positive values dt and ds. Then the area increment caused by the
movement is

dA(t) = Wds − h(t)dt

= W

(
|s′(t)| − h(t)

W

)
dt

According to Assumption 2, |s′(t)| < h(t)/W , therefore dA(t) < 0. Notice that this
result holds for any t ∈ [t2, tb), it then follows that A(t) < A(t2) for any t ∈ (t2, tb].

Case 3, t ∈ [ta, ttop]. In this case, three sub-cases should also be considered, depending on
the position of t1 with respect to the interval [t − W, t].

First consider the sub-case of t1 < t − W , as illustrated in Figure 5-(a). The window
[t − W, t] is then entirely inside the increasing side of the T-wave, i.e., [t − W, t] ⊂ [t1, ttop].
Due to the concavity of the T-wave, s(τ)−s(t) < 0 for any τ ∈ [t−W, t). Therefore A(t) < 0
following its definition. It is then trivial to show A(t) < 0 < A(t2).

Now let us consider the sub-case of t1 ∈ [t − W, t], as illustrated in Figure 5-(b).

PI n˚1744
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Figure 5: Illustration of A(t) in case 3.

Define the notations:

B(t) =
∫ t1

t−W

[s(τ) − s(t)]dτ

smin = min
τ∈[t−W,t1]

s(τ)

Notice that

A(t) = B(t) +
∫ t

t1

[s(τ) − s(t)]dτ

Because of the concavity of the T-wave, s(τ) − s(t) < 0 for all τ ∈ [t1, t), therefore A(t) <
B(t). It will be shown in the following that B(t) < A(t2).

Because of the T-wave concavity, s(t1) ≤ s(t), therefore smin ≤ s(t1) ≤ s(t). Then

B(t) =
∫ t1

t−W

[s(τ) − s(t)]dτ

≤
∫ t1

t−W

[s(τ) − smin]dτ

The application of Lemma 1 (see the Appendix of this paper) leads to

B(t) ≤ 1
2

hmax(t2)
W

[t1 − (t − W )]2

Irisa
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where the Lipschitz constant hmax(t2)/W assumed in Assumption 3 has been used.
For the current case t1 ∈ [t − W, t], clearly [t1 − (t − W )]2 ≤ W 2. Then

B(t) ≤ 1
2
hmax(t2)W

The concavity of the T-wave implies that A(t2) > 1
2hmax(t2)W . Therefore,

A(t) ≤ B(t) < A(t2)

Now let us consider the last sub-case t1 > t as illustrated in Figure 5-(c). First notice
that the interval [t − W, t] is covered by Assumption 3, since [t − W, t] ⊂ [ta − W, t1]. Then
the proof is similar to that of the previous sub-case: Assumption 3 and Lemma 1 lead to

A(t) =
∫ t

t−W

[s(τ) − s(t)]dτ

≤ 1
2
hmax(t2)W

< A(t2)

It is then established that A(t) < A(t2) for all t ∈ [ta, ttop].

Finally it is concluded that Proposition 1 holds in all the possible cases. �

2.3 Other T-wave morphological forms

Remind that Proposition 1 has been formulated for positive T-waves. Following (Mart́ınez
et al., 2004), T-wave morphologies can be classified as positive, negative, biphasic (positive-
negative or negative-positive), ascending only, and descending only.

For negative T-waves, the same algorithm can be applied to −s(t) instead of s(t), or
equivalently, the minimum of A(t) is searched for instead of its maximum.

For biphasic negative-positive T-waves, let t1 be the inflexion point inside the T-wave
so that s(t) is concave in the interval [t1, t2]. Biphasic positive-negative T-waves can be
handled similarly.

For descending only T-waves, let t1 = t2−L for some appropriate value L. The ascending
only case is similarly handled.

Typically, a T-wave end location algorithm has to first figure out the morphology of a
T-wave before determining the wave end location. For the algorithm proposed in this paper,
it is important to know if the end of a T-wave is located after a descending or an ascending
edge of the T-wave. If it is descending, then Proposition 1 applies. If it is ascending, then
Proposition 1 applies to −s(t) instead of the signal s(t) itself.

