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Abstract— This paper describes an original method to
compute the relative motion of an uncalibrated stereo rig
in urban environments from features lying on the road. The
extraction of significant reliable features on the road remains
the critical step of this method. We nevertheless detect them
according to the stereo constraints and a priori knowledge on
the scene. The motion between two frames of the stereo rig is
considered as rigid: the homography computation is enforced
by the redundancy of the feature locations in multiple views.
The method has been tested on video sequences recorded
from a test vehicle that was driven an urban environments.
Promising results from these experiments will be presented.

I. INTRODUCTION AND RELATED WORK

Urban environments appear difficult to model due to
their inherent complexity linked to their respective topo-
logical and dynamical characters. However, the common
static elements which structure the city streets are the road,
the kerbs and the vertical facades. They all contain planar
surfaces that we can easily model with a polygonal approx-
imation. The identification followed by the track of these
”natural” landmarks certainly authorizes the trajectography
of a vehicle in these complex environments.

Hence, in ”urban canyons” where the use of a GPS-
based system is unreliable, a vision system is needed as
the main localization sensor. Furthermore, this solution is
much cheaper as systems using dead-reckoning on long
ranges. Nevertheless, the basic drawback of a vision-based
system is the need for a clear view that depends on the
urban traffics.

Most of vision-based systems dedicated to mobile robots
can be splitted in two main methods: gradient-based and
feature-based approaches. The method generally depends
on the type of application (road or obstacles detection, lo-
cation of the vehicle between lanes, motion estimation), the
scene (unstructured environments, highways, city streets),
considering restrictive assumptions (translation motion,
static environment or restricted lanes) or the type of vision-
sensor (mono/stereo, camera, calibrated or not, black and
white or color images). It is commonly assumed that the
feature-based method is used in indoor environment or in
outdoor application where a model of the environment is
available.

Presently, we highlight few recent works which are
representative of the last results of mobile robotics in
outdoor applications. Stein and Shashua [1] use a direct
methods combined with a probability function to compute

the ego-motion of a vehicle relative to the road using a
single calibrated camera. They effectively obtain accurate
results with a night video where the road is illuminated by
the headlights of the car. Katsura et al. [2] segment in-line
the elements which structure the streets (buildings, trees
and sky) to cope with the illumination or seasonal changes
a mobile robot have to face when it autonomously moves
along a guided recording path.

Otherwise, Turchetto and Manduchi [3] use a stereo rig
to estimate the borders of an unstructured road, considering
a correlation field which is the scalar product of the
gradient of the elevation field and the brightness field. The
authors indeed assume that the both should be collinear
and have large values on a curb’s face near its edge.
Near to our method, Okutomi et al [4] locate the ground
plane by computing the image projective invariants using
a calibrated stereo vision.

Taylor et al. [5] estimate the pose and the orientation of
a stereo vision system by considering the lanes with real-
time constraints. Se and Bradly [6] describe 3 methods to
estimate the pose of cross-walks and stair-cases to perform
outdoor navigation. These elements have parallel stripes
with constant width which can be discriminate from their
edges or corners using projective tools as homography and
vanishing lines.

Our goal is the estimation of the trajectory of a vehicle
from the data we can extract from an on-bord uncalibrated
stereo rig. In a previous article [7], we detail the method
we use to extract features on the road plane and justify
our assumptions on the scene. The contribution of this
article is a method to compute the trajectography of the
cameras only taking account the locations of features in
multiple views and a priori knowledge of the scene. We
hence improve the estimated results by considering the
spatial and temporal constraints induced by the motion of
the stereo rig during the video sequence.

II. METHODOLOGY

We present in the sequel an overview of the complete
method. We detail in the next subsections the main steps:
the segmentation of the road plane, the homography com-
putation between two generic views, the super-homography
computation and the estimation of the cameras motion.
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Fig. 1. Schematic diagram of the whole algorithm. The first stage correspond to the segmentation of the road plane in images Lk and Rk . The
second stage extract coplanar FPs FPk by the computation of the homography Hk . The use of V Lk in this operation is not represented. The third
stage provides the left and right camera motion HLk and HRk according to the list of features we succeed to match between different views.

A. Assumptions and outlines

The city streets contain sets of planar surfaces which
can be used to estimate the motion of a mobile robot
by computing the homography between two frames. The
main difficulty also is to identify planes in the scene. If
the road can be locally considered as a plane, we hence
possess a reliable link between the frames all along the
video sequence. Like most of authors, we assume:

• the road has parallel borders or and may contain lines,
• the camera model is a pinhole camera model,
• the high frame rate of the video sequence allows small

motions of the characteristics features in images.

The estimation of the stereo rig motion between two
frames requires 3 main steps (see Fig.1). First, the extrac-
tion of the road plane in both images by taking account
parallel coplanar lines. The second step detects and identify
which are the coplanar feature points considering the stereo
constraints. The third step tracks and matches the coplanar
features between the consecutