
HAL Id: inria-00000523
https://hal.inria.fr/inria-00000523

Submitted on 27 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient trajectories computing using inversibilities
properties

Marie-Odile Cordier, Alban Grastien, Christine Largouët, Yannick Pencolé

To cite this version:
Marie-Odile Cordier, Alban Grastien, Christine Largouët, Yannick Pencolé. Efficient trajectories
computing using inversibilities properties. 14th international workshop on principles of diagnosis, Jun
2003, Washington / USA. �inria-00000523�

https://hal.inria.fr/inria-00000523
https://hal.archives-ouvertes.fr

EFFICIENT TRAJECTORIES COMPUTING
EXPLOITING INVERSIBILITY PROPERTIES

Marie-Odile Cordier ∗ Alban Grastien ∗

Christine Largouët ∗ Yannick Pencolé ∗

∗ IRISA, Campus de Beaulieu, 35042 Rennes Cedex,
France, {cordier,agrastie,clargoue}@irisa.fr,

Yannick.Pencole@anu.edu.au

Abstract: A time-consuming problem encountered both in system diagnosis and
planning is that of computing trajectories over a behavioral model. In order to
improve the efficiency of this task, there is currently a great interest in using model-
checking techniques developed within the area of computer aided verification. In
this paper, we propose to represent the system as automata and we define a
property called inversibility. This property is used to improve the efficiency of the
search algorithm computing trajectories. We present two study cases in diagnosis
and planning domains where this approach gives satisfactory results.

1. INTRODUCTION

It is generally recognized that diagnosing dynam-
ical systems, represented as discrete-event sys-
tems (DES) (Cassandras and Lafortune, 1999)
amounts to finding what happened to the sys-
tem from existing observations. Different termi-
nologies can be found in the literature as histo-
ries (Baroni et al., 1999), scenarios (Cordier and
Thiébaux, 1994), narratives (Barral et al., 2000),
consistent paths (Console et al., 2000). They all
rely on the idea that the diagnostic task con-
sists in determining the trajectories (a sequence
of states and events) explaining the sequence of
observations. In a similar way, planning consists
in finding a sequence of actions, called a plan, that
is guaranteed to achieve a goal. Both diagnostic
and planning can thus be viewed as the problem
of finding a path over a behavioral model. The
main difficulty is the size of the model (number of
states and transitions) and the explosive number
of trajectories. It explains the current interest
shown by the diagnosis and planning community
in using model-checking techniques, originally de-
signed for efficiently testing complex real-time sys-
tems (Clarke et al., 1999). Having represented the

planning domain or the system to be diagnosed as
a finite state automaton, the problem of finding a
trajectory is expressed as a reachability analysis
on the model (Cordier and Largouët, 2001). To
cope with the so-called state-explosion problem,
techniques as Binary Decision Diagrams (BDD)
(Burch et al., 1992), Partial Order Reduction
(POR) (Clarke et al., 1998; Peled, 1993) have been
proposed. They have been recently used in plan-
ning (use of BDD in (Cimatti and Roveri, 2000))
and in diagnosis (use of BDD in (Marchand and
Rozé, 2002) and of POR in (Pencolé, 2002)).

In this paper, we propose to use a property of
the model describing the DES to prune the search
space without losing any information. This prop-
erty is called inversibility and is defined on the
events (or actions) of the system. Intuitively, two
events are said to be inversible when, after tran-
siting through any sequence of events including
these two events, the state reached by the system
is the same whenever the one or the other of the
two events has been executed first.

The paper is structured as follows. We first briefly
present the formalism of automata and define the
notion of trajectory. We then propose two toy

examples in diagnosis and planning that will be
used as running examples throughout all the pa-
per. The property of inversibility is then defined
and the search algorithm is presented. Lastly, ex-
perimental results are analyzed and perspectives
are discussed.

2. MODEL FORMALISM

In this section we first recall the formalism of
automata we use to represent discrete-event sys-
tems before introducing the theoretical framework
needed to define a trajectory. The formalism is
illustrated by two examples in section 3.

