
HAL Id: inria-00000616
https://hal.inria.fr/inria-00000616

Submitted on 10 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power-Aware Real-Time Scheduling on Identical
Multiprocessor Platforms

Nicolas Navet, Joël Goossens, Olivier Zendra

To cite this version:
Nicolas Navet, Joël Goossens, Olivier Zendra. Power-Aware Real-Time Scheduling on Identical Mul-
tiprocessor Platforms. [Intern report] 2005, pp.8. �inria-00000616�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50478524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000616
https://hal.archives-ouvertes.fr


Power-Aware Real-Time Scheduling on

Identical Multiprocessor Platforms

November 3, 2005

1 Introduction

Context of the study. Energy consumption and battery lifetime are nowadays ma-
jor constraints in the design of mobile embedded systems. Amongst all hardware
and software techniques aimed at reducing energy consumption, supply voltage
reduction, and hence reduction of CPU speed, is particularly effective. This is
because CPU requires a large amount of energy (e.g., 30W at maximal frequency
for an Intel P4 Mobile 1.8GHz [6]) and the energy consumption of the processor is
usually at least quadratic in the speed of the processor (see §[6] for more details).
The aim is thus to minimize the processor frequency as much as possible while
satisfying the performance constraints of the system.

Many power-constrained embedded systems are built upon multiprocessor
platforms because of high-computational requirements and because multiprocess-
ing often significantly simplifies the design. As pointed out in [11] and [3], another
advantage is that multiprocessor systems are theoritically more energy efficient
than equally powerful uniprocessor platforms because raising the frequency of
a single processor results in a multiplicative increase of the consumption while
adding processors leads to an additive increase.

Problem definition. In the following, we consider the problem of minimizing the
energy consumption needed for executing a set of real-time tasks scheduled on a
fixed number of identical processors. The scheduling is preemptive and follows the
global EDF policy. “Global” scheduling algorithms, on the contrary to partitioned
algorithms, allows different instances of the same task (also called jobs or processes)
to be executed upon different processors. Each process can start its execution on
any processor and may migrate at run-time from one processor to another if it gets
preempted by smaller-deadline processes.

We first tackle the problem of choosing the smallest admissible processor fre-
quency for the set of CPUs such that all deadlines will be met considering the
worst-case workload. The procedure is performed off-line and provides a static
result in the sense that the computed speed does not change over time. Such a static
solution is necessary, however, due to the discrepancy between Worst-Case Exe-
cution Times (WCET) and Actual-Case Execution Times (ACET), it usually leads
to very conservative results. In a second step, we thus propose an on-line “slack
reclaiming” scheme that monitors task executions and take advantage of unused
CPU time to further reduce frequency.

Existing work. There has been a large number of researches conducted on unipro-
cessor energy-aware scheduling but much less for the multiprocessor case where

1



low-power scheduling problems are often NP-hard when the actual applicative
constraints are taken into account (see [4] for a starting point). Among the most
interesting studies, one can cite [3] where the authors address the central question
of choosing the optimal number of processors1. In [4], the authors tackle the case
where tasks share a common deadline and propose approximation algorithms with
bounded worst-case performances. A study particularly relevant to the settings of
this paper is due to Zhu et al. in [13] where the authors propose “slack reclaiming”
strategies for the non-preemptive scheduling of a set of dependent/independent
frame-based tasks (i.e. all tasks ready at time 0 and sharing a common deadline).

A large number of such “slack reclaiming” approaches have been developed
over the years for the uniprocessor case. A first class of techniques [7, 9], known as
“compiler-assisted scheduling”, divides tasks into sections for which the WCET is
known and the processor speed for the rest of the task is re-computed at the end of
each section according to the difference between the WCET and the time that was
actually needed to execute the task. These algorithms belong to the class of intra-
task Dynamic Voltage Scaling (DVS) algorithm [9]. Other strategies dynamically
collect the unused computation time at the end of each task and share it among
the remaining active tasks (i.e. inter-task DVS). Examples of algorithms following
this “reclaiming” approach, include the ones proposed in [10, 2, 8, 12, 1]. Some
reclaiming algorithms even anticipate the early completion of tasks for further
reducing the CPU speed [8, 2, 1], some having different levels of “aggressiveness” [2,
1].

