
HAL Id: inria-00000641
https://hal.inria.fr/inria-00000641

Submitted on 10 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time system verification techniques based on
abstraction/deduction and model checking

Eunyoung Kang

To cite this version:
Eunyoung Kang. Real-Time system verification techniques based on abstraction/deduction and model
checking. Doctoral Symposium of the Fifth International Conference on Integrated Formal Methods
- IFM’2005, Judi Romijn, Nov 2005, Eindhoven/The Netherlands. �inria-00000641�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50478065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000641
https://hal.archives-ouvertes.fr


Real-time system verification techniques based
on abstraction/deduction and model checking

EunYoung Kang

LORIA-INRIA, France
Technical University of Delft, The Netherlands

Eun-Young.Kang@loria.fr

Abstract. Our research focuses on verification techniques for real-time
systems based on predicate abstractions. These techniques aim to com-
bine abstract interpretation, model checking, and theorem proving in or-
der to obtain a powerful and highly automatic verification environment
for real-time systems. One drawback of current real-time model checking
approaches is the limited size of the systems that can be analyzed. For
the computation of finite abstractions in the way of infinite-state sys-
tems analysis, we propose an Iterative-Abstract-Refinement algorithm.
Using our algorithm, we can reduce the aforementioned drawbacks as-
sociated with the application of real-time model checking such as the
limited applicability due to state space explosion characteristics

1 Introduction

The automatic verification problem for finite-state real-time systems has been
considered and solved [1, 2, 16]. In many cases, theoretically optimal algorithms
are known [4, 18]. Unfortunately, even if these algorithms are fully automatic,
they are confronted with the state-explosion problem. They are typically expo-
nential in the number and maximum values of clocks.

On the other hand, deductive techniques can in principle be used to verify
infinite-state systems, based on suitable sets of axioms and inference rules. Al-
though they are supported by theorem provers and interactive proof assistants,
their use requires considerable expertise and tedious user interaction.

Abstract interpretation [8] provides a different approach to computing finite-
state abstractions. For instance, predicate abstraction [10, 17] is a well known
approach; given a transition system and a finite set of predicates, this method
determines a finite abstraction, where each state of the abstract state space is a
truth assignment to the abstraction predicates.

Model checking and abstraction/deductive techniques are therefore comple-
mentary. We propose an efficient scheme by combinations of those approaches
that should give rise to powerful verification environments. For example, a theo-
rem prover can be used to verify that a finite-state model is a correct abstraction
of a given system, and properties of that finite-state abstraction can then be es-
tablished using model checking. It relies on the fact that most properties can
be shown correct without the need to maintain precise timing information for



the system. A complex set of timed states can be safely abstracted by a simpler
(abstract) one.

In general, the relationship between concrete and abstract models that un-
derlies abstract interpretation is described by a Galois connection. The abstract
domain is that Boolean lattice whose atoms are the set of predicates true or
false of a set of states in a concrete model. The model obtained by abstraction
w.r.t. this lattice exhibits at least behaviours of the concrete system; it may also
include some bahaviours that have no counterpart in the concrete system.

The idea is to reduce the number of states of a model by abstracting away
behaviours not essential to the verification. The genetic techniques are known
as incremental abstraction refinement [6] and counterexample-guided abstrac-
tion refinement [7]. We have studied and partially formalised a variant that
combines several techniques [7, 6], with some modifications. Abstraction can be
constructed manually to exploit the structure of the model under consideration.

The idea is to perform an initial over-approximating abstraction of the model
and then check for two requirements: (1)-the conformance between an abstract
model and its concrete model, and (2)-the required property. If the abstract
model conforms to its concrete model and the properties of interest can be
successfully verified (or a positive result) over the abstract model, they also hold
of the concrete system as well.

Otherwise, either the abstract model is not the correct representation of its
concrete model or a negative result may be spurious (caused by extra states
added during the over-approximation). In this case, we iteratively concretize (or
refine) the abstract model in order to construct stronger invariants and rule out
some of their extra behaviours until a positive or true negative result is obtain.
We call such a concretization process an abstraction-refinement, and we call the
model resulting from the abstraction-refinement a complete model

Our idea for advances in the size of systems that can be analyzed by using
several abstraction methods is not the first. A comparison with similar work on
abstract interpretations, approximations for real-time systems [9] and predicate
abstractions appears in the section 3.

2 Approach and proposed solution

We have proposed a tool supported methodology based on the combination of
abstract/deductive and real-time model checking techniques. In order to make
our approach more concrete, we present one algorithm, called Iterative-abstract-
refinement algorithm (IRA) to verify a rich class of safety and liveness properties
of a timed system based on computing a finite abstraction of the system by succ
essive abstraction-refinement.

Figure 1 shows models over an abstract, a complete, and a concrete domain.
The abstract model shown in Fig.1.(a) cannot guarantee whether the abstract
model-(a) is able to verify given properties and preserve every possible behaviour
of a concrete model-(c). The model of Fig.1.(b) has been obtained by abstraction-
refinement ; it is complete for verifying the properties of the concrete model-(c).