Definition 1. (Automaton). An automaton is an
tuple A = 〈Q, E, T, qo〉 where:

• Q is a finite set of state labels,
• E is a finite set of transition labels called

events 1 ,
• T ⊆ Q × E × Q is a finite set of transitions

over the system. A transition t is a 3-uplet
(q1, e, q2) such that t links q1 ∈ Q to q2 ∈ Q
on an edge labeled by e ∈ E,

• qo is the initial state.

The automaton represents the set of states of
the system and describes the evolution of the
current state w.r.t the events occurring on the
system. In this article, we only consider the case
of deterministic automata.

A system being a set of interconnected compo-
nents, it is usually easier to describe the behavior
of each elementary component. The global model
is obtained by a composition operation with syn-
chronization over the events.

Definition 2. (Synchronized product). The syn-
chronized product of n automata Ai = 〈Qi, Ei, Ti,
qo,i〉, noted ⊗i=1,nAi, is an automaton A =
〈Q, E, T, qo〉 such that:

• Q = Q1 × · · · × Qn,
• E =

⋃
1≤i≤n Ei,

• T =

⎧⎨
⎩

{(q1, · · · , qn), e, (q′1, · · · , q′n)} |
∀i((e ∈ Ei ⇒ (qi, e, q

′
i) ∈ Ti)∧

(e /∈ Ei ⇒ qi = q′i))

⎫⎬
⎭,

• qo = (qo,1, · · · , qo,n).

The properties associated to events and sequences
of events are the following.

Definition 3. (Enabled event). An event e is en-
abled in a state q ∈ Q of an automaton A =

1 In applicative domains, transitions labels are associated
to events in diagnosis and to actions in planning. In the
following of this paper, we call a transition label by the
generic term event.

〈Q, E, T, qo〉 if there exists a transition from q
labeled with e, i.e :

enA
e (q) =

{
true if (∃q′ | (q, e, q′) ∈ T) ∨ (e /∈ E))
false elsewhere

The following theorem can be easily proved.

Theorem 1. In an automaton A = 〈Q, E, T, qo〉 =
⊗i=1,nAi, with Ai = 〈Qi, Ei, Ti, qo,i〉, an event
e is enabled in a state q = (q1, · · · , qn) iff e
is enabled in the state qi of Ai for all i, i.e:
enA

e (q) = enA1
e (q1) ∧ · · · ∧ enAn

e (qn)

We denote e(q) with e ∈ E and q ∈ Q the state q′

reached from the state q by the transition labeled
by e such that (q, e, q′) ∈ T .

A sequence over a set of events E is a sequence
γ1;γ2;...;γn where each γi is either an event in
E or a sequence of events. In the following, the
sequences of events are denoted by Greek letters
α, β, . . . and ε denotes the empty sequence.

Definition 4. (Enabled sequence of events). A se-
quence of events α = e1; e2; · · · ; ek = e1; β is
enabled in a state q of the automaton A, noted
enA

α (q), iff enA
e1

(q) ∧ enA
β (e1(q)).

An empty sequence is enabled in any state and we
have thus ∀q ∈ Q enA

ε (q) = true.

Definition 5. (Trajectory). A sequence of events
is called a trajectory 2 of A iff the sequence is
enabled in the initial state qo of the automaton.

3. EXAMPLES

We present now two toy examples, in diagnosis
and planning domains respectively, which have
been used for the experimentations presented in
section 6.

Diagnosis system

Consider a simplified telecommunication system
composed of a set of components Compi and a
technical center TC which receives messages from
the components (see figure 1). A component can
be in normal behavior or in abnormal behavior
due to a failure. A component is composed of two
parts: the component itself called the unit and
a controller which detects abnormal behaviors of
the unit. When a fault occurs, the controller sends
a fault i message to the TC and turns the unit
to the abnormal state. The TC is also composed
of two parts: a monitor and a counter.When the

2 The term trajectory commonly used in diagnosis corre-
sponds to a plan in planning

controller

unit

controller

unit

controller

unit

counter

monitor

Technical
Center
(TC)