Contribution of the paper. On the contrary to [3], we study the case where
the number of processors is already fixed. This constraint can be imposed by
the availability of hardware components, by design considerations not related
to power-consumption, or it corresponds to the case, frequently encountered in
practice, where the characteristic of the set of tasks is unknown at the time when
the number of processors is chosen.

First Contribution : to be filled later
The second contribution of our paper is a slack reclaiming algorithm, which,

to our best knowledge, is the first of its type for the global preemptive scheduling
problem on multiprocessor platforms. This contribution can be considered as
an extension to the multiprocessor case of the early proposal of Shin and Shoi
in [10], which is usually refered to as “One Task Extension” (OTE). It is proven in
the following that our on-line proposal does not jeopardize the feasibility of the
system.

Organization of the paper.

2 System model

We assume a platform made of a known number of identical processors upon
which a set of real-time tasks is scheduled. The tasks are recurrent sporadic: each
task generates an infinite number of successive instances, or jobs, and there is a
minimum interarrival time Ti between two successive instances of the same task
τi. The very first instance a task τi can be released anywhere after the origin of time
and the release time of this first instance is denoted by Ri. The WCET of each task
is Ci and the real-time constraint is that each instance must be fully executed by its

deadline, that is Di units of time after the release of the instance.

1Ils doivent donc nécessairement trouver une vitesse et évaluer la conso - il faudra se positionner
par rapport à ce papier..

2



3 Off-line speed determination

In the periodic model of hard real-time tasks, a task τi = (Ci,Ti) is characterized
by two parameters – an execution requirement Ci and a period Ti – with the
interpretation that the task generates a job at each integer multiple of Ti, and each
such job has an execution requirement of Ci execution units, and must complete by
a deadline equal to the next integer multiple of Ti. We assume that preemption is
permitted – an executing job may be interrupted, and its execution resumed later,
with no loss or penalty. A periodic task system consists of several independent such
periodic tasks that are to execute on a specified preemptive processor architecture.
Let τ = {τ1, τ2, . . . , τn} denote a periodic task system. For each task τi, define its

utilization Ui to be the ratio of τi’s execution requirement to its period: Ui
def
= Ci/Ti.

We define the utilization Usum(τ) of periodic task system τ to be the sum of the

utilizations of all tasks in τ: Usum(τ)
def
=
∑

τi∈τ
Ui. Furthermore, we define the

maximum utilization Umax(τ) of periodic task system τ to be the largest utilization

of any task in τ: Umax(τ)
def
= maxτi∈τUi.

We consider in this work identical multiprocessor platforms, multiprocessor
machines in which all the processors are identical and have a speed (or a computing
capacity) of s with the interpretation that a job that executes on a processor of speed
s for t time units completes s × t units of execution. A processor of computing
capacity s is called a s-processor in the following. Notice that the task’s computing
requirements (C′

i
s) are expressed by definition for a 1-processor.

Off-line processor speed determination is the process of determining, during the
conception of the real-time application system, the lowest (if any) processor speed s
in order to schedule the periodic task set τupon a identical multiprocessor platform
composed by m s-processors.

We shall use the following result from [5], which relates feasibility upon (non-
identical) multiprocessor platforms to EDF-feasibility upon identical multiproces-
sors.

Theorem 1 (Theorem 5 from [5]) Let I denote a hard-real time instance of jobs, which
is feasible on a multiprocessor platform with total computing capacity Ssum in which the
fastest processor has a computing capacity Smax. Instance I is scheduled to always meet all
deadlines on m processors each of computing capacity s by EDF, provided

Ssum ≤ m · s − (m − 1)Smax (1)

We consider in this work the scheduling of sporadic tasks, the instance I is
generated by a sporadic task τ, moreover we know that τ is feasible upon a (non-
identical) multiprocessor platform with the total computing capacity be at least
Usum, and the fastest processor be of speed at least Umax. Consequently, from
Equation 1, we can derive an expression for the minimum speed in terms of the
number of processors m,UsumandUmax

s ≥ Usum + (m − 1)Umax (2)

3.1 Algorithm EDF(k)

Following the idea used in [5], but adapted for our off-line speed determination
where the number of processors is fixed, we shall present an improvement on the
speed needed in order to schedule a periodic task set.