2

3

1

0

real (infinite) domain(b) (c)

complete model

complete domain

concrete model

(a) abstract domain

abstracted model

abstract
interpretation

refinement of
abstraction

concretizsation
abstraction

interpretation
abstract

refinement of
abstraction

backward process

forward process

forward/backward process

Fig. 1. Abstract, complete, and concrete models

We expect to obtain a complete model-(b) from an abstract model-(a) using
IRA.

In this paper, we will use eXtended Timed automata Graphs [3] as the for-
malism to represent (concrete) timed system-(c), and Predicate Diagrams for
Timed systems [14] as the way of presenting predicate abstraction for XTG.

The input to IRA consists of three parameters; the XTG representing the
concrete system, the property to be verified, and a finite set of predicates to be
used for refinements. For the sake of efficiency we require predicates (Boolean
expressions) over a set of configurations of XTG that are constraints, invariants,
guards, locations and transitions of XTG.

Our methodology is based on abstraction-refinement framework. IRA has
two (forward/backward) processes. An initial abstraction PDT can be obtained
from the XTG by a backward step. This backward step (process) is performed
by selecting a set of XTG configurations and considering them as predicates of
PDT. Starting from the initial PDT, IRA iterates forward process until PDT is
complete:

Backward process: direction (c) to (a) A trivial and potentially incomplete
PDT is extracted from XTG by Boolean abstraction. Its atoms are the sub-
set of given predicates over a set of XTG configurations and properties of
interest as well.

Forward process: direction (a) to (b) IRA picks a PDT and – if the PDT
appears to be complete – infers successful verification and preservation, or
– if the PDT is not complete – enforces completeness by two operations: a
splitting operation and an excluding operation

1. A splitting operation is done while IRA checks correctness of preservation in
the way of conformance checking between a PDT and XTG.

– If IRA fails to prove conformance then IRA does splitting the PDT w.r.t
predicates in order to enrich the PDT and also to add details in the PDT.



success?
spurious

CE ?

N

prove
proof

obligations

conformance
checking

conform ?

completeness checking

model

checkingto
verify

property

Y

analyse
the CE

N

Y
done

XTG

generate

initial

PDT

N

excluding operation

splitting operation

PDT refine the

Y

backward
process

forward
process

Fig. 2. Overview of IRA

– During the operation, a set of proof obligations (a number of verification
conditions expressed in first-order logic) are proved in order to eliminate
extra duplicated relations (paths) among PDTs caused by splitting. This
is continued until the PDT conforms to XTG.

2. An excluding operation is done after model checking (or after conformance
checking).
– If we limit ourselves to univeral properties, then if a property fails in the

PDT we can generate a counterexample trace in the PDT and attempt
to find a corresponding concrete trace in XTG.

– If one exists then the property is false in XTG and the verification fails
(true negative result is obtain). Otherwise the abstract counterexample
is spurious and abstraction is too coarse so we refine it by excluding
some abstracted bogus transition-relations that are not present in XTG
(found by analysing the counterexample).

– We then recheck the property. This is continued until either the property
is verified or a concrete conterexample found.

Figure 2 shows the overall framework. The above approach is tested in [14] and
partially validated. The main contribution up to now is that we have identified a
suitable format that serves as an interface between deductive and model checking
techniques, intended for the verification of real-time systems. We also have es-
tablished a set of verification conditions that are sufficient to prove conformance
between PDT and XTG.

However, it still lacks automation both in the computation of abstraction and
in identifying the predicates for splitting. Moreover, We have not fully validated
the above approach, for instance, our experiment in [14] does not consider a
spurious counterexample trace upon failure during model checking procedure,
thus any counterexample-guided abstraction refinement method does not really
used during the execution of the abstraction-refinement procedure. Considering
such current weakpoints and comparing with other related work in the next
section, we will discuss future work at the end of this paper.



3 Related work

The techniques described in this paper can be viewed in an abstract interpre-
tation sense as a combination of abstraction, operation on an abstract domain
and concretization. Our refinement bears resemblance to refinement as in the B
method [6]. It allows one to enrich a model in a step by step approach. Refine-
ment provides a way to construct stronger invariants and also to add details in
a model. It is also used to transform an abstract model into a more concrete
version by modifying the state description.

Halbwachs [11] successfully applies abstract interpretation to synchronous
reactive systems as a way of state space exploration. But he does not consider
abstractions over control information (only data information is abstracted). Dill
and Wong-Toi [9] use both over- and under-approximations as abstractions, and
for finite-state systems, automatically determine whether there are reachable
violating sates. Their refinements are different than ours. They refine (over-
approximations only) the set of reachable states on paths to violating states.
However their techniques are limited to proving invariants.