Since the T-wave morphology is a priori not known, a simple solution would be to search
for the maximum absolute value |A(t)| for T-wave end location. However, for biphasic T-
waves, the wave end does not necessarily correspond to the maximum of |A(t)|. Therefore,

PI n˚1744



12 Q. Zhang, A. Illanes Manriquez, C. Medigue, Y. Papelier and M. Sorine

continuous time s(t) A(t) W ta tb t2
discrete time sk Ak w ka kb k2

Table 1: Notation correspondence between continuous time and discrete time

the following simple rule is adopted. Search for the instants t′ and t′′ respectively maximizing
and minimizing A(t). If A(t′) and A(t′′) have comparable absolute values (decided based
on a threshold value), then the T-wave is considered as biphasic, and the latest of the two
instants t and t′′ is taken as the location of the T-wave end. Otherwise, the largest absolute
value |A(t′)| or |A(t′′)| corresponds to the T-wave end.

Remark 2 Better result can be obtained if the sliding window size W is specialized to each
T-wave morphology. However, due to the robustness of the algorithm to parameter tuning,
in this paper the same value of W is used for all the T-wave morphologies. �

2.4 Algorithm in discrete time

In practice, ECG signals are typically sampled at discrete time instants before being pro-
cessed with a digital computer. Assume that the signal is sampled at a constant period ∆,
and with sk = s(k∆) being the k-th sampled signal value. Then the ECG signal becomes a
sequence of values sk with k = 1, 2, . . . . Accordingly, the definition of A(t) is reformulated
in discrete time as

Ak =
k∑

j=k−w+1

(sj − sk)

where w is the sliding window size in discrete time. In order to reduce of the effect of
measurement noise, in the above formula it is better to replace sk by s̄k, the mean value of
the signal in a small window around k.

Some other notations already introduced in continuous time are also translated into
discrete time, as summarized in Table 1.

A QRS-complex detection algorithm is first applied to detect R-peaks, with Ri denoting
the i-th detected R-peak (discrete time) instant. Inside each detected RR interval, two
discrete time instants ka and kb are chosen to confine the T-wave end search. Then for each
instant k between ka and kb, the value of Ak is computed and the T-wave end is located at
the value of k maximizing or minimizing Ak, as summarized in the following.

Algorithm summary

1. Choose the sliding window size w and the smoothing window size p << w. Choose
also a threshold λ > 1 for T-wave morphology classification.

2. Read two successively detected R-peak instants Ri and Ri+1.

3. Choose the values of ka, kb between Ri and Ri+1 to confine the T-wave end search.

Irisa
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4. For each instant k = ka, ka + 1, . . . , kb, compute

s̄k =
1

2p + 1

k+p∑
j=k−p

sj

Ak =
k∑

j=k−w+1

(sj − s̄k)

5. Find

k′ = arg max
ka≤k≤kb

Ak

k′′ = arg min
ka≤k≤kb

Ak

6. If
1
λ

<
|Ak′ |
|Ak′′ | < λ

then the T-wave end in the current RR interval is located at

k2 = max(k′, k′′)

otherwise,
k2 = arg max

k∈{k′,k′′}
|Ak|

7. Increase i by one and go back to step 2.

Remark 3 The main part of this algorithm, the computation of Ak, is in fact a linear
combination of the signal values from sk−w+1 to sk+p. It can thus be simply implemented
as a finite impulse response (FIR) filter. �

The choice of ka, kb in each RR interval has an important influence on the result of
T-wave end detection. They should define an interval large enough to contain the T-wave
end, and small enough in order to avoid overlap with the other wave forms. As an example,
the rule for choosing ka, kb when the algorithm is applied to the PhysioNet QT database
will be given in the next section.

For the algorithm presented above, it is assumed that a T-wave is present in each cardiac
cycle. In some situations, the signal segment corresponding to a T-wave is so weak that the
T-wave end cannot be correctly detected. Such situations can be identified with the aid of
the maximum absolute value |Ak| compared with a threshold. The value of this threshold
has to be determined experimentally.
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3 Evaluation with manually annotated ECG signals

The PhysioNet QT database (Laguna et al., 1997) has been built by researchers to serve as
a reference for the validation and comparison of ECG processing algorithms. The signals in
this database have been manually annotated by cardiologist experts for various events. Only
the T-wave end annotations are used in this paper. In 105 records, a total of 3542 T-wave
ends have been annotated by one cardiologist, and 402 T-wave ends in 11 records have been
annotated by another cardiologist. Each record consists of two leads of 15 minutes ECG
signals sampled at 250 Hz.

The signals are first filtered to reduce baseline wander before the application of the
proposed detection algorithm. For simplicity, the Fast Fourier Transform (FFT) of each
signal is first computed and then the frequency components below 0.5 Hz are truncated
before the inverse FFT is computed. Filtering is not really necessary for the QT database,
as will be shown by the result without filtering. However, filtering is generally recommended
to prevent bad surprises.

The following parameters have been used for the processing of the QT database which
is sampled at 250 Hz.