Comp_j Comp_k

inc

Comp_i

doAlarm_i

reset reset

alarm

alarm

reset

alarm

doReset

fault_i

Fig. 1. A simplified telecommunication system

1 2

fault_1

fault_i

fault_n

inc

Fig. 2. Model of the TC monitor

0

4

reset

doReset

1
inc

doReset

2
inc

doReset

3
inc

alarm

Fig. 3. Model of the TC counter

monitor receives a fault event from a component
controller, it asks the counter to increment its
value. An external clock governs the resetting of
the counter value. When this exogenous doReset
event is received, the technical center TC asks,
by sending a reset message, all the components
to evolve from the abnormal state to the normal
state. Between two resets, if the counter value
reaches a predefined threshold, considered as the
maximum number of faulty components support-
ed by the system, the TC sends the alarm event to
all components. When a component controller, the
unit of which is faulty, receives an alarm event, it
emits an exogenous doAlarm i event to a supervi-
sor. The diagnosis task consists in providing the
sequences of events that occurred on the system
and explain the alarms observed by the supervisor
(doAlarm i, doReset).

Let us give now the model of this system de-
scribed by the model of each of its components.
The TC monitor (see figure 2) is defined by two
states. The system moves from state 1 to state
2 when it receives a fault event from one of the
component. After having sent a inc event to the
counter, it returns to its initial state. To represent
the behavior of the counter (see figure 3), the
maximum number of faulty components has been

set to 3. The states 1, 2 and 3 correspond to the
value of the counter. When the counter receives
the exogenous doReset alarm, it moves to state
4, sends to all the controllers a reset event and
returns to the initial state.

1

4

back_i

2
reset

3

doAlarm_i

reset, alarm

fault_i

alarm

Fig. 4. Model of a component controller

1 2

fault_i

back_i

Fig. 5. Model of a component unit

The component controller (see figure 4) receives
the fault i event from the unit and moves to
state 2. In this state, two kinds of events can be
received: reset or alarm. The reset event lead the
controller to state 4. In case the alarm event is
received, a doAlarm i event is sent and the con-
troller comes back to state 4. The component unit
(figure 5) can be in a normal or abnormal state (if
a fault has occurred). The back i event, received
from the controller, makes the unit coming back
to a normal state.

Planning system

1 2
dunk_i

dunk_i

Fig. 6. Model of a package

1 2

flush

dunk_1

dunk_i

dunk_n

flush

Fig. 7. Model of the toilet

The planning example is a variation of Moore’s
bomb in the toilet domain (McDermott, 1987).
We initially suppose that there are n packages in
a bathroom, that all contain an armed bomb and
that the toilet is clogged. The goal is to get all
the bombs disarmed and the toilet unclogged. The
only way to disarm a bomb is to dunk a package

containing a bomb in the toilet (dunk i action),
provided that the toilet is not clogged. Dunking
the package has the effect of clogging the toilet.
The toilet can be clogged by the flush action.

The behavior of the system is represented by two
automata. The first one (see figure 6) is associated
to the package i. The second one (see figure 7)
describes the toilet. In the package automata,
state 1 syas that the package contains the armed
bomb and state 2 that it is disarmed. The dunk i
action defuses the bomb if any. In figure 7, in
state 1, the toilet is clogged, while it is unclogged
in state 2. Dunking a package has the effect of
clogging the toilet which is represented by the
dunk i actions. The flush transition indicates
that performing the flush action unclogs the
toilet.

4. INVERSIBILITY

In this section, an inversibility property is defined
on events. In the next section, an algorithm ex-
ploiting this property for improving trajectories
computing is presented. Intuitively, this property
indicates that two events, under some conditions,
can be inverted in a sequence without any conse-
quence on the final state reached by the system.

Let L be a language composed of sequences of
events.

Definition 6. Two events a and b (a �= b) satisfy
the inversibility property with respect to a lan-
guage L in an automaton A = 〈Q, E, T, qo〉 (noted
a♣b
L) iff ∀q ∈ Q, ∀β ∈ L,

• enA
a;β;b(q) ⇔ enA

b;β;a(q), and
• enA

a;β;b(q) ⇒ a; β; b(q) = b; β; a(q).