3



Using pure EDF is not necessary mandatory nor the best scheduling rule in or-
der to minimizes the static processor speed. In particular if Umax is large, based on
Equation 2 the corresponding speed will be large as well. The idea is to adapt the
scheduling algorithm, and instead of using pure EDF, using a semi-partioning ap-
proach. Indeed, we can often schedule the periodic task system τ on less powerful
platform than the speed Usum + (m − 1)Umax.

Algorithm EDF(k) assigns priorities to jobs of tasks in τ according to the following
rule:

For all i < k, τi’s jobs are assigned highest priority (ties broken arbitrarily) — this
is trivially achieved within an EDF implementation by setting all deadlines
of τi equal to −∞.

For all i ≥ k, τi’s jobs are assigned priorities according to EDF.

That is, Algorithm EDF(k) assigns highest priority to jobs generated by the k − 1
tasks in τ that have highest utilizations, and assigns priorities according to deadline
to jobs generated by all other tasks in τ. (Thus, “pure” EDF is EDF(1).)

We introduce the notationτ(i) to refer to the task system comprised of the (n−i+1)
minimum-utilization tasks in τ:

τ(i) def
= {τi, τi+1, . . . , τn} .

(According to this notation, τ ≡ τ(1).)
From [5], proof of Theorem 8 we get:

Theorem 2 Periodic task system τ will be scheduled to meet all deadlines on m s-speed
processors by Algorithm EDF(k) provided

s = max{Umax(τ),Usum(τ(k)) + (m − k)Umax(τ(k))} (3)

Corollary 1 Periodic task system τ will be scheduled to meet all deadlines on m

smin(τ)
def
=

n

min
k=1

{

max{Umax,Usum(τ(k)) + (m − k)Umax(τ(k))}
}

(4)

smin(τ)-capacity processors by EDF(ℓ) (ℓ corresponds to the semi-partioning which requires
m smin(τ)-processors).

Example 1 Consider a task system τ comprised of five tasks:

τ = {(9, 10), (14, 19), (1, 3), (2, 7), (1, 5)};

for this system, u1 = 0.9, u2 = 14/19 ≈ 0.737, u3 = 1/3, u4 = 2/7 ≈ 0.286, and u5 = 0.2;
Usum(τ) consequently equals ≈ 2.457.

Suppose we have to schedule τ on 3 processors, according to Equation 2 the minimal
speed is 2.457+2·0.9

3 = 1.41 but using EDF(2) from Equation 3, we know that the processor

speed is max{0.9, 2.457−0.9+1·0,737
2 = 1.147.

4 On-line speed reduction : Multiprocessor One Task

Extension

Open questions.

4



• do we allow non synchronous system (Ri , 0) ? No problem but the static
solution must be able to cope with it.

• shutdown if idle.

• does the heuristic actually requires identical processors ?

• two cases : vitesses différentes ou pas

• attention Ck,nmust be defined as a number of processor cycles

In this section, we present a low-complexity on-line algorithm that aims to fur-
ther reduce the frequencies of the CPUs by performing “local” adjustments, when
it is safe to go beyond the Minimum Required Speed (MRS) computed in Sec-
tion 3. In particular, this technique takes advantage of early task completions
(i.e. WCET>ACET) and uses this “slack time” to decrease the CPU speeds for the
pending tasks.