The sliding window w = 32, the smoothing window p = 4, the threshold for T-wave
morphology test λ = 6. Denote RRi = Ri+1 − Ri, the search interval is chosen as

ka =

{
Ri + b0.15RRic + 37 if RRi < 220
Ri + 70 if RRi ≥ 220

kb =

{
Ri + d0.7RRie − 9 if RRi < 220
Ri + d0.2RRie + 101 if RRi ≥ 220

where bxc means the largest integer smaller than or equal to x, and dxe means the smallest
integer greater than or equal to x.

In order to evaluate the accuracy of the proposed algorithm, the mean and the standard
deviation (STD) of the detection errors (the difference between the automatically detected
T-wave ends and the manually annotated T-wave ends) are computed.

Up to our knowledge, the results of 4 different detection algorithms evaluated with the
PhysioNet QT database have been published (Laguna et al., 1994), (Vila et al., 2000),
(Mart́ınez et al., 2004) and (Last et al., 2004). For the purpose of comparison, the results
of the first 3 algorithms are recalled in Table 2. It has not been possible to compare with
the results of (Last et al., 2004), because only 3000 annotated T-wave ends (out of 3542
available) were used for the results reported in this publication without indicating how these
3000 annotations were selected, and the mean value of the detection errors is not reported.

In Table 2, the first row (of numerical values) is the results with all the signals annotated
by cardiologist 1, the other two rows are the results with the 11 records annotated by both
cardiologists. Column 1 is the reference annotation used for error computation, column 2 is
the number of records, column 3 is the number of annotated T-wave ends, column 4 is the re-
sults (mean and standard deviation (STD) of detection errors) of the proposed method, the

Irisa



Robust and efficient location of T-wave ends in ECG 15

num. of num. of this paper WT LPD TU
Reference records annot. mean STD mean STD mean STD mean STD
Cardio. 1 105 3542 0.31 17.43 -1.6 18.1 13.5 27.0 0.8 30.3
Cardio. 1 11 487 -7.47 17.18 -9.7 18.1 — – — —
Cardio. 2 11 402 -7.47 17.51 -10.8 20.0 — — — —

Table 2: Evaluation of algorithms on the QT database. The first row (of numerical values) is
the results with all the signals annotated by cardiologist 1, the other two rows are the results
with the 11 records annotated by both cardiologists. Column 1 is the reference annotation used
for error computation, column 2 is the number of records, column 3 is the number of annotated
T-wave ends, column 4 is the results (mean and standard deviation (STD) of detection errors)
of the proposed method, the following columns are the results of the algorithms WT (Mart́ınez
et al., 2004), LPD (Laguna et al., 1994) and TU (Vila et al., 2000). The time unit is millisecond.
The missing values are not reported in the original publication.

following columns are the results of the algorithms WT (Mart́ınez et al., 2004), LPD (Laguna
et al., 1994) and TU (Vila et al., 2000). The abbreviations for the names of these algorithms
follow those of (Mart́ınez et al., 2004). The time unit is millisecond. The numerical values
for the algorithms WT, LPD, TU come from the publication (Mart́ınez et al., 2004). The nu-
merical values of the proposed method can be reproduced with the Matlab package (Zhang,
2005) which can be downloaded at http://www.irisa.fr/sosso/zhang/biomedical/.

In order to examine the robustness of the propose algorithm to baseline wander, the
same signals are also processed without the filtering step. The results are similar to those
obtained with filtered signals. For example, when evaluated with the 3542 annotations made
by the first cardiologist, the mean of 0.018 millisecond and the standard deviation of 17.35
millisecond are obtained (to be compared respectively with the values of 0.31 and 17.43
obtained with filtered signals).

The computation of the mean and the standard deviation of errors needs some discussion.
In Table 2, these values are computed according to the method adopted in (Mart́ınez et al.,
2004) as explained in the following.

• First, an algorithm is applied to each of the two leads of a ECG record in the QT
database. For each T-wave annotated by cardiologist, the T-wave end is located twice
by the algorithm, one per ECG lead. The a posteriori best result among the two
computed positions is chosen for error evaluation. The explanation given in (Mart́ınez
et al., 2004) is that the cardiologist has made his annotation by looking at both leads
and his decision is based on the best lead.

• Second, for each record, a mean value and a standard deviation of the T-wave end
location errors are computed.