This definition means that if
a♣b
L , then for all

sequences β ∈ L, the sequence of events a; β; b has
the same effect on the system that the sequence
b; β; a.

This property is compositional, as shown by the
following theorem.

Theorem 2. If two events a and b can be inverted
w.r.t the languages Li in the automata Ai (

a♣b
Li in

Ai, ∀i ∈ {1, . . . , n}), then these two events can be
inverted over the language L =

⋂
1≤i≤n Li in the

automaton A = ⊗Ai.

5. ALGORITHM

In the first subsection, it is shown how the in-
versibility properties are used to prune the search

when looking for trajectories. This algorithm is
the heart of a diagnosis or planning algorithm as
soon as it is viewed as a path search algorithm.
It has to be slightly adapted to take into account
observations in a diagnosis context or the goals in
a planning context. Domain dependant heuristics
can clearly be used to improve the search efficien-
cy. This algorithm supposes that the inversibility
properties have already been collected and can
then be easily checked. In the second subsection,
we consider the problem of establishing this col-
lection of properties, i.e which are the events in-
versible and with respect to which language.

5.1 Search algorithm

Algorithm 1 Unfolding of the automaton using
inversibility

input: finalStates ∈ 2Q

solutionNode ← null
rootNode ← makeRootNode(initialState)
node not developed ← {rootNode}
while node not developed �= ∅ ∧ solutionNode = null
do

n′ ← removeNode(node not developed)
for all b ∈ E | (enA

b
(state(n′)) ∧ b �∈

events pruned(n′)) do
events developed(n′) ← b ∪ events developed(n′)
n ← makeNode(n′, b)
if ¬cyclic(path(rootNode, n)) then

if state(n) �∈ finalStates then
for all a ∈ E do

if ε ∈ Ln(a) then
events pruned(n) ← events pruned(n) ∪
{a}

end if
end for

node not developed ← node not developed ∪
{n}

else
solutionNode ← n′

end if
end if

end for
end while
if solutionNode �= null then

return path(rootNode, solutionNode)
else

return null
end if

The idea is to use the inversibility property to
improve the search of a path (sequence of events)
over the state space defined by the model au-
tomata. Two sequences s1 and s2 are said to be
inv-equivalent if s2 can be obtained from s1 by
inverting the events according to the inversibility
properties.

The inversibility property induces a pruning s-
trategy: a path which is inv-equivalent to a path
already developed in the search tree does not need
to be developed. The algorithm (see 1) extends the
classic breadth-first search algorithm.

Each time a node n is created (by makeNode),
the following data structures are associated to it:

(1) state(n) is the state represented by n;
(2) parent(n) is the parent node of n; let n′

be this node; it implies that there exists
an event e enabled in state(n′) and linking
state(n′) to state(n) (i.e enA

e (state(n′)) and
e(state(n′)) = state(n)).

(3) events developed(n) is the set of events, en-
abled in state(n), and already developed in
the search tree;

(4) events pruned(n) is the set of events, en-
abled in state(n), which do not need to be
developed;

(5) a function Ln : E → 2E�

which maps each
event to a language of events.

The function Ln is defined as follows. Given n a
node of the search tree and a an event, two cases
are distinguished:

(1) n is the root node of the search tree:
Ln(a) = ∅;

(2) n has a parent node n′: let b ∈ E be the
event such that b(state(n′)) = state(n), the
sequence β ∈ E� belongs to Ln(a) iff one of
the following assertions is true:

• (b; β) ∈ Ln′(a)
• a ∈ events developed(n′) ∪

events pruned(n′) ∧ a♣b
{β}

A sequence β belongs to Ln(a) if the path β; a
does not need to be developed, because an inv-
equivalent path has already been developed.

5.2 Establishing the inversibility properties

In the above algorithm, it is supposed that the
inversibility properties are already known. They
are for instance needed to compute the functions
Ln(e). A problem is thus to compute, for any pair
of events a and b, the language La,b such that
a♣b
La,b. In the following, an algorithm (algorithm 2)
is proposed in the restricted case where we impose
that the language La,b is in the form S� 3 , S ⊆ E
(it includes the case La,b = ∅).