This problem has been extensively studied in the uniprocessor case (see, for
instance, [10, 2, 8, 1]) and solutions that perform close to the optimal have been
devised [1]. In the multiprocessor case, the problem is particularly intricate because
it is very difficult to predict at run-time how a change in the frequency of a CPU will
affect feasibility. An increase in the frequency might even lead a feasible system
to become unfeasible \CITE{Joel-processor-anomaly}. A nice solution has been
presented for the multiprocessor case in [13] but it is targeted to a frame-based
tasks model in the non-preemptive case and not for the preemptive scheduling of
sporadic tasks, which is the context of our paper.

We term our proposal MOTE for Multiprocessor One Task Extension since it is
a mutiprocessor version of the technique proposed in [10] and usually refered to
as OTE. The idea is simple: the frequency of a CPU can safely be reduced below
the minimum required speed (MRS, see Section 3) during the execution of a job if
the reduced speed does not change anything w.r.t. the schedule at the MRS for the
subsequent jobs scheduled on that CPU. More precisely, subsequent jobs will not
be delayed by more higher-priority workload than under MRS.

4.1 Notations

One denotes by Ek,n the actual end-of-execution time of τk,n, the nth instance of
task τk, Ak,n the release time of τk,n and Bk,n the actual time at which, for the first
time, τk,n is granted a CPU. The ith out of the m CPUs of the system is denoted by
Pi. The ready queue, denoted ready-Q, holds all the pending jobs (i.e. ready to
be executed but waiting for a CPU) sorted according to the EDF rule where ties
are broken according to an arbitrary rule. Another queue, denoted NextArrival-Q,
stores, sorted by increasing release dates, the set of upcoming jobs that will be
released over a time period at least equal to the maximum relative deadline of all
tasks.

The functionΠ(t1, t2) ∈ Z indicates the minimum number of unused processors
at time t2 estimated at time t1 ≤ t2. By convention, Π(t1, t2) returns minus the
number of tasks waiting in the ready-Q if no processor is available at time t2. Π(t1, t2)
is defined to be left continuous in its second variable: limǫ→0,ǫ>0Π(t1,Bk,n − ǫ) =
Π(t1,Bk,n). Since the scheduling is non-idling, it should be noted that ifΠ(t1, t

+
2 ) > 0

there cannot be one or several pending jobs at time t2. Figure 1 shows an example
of the evolution of Π(Ak,n, t2), that is the estimation made at the arrival time of
instance τk,n of the minimum number of unused processors in the future.

5



−1

−2

0

1

2

3

t2
Dk,nDi, jAi, jAk,n

Π(Ak,n, t2)

Figure 1: Evolution of Π(Ak,n, t2) over time on a 3 processor system. The amount
of available processors is lowered by one after each job arrival and increased by
one at each deadline since the system feasibility ensures that the corresponding job
will be finished.

4.2 MOTE scheme

Under global EDF, since the priorities of the jobs are constant over time, the job
executed on a CPU can only change upon the end-of-execution of a job or the
release of a job. In our scheme, the speed reduction holds for the whole execution
of a job and is decided when the job is allocated to a CPU, for the first time (i.e. at
time Bk,n for τk,n) or when it resumes after being preempted. Upon its release, a
job migrates from the NextArrival-Q to the ready-Q if it cannot obtain a processor
(i.e. all processors are used and the job is of lower priority). We do not make
any assumptions on the CPU allocation rule when several CPUs are available for
a single job. For instance, free CPUs can be granted according to the rule “smaller
CPU index first”.

4.2.1 Principle

When a job τk,n is to be allocated to a CPU i, at a time t which is either its arrival or
the end-of-execution of a higher priority job, one conservatively estimates the first
point in time at which an upcoming job may not find any free CPU. This point in
time is tnext = min{t1 ≥ t |Π(t, t1) ≤ 0}.

Since it will not induced any additional interferences between jobs, speed for
τk,n can be safely reduced in such a way as τk,n finishes at min {Dk,n, tnext} if the
corresponding speed is lower than MRS. Let sk,n denotes the processor speed for

τk,n, one has sk,n = min(MRS,
Ck,n

min {Dk,n ,tnext}
). The evaluation of Π(Ak,n, t) can be done

with the knowledge of the deadlines of the jobs currently under execution and by
sweeping the NextArrival-Q and ready-Q with a running time linear in the size of
the queues (see Figure 1 for an example).