Predicate abstraction has emerged as a fruitful basis for software verifica-
tion. Based on predicate abstraction, Namjoshi and Kurshan [15] compute finite
bisimulations of timed automata. However, currently it is unclear whether their
approach is applicable in practice.

Our basic assumption undeliying predicate abstraction is that for the verifica-
tion of a given property, the state space of an XTG can be partitioned into finitely
many equivalence classes. For example, the precise amount of time elapsed in a
transition does not really matter as long as the clock values are within certain
bounds and similarly, the precise values of the data can be abstracted with the
help of predicates that indicate characteristic properties.

Predicate abstraction also underlies tools such as slam [5] and blast [12]
that compute abstraction refinements on the basis of spurious counter-examples
provided by model checking. They refine abstractions in such a way that the
spurious counter-example is avoided.

In symbolic model checking for real-time systems, difference bound matri-
ces (DBM) are used to represent a set of state spaces (regions) over real vari-
ables. The representation we use is rather tailored to IRA approaches, since
it is able to efficiently deal with the two (splitting/excluding) operations re-
quired for such approaches. For those operations it is not necessary to have a
canonical model available. In IRA, the represented region is the consequence of
repeated abstraction-refinement by splitting PDT and excluding its abstracted
bogus transition-relations.

Our early work on combining tools for abstract interpretation and state space
exploration has been reported in [13]. However, extra steps used in the algorithm
proposed there often fail to significantly reduce the state space.



4 Further work

In IRA, the predicates are assumed to be given by the user, or they are extracted
syntactically from the system description. It is obviously difficult for us to find
the right set of predicates. We are investigating further heuristics to be able to
discover automatically all the needed predicates for the practical algorithm.

We abstract from the precise amount of time that may elapse in a time-
passing transition. Thus, we cannot easily verify properties that describe the
timing behavior of a system. We intend to study two possible solutions to this
problem, either by using a timed temporal logic (TLTL) or by introducing aux-
iliary clocks during verification. In any case, we would want to take advantage
of model checking tools for real-time systems.

Besides, we aim at reducing the number of verification conditions that users
have to discharge with the help of a theorem prover in order to establish confor-
mance. It will be interesting to restrict attention to specific classes of systems
that give rise to decidable proof obligations.

We are also interested in adding counterexample-guided abstraction refine-
ment method in slam and blast to IRA and validating a full scheme proposed
in Figure 2.

Although IRA for now shows that we have not reached the ideal combining al-
gorithm yet, it clearly helps in identifying opportunities for proper incorporation
of abstraction/deduction and model checking for real-time systems in practical
situations.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104:2–34, 1993.

2. R. Alur and D. Dill. The theory of timed automata. Theoretical Computer Science,
(126):183–235, 1994.

3. M. Ammerlaan, R. Lutje Spelberg, and W.J. Toetenel. XTG – an engineering
approach to modelling and analysis of real-time systems. In Proceedings of the
10th Euromicro Workshop on Real-Time Systems, pages 88–97. IEEE press, 1998.

4. Tobias Amnell and many others. Uppaal: Now, next, and future. In F. Cassez
et al., editor, Modeling and Verification of Parallel Processes, LNCS(2067):99-124.
Springer-Verlag, Berlin, 2001.

5. T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via
static analysis. In Principles of Programming Languages (POPL 2002):1–3, 2002.

6. Dominique Cansell and Dominique Mery. Tutorial on the event-based B method.
Technical report, LORIA-INRIA, 2004.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In 12th CAV00, LNCS(1855):154–169. Springer-Verlag,
2000.

8. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2-3):103–179, 1992.

9. D. Dill and H. Wong-Toi. Verification of real-time systems by successive over and
under approximation. In 7th CAV95, LNCS(939):409–422. Springer-Verlag, 1995.



10. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In 9th
CAV97, LNCS(1254):72–83. Springer-Verlag, 1997.

11. N. Halbwachs. Delay analysis in synchronous programs. In CAV93, LNCS(697).
Springer-Verlag, 1993.

12. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth McMillan.
Abstractions from proofs. In 31st POPL. ACM Press, 2004.

13. EunYoung Kang. Parametric analysis of real-time embedded systems with abstract
approximation interpretation. In 26th ICSE, 2004.

14. EunYoung Kang and Stephan Merz. Predicate diagrams for the verification of
real-time system. In 5th AVoCS05, ENTCS, 2005.

15. K. Namjoshi and R.Kurshan. Syntactic program transformations for automatic
abstraction. LNCS(1855):435–449, 2000.

16. S.Tripakis. The Formal Analysis of Timed Systems in practice. PhD thesis, Uni-
versity of Joseph Fourrier de Grenoble, 1998.

17. Y.Kesten and A.Pnueli. Modularization and abstraction: The keys to practical
formal verification. In 23th MFCS98, LNCS(1450):54-71. Springer-Verlag, 1998.

18. S. Yovine. Kronos: A verification tool for real-time systems. Springer International
Journal of Software Tools for Technology Transfer, 1997.