The idea of the algorithm is the following. Given a
set of automata A, for each couple (a, b) of events,
the algorithm computes a partition of A into 4
sets: Aa,b, Aa, Ab, A∅, where Aa,b is the subset
of A in which a and b both appear as events, Aa

is the subset of A in which a appears as event but
not b, and so on. The first step checks whether the
events a and b have exactly the same role in the
automata belonging to Aa,b. If it is not the case,
the empty language is the only solution and we

3 S� is the set of all the sequences built from elements
belonging to S. When S = ∅ then S� = ε.

have La,b = ∅. Else, let S be the set of events that
do not appear in Aa nor in Ab. It can be shown,

using theorem 2, that
a♣b
S� . For each automaton,

the complexity is o(|E|3 × |Q|).
Algorithm 2 Computation of the languages La,b

for all (a, b) ∈ E × E, a �= b do
let Ia,b ⊆ {1, . . . , n} so that i ∈ Ia,b ⇔

(a ∈ Ei) ∧ (b ∈ Ei)
if ∀i ∈ Ia,b, ∀(q, q′) ∈ (Qi × Qi),
(q, a, q′) ∈ Ti ⇔ (q, b, q′) ∈ Ti then

let Ia ⊆ {1, . . . , n} so that i ∈ Ia ⇔
(a ∈ Ei) ∧ (b /∈ Ei)

let Ib ⊆ {1, . . . , n} so that i ∈ Ib ⇔
(a /∈ Ei) ∧ (b ∈ Ei)

let S = {c ∈ E;∀i ∈ Ia, c /∈ Ei,
∀j ∈ Ib, c /∈ Ej}

we have:
a♣b
S�

else
a♣b

∅

end if
end for

6. EXPERIMENTAL RESULTS

In this section, we compare the algorithm 1 pro-
posed in section 5 which uses the inversibility
property and a traditional breadth-first algorithm
(that do not explore looping trajectories) on the
two examples of section 3. The experimentation
was performed on an Intel 2.40GHz Pentium-4,
1GB RAM, running Linux.

Diagnosis system

The test has been performed on a system com-
posed of one TC and six components. Given a
sequence of observations, i.e observable events
(doAlarm i, doreset), the problem is to compute
the minimal sequences of events explaining the
observations. Moreover, we suppose that all the
components are normally running at the begin-
ning and at the end of the observations.

For example, if we consider that the maxi-
mum number of acceptable faults is 1 (the
counter threshold equals 1), and the observation
is doAlarm 1, then the diagnosis is the following :
(fault 1; inc; alarm; doAlarm 1; back 1).

The inversibility properties are computed by algo-
rithm 2. For instance, we get the following prop-

erty on two fault events :
fault i♣fault j

S∗ , where

S = {fault k, back k, doAlarm k, inc, doReset}
with k �= i, k �= j.
Table 1 presents the results in terms of time and
number of developed nodes. The first part of the
table corresponds to the case where the maximum
number of acceptable faulty components, i.e the
counter threshold (cnt) is set to one; the second
one to the case where it is set to 2. obs gives
the number of observations considered for the
diagnosis.

Breadth-first Algorithm 1
algorithm

cnt obs time nodes time nodes

1 1 553 ms 82 429 ms 67
1 3 2 h 8 mn 5077 22 s 121 ms 427
1 6 – – 2 mn 52 ms 967

2 2 2 mn 49 s 1207 5 s 732 ms 372
2 4 – – 1 mn 29 s 1265
2 6 – – 5 mn 22 s 2190

Table 1. Results for the diagnosis problem

Planning system

In the Bomb in the Toilet problem, it can
be shown that any dunk i and dunk j are in-
versible w.r.t any sequence of events. We have :
Dunk i♣Dunk j

S∗ , with S = E − Dunk i − Dunk j.