4.2.2 Algorithmic description

There are two situations where the decision to reduce or not the CPU speed for a
job τk,n can be taken:

1. upon its release at time Ak,n ; three cases arise:

(a) Π(Ak,n,Ak,n) ≥ 2 : the job is allocated to any available CPUs, speed may
be reduced according to §4.2.1.

(b) Π(Ak,n,Ak,n) ≥ 1 : the job is allocated to the single available CPU, speed
may be reduced according to §4.2.1.

6



(c) Π(Ak,n,Ak,n) ≤ 0 : the EDF rule applies, τk,n either preempts one of the
jobs currently under execution or is inserted in the ready-Q. No speed
reduction is possible at that point in time.

2. job τk,n is at the head of the ready-Q and at time Ei, j, at least one job has just
finished to be executed, 2 cases arise:

(a) Π(Ei, j,Ei, j) ≥ 2 : the job is allocated to any available CPUs, speed may be
reduced according to §4.2.1.

(b) Π(Ei, j,Ei, j) ≥ 1 : the job is allocated to the single available CPU, speed
may be reduced according to §4.2.1.

It worth noting that a job whose speed has been changed upon its arrival (case
1) will not be preempted in the future and thus will not be stored in the ready-Q
before its end of execution. Furthermore, a job can go through case 2 only once
since it will not preempted again. The speed of a job in situation 1.(c) at its arrival
can possibly be reduced below MRS in the future when the job is at the head of the
ready-Q.

5 Perspective

1. Intuitivement, la règle d’allocation Round-Robin des proc doit faire mieux
que “smaller CPU index first” - à voir sur des simulations ..

2. On se situe a un instant Ak,n, on peut faire mieux en assignant les n prochains
jobs dans la file NextArrival à des processeurs particuliers. Il y a des morceaux
de temps CPU libre et il faut faire rentrer des jobs dedans .. c’est un pb de bin
packing, il existe des heuristiques en-ligne à performances garanties (best-fit,
first-fit, ..) .. sort certainement du cadre de ce papier.

6 Experiments

References

[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Power-aware schedul-
ing for periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600,
2004.

[2] H Aydin, Melhem R., D. Mossè, and Mejia-Alvarez P. Dynamic and agressive
scheduling techniques for power aware real-time systems. In 22th Real-Time
Systems Symposium, pages 95–105, 2001.

[3] S. Baruah and J. Anderson. Energy-aware implementation of hard-real-time
systems upon multiprocessor platform. In Proceedings of the ISCA 16th Interna-
tional Conference on Parallel and Distributed Computing Systems, pages 430–435,
August 2003.

[4] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang, and T.-W. Kuo.
Multiprocessor energy-efficient scheduling with task migration considera-
tions. In ECRTS, pages 101–108, 2004.

[5] Joel Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of
periodic task systems on uniform multiprocessors. Real Time Systems, 25:187–
205, 2003.

7



[6] F. Gruian. Energy-Centric Scheduling for Real-Time Systems. PhD thesis, Lund
Institute of Technology, 2002.

[7] D. Mossè, H Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic
power-aware scheduling for real-time applications. In Workshop on Compiler
and Operating Systems for Low-Power, 2000.

[8] P. Pillai and K.G.Shin. Real-Time Dynamic Voltage Scaling for Low Powered
Embedded Systems . Operating Systems Review, 35:89–102, October 2001.

[9] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy hard
real-time applications. IEEE Design & Test of Computers, 18(2), 2001.

[10] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard
real-time systems. In Design Automation Conference, pages 134–139, 1999.

[11] W. Wolf. Computers as Components: Principles of Embedded Computer Systems.
Morgan Kaufmann, 2000. 155860541X.

[12] F. Zhang and S.T. Chanson. Processor voltage scheduling for real-time tasks
with non-preemptible sections. In 23th Real-Time Systems Symposium, pages
235–245, 2002.

[13] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01), page 84,
Washington, DC, USA, 2001. IEEE Computer Society.

8