• Finally, the overall mean and standard deviation are computed for all the annotated
105 or 11 ECG records.
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num. of num. of weighted unique set
Reference records annot. mean STD mean STD
Cardio. 1 105 3542 0.38 18.05 1.72 41.27
Cardio. 1 11 487 -6.45 18.94 -3.22 26.41
Cardio. 2 11 402 -9.82 17.06 -9.84 29.32

Error Cardio.1-2 11 402 -5.84 24.46 -5.84 39.89

Table 3: Alternative algorithm evaluations. The “weighted” column: mean and standard de-
viation weighted by the number of annotations in each record, with the best lead selected per
cardiac cycle. The “unique set” column: mean and standard deviation computed over all the
errors in a unique set, with the best lead selected per record. The last row is the corresponding
evaluation of the errors between the two cardiologists’ T-wave end annotations. The time unit
is millisecond.

How should the overall mean and standard deviation be computed? In (Mart́ınez et al.,
2004) the reported values (as recalled in Table 2) are simply taken as the mean of the
mean values and the mean of the standard deviations. Though this detail has not been
explicitly stated, but for the errors between the two cardiologists’ T-wave end annotations,
the reported mean value 2.1 and the standard deviation 22.4 have been clearly computed in
this way.

A simple modification of the above scheme is to replace the mean (of mean values or
standard deviations) by the mean weighted with the number of annotated T-wave ends
in each record. The obtained values with the proposed algorithm is shown in Table 3 in
the column indicated by “weighted”. Another possibility is to collect the detection errors
corresponding to all the annotated T-wave ends into a unique set and then compute a
single mean and a single standard deviation over this set. In general the resulting standard
deviation is larger than those computed with the previous schemes. The result obtained
with the proposed algorithm is given in Table 3 in the column indicated by “unique set”.
Remark that, when this last result was computed, for each record of ECG signal, the best
lead (out of the two) was chosen once for the entire record (in contrast to the choice per
annotated T-wave end used in the previous schemes). In clinical practice, for each patient,
the human operator can choose the best lead once when the ECG recorder is set up, but it
is less reasonable to manually choose the best lead per cardiac cycle.

Before closing this section on numerical results, let us remark that, for the algorithm
proposed in this paper, the T-wave end is always searched for in every cardiac cycle. As
mentioned at the end of Section 2.4, the same algorithm could also be used to detect the
presence of a T-wave in each cardiac cycle. Its application would eliminate some cardiac
cycles annotated by the cardiologists. Since it is not possible to eliminate the same car-
diac cycles as the other algorithms, the accuracy of T-wave end detection would have to
be compared on different cardiac cycles. Eliminating “bad” cardiac cycles from the records
generally improves the results. Therefore, evaluating the location errors on all the avail-
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able manually annotated T-wave ends puts the proposed algorithm in the least favorable
evaluation condition.

4 Conclusion

A new algorithm for T-wave end location has been presented in this paper. It is based on a
indicator signal with mathematically proved consistency. It is robust to measurement noise,
to T-wave morphological variations and to baseline wander. The computation burden of the
algorithm is very low: its main computation can be implemented as a simple FIR filter.

Satisfactory results have been obtained when this new algorithm is evaluated on the
PhysioNet QT database. In terms of error mean value and standard deviation, it outperforms
the other algorithms evaluated on the same data base, according to recent publications.

By examining the errors of the algorithm, it has been observed that the large errors are
mainly due to incorrect morphological classification. In order to further improve the result,
it is important to develop more accurate and robust methods for morphological classification.

Appendix

Lemma 1 Let f(x) be an integrable function defined for x ∈ [a, b] and denote

f = min
x∈[a,b]

f(x)

Assume that f(x) satisfies the Lipschitz condition

|f(x) − f(x′)| ≤ M |x − x′| for all x, x′ ∈ [a, b]

with some constant M > 0. Then∫ b

a

[f(x) − f ]dx ≤ 1
2
M(b − a)2

Proof.
Denote

xmin = arg min
x∈[a,b]

f(x)
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If the global minimum of f(x) in [a, b] is not unique, then take xmin as any of the minimizing
value. ∫ b

a

[f(x) − f ]dx =
∫ b

a

|f(x) − f(xmin)|dx

≤
∫ b

a

M |x − xmin|dx

= −M

∫ xmin

a

(x − xmin)dx + M

∫ b

xmin

(x − xmin)dx

=
1
2
M(a − xmin)2 +

1
2
M(b − xmin)2

=
1
2
M(b − a)2 − M(xmin − a)(b − xmin)

By definition xmin ∈ [a, b], therefore (xmin − a)(b − xmin) ≥ 0. Remind that M > 0. It is
thus concluded that ∫ b

a

[f(x) − f ]dx ≤ 1
2
M(b − a)2
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