Breadth-first Algorithm 1
algorithm

pkg time nodes time nodes

3 6 ms 28 6 ms 17
4 82 ms 108 24 ms 33
5 2 s 787 ms 534 102 ms 65
6 6 mn 41 s 3196 440 ms 129
7 6 h 21 mn 22362 2 s 157 ms 257
8 – – 28 s 131 ms 513

Table 2. Results for the planning problem

The problem we considered is to find the opti-
mal plan, i.e the plan with minimal length. This
minimal length is 2n + 1 where n is the number
of packages. The complexity of the problem is
directly related to the number of packages. While
the number of nodes developed by the breadth-
first algorithm is o(n!), the number of nodes de-
veloped by the algorithm 1, using the inversibility
property, is o(2n), which explains the results given
by table 2.

7. CONCLUSION

In this paper, we define a property, called in-
versibility property, on events in automata. Two
events are said to be inversible when, after transit-
ing through any sequence of events including these
two events, the state reached by the system is the
same whenever the one or the other of the two
events has been executed first. This property pro-
vides an efficient way of representing sets of trajec-
tories (a trajectory represents the set of all its inv-
equivalent trajectories) and is exploited to restrict
the set of behaviors to consider in diagnosis or
planning systems. Two algorithms are proposed :
the first one to efficiently computing trajectories.
The second one to automatically computing the
inversibility properties from the automata.

The inversibility property is related to the inde-
pendence property between events used in Partial
Ordered Reduction (Clarke et al., 1998; Peled,
1993). It can be shown that two independent
events a and b are two events which are inversible

w.r.t to ε. Using the inversibility property is
clearly relevant to the kind of applications where
Producer/Consumer relations exist between the
components.

In this paper, we restrict ourselves to determinis-
tic automata. The extension to nondeterministic
automata is unproblematic but requires to con-
sider belief states instead of states and to conse-
quently modify the definition of enabled events.

REFERENCES

Baroni, P., G. Lamperti, P. Pogliano and
M. Zanella (1999). Diagnosis of large active
systems. Artificial Intelligence 110, 135–183.

Barral, C., S. McIlraith and T.C. Son (2000). For-
mulating diagnostic problem solving using an
action language with narratives and sensing.
In: KR’2000. pp. 311–322.

Burch, J.R., E.M. Clarke, K.L. Mc Millan, D.L.
Dill and L.J. Hwang (1992). Symbolic model
checking: 1020 states and beyond. Informa-
tion and Computation 98(2), 142–170.

Cassandras, C. G. and S. Lafortune (1999). In-
troduction to Discrete Event Systems. Kluwer
Academic Publishers.

Cimatti, A. and M. Roveri (2000). Conforman-
t planning via symbolic model checking.
Journal of Artificial Intelligence Research
13, 305–338.

Clarke, E. M., O. Grumberg, M. Minea and
D. Peled (1998). State space reduction using
partial order techniques. International Jour-
nal on Software Tools for Technology Transfer
2, 279–287.

Clarke, E., O. Grumberg and D. Peled (1999).
Model checking. MIT Press.

Console, L., C. Picardi and M. Ribaudo (2000).
Diagnosis and diagnosability using PEPA. In:
ECAI’2000. pp. 131–135.

Cordier, M.-O. and C. Largouët (2001). Us-
ing model-checking techniques for diagnosing
discrete-event systems. In: DX’2001. pp. 39–
46.

Cordier, M.-O. and S. Thiébaux (1994). Event-
based diagnosis for evolutive systems. In:
DX’1994. pp. 64–69.

Marchand, H. and L. Rozé (2002). Diagnostic de
pannes sur des systèmes événements discret-
s : une approche à base de modèles symbol-
iques. In: RFIA’2002. pp. 191–200.

McDermott, D. (1987). A critique of pure reason.
Computational Intelligence 3(3), 151–237.

Peled, D. (1993). All from one, one for all: on mod-
el checking using representatives. In: CAV’93.
pp. 409–423.

Pencolé, Y. (2002). Diagnostic décentralisé de sys-
tèmes à événements discrets : application aux
réseaux de télécommunications. PhD thesis.
Université de Rennes 1.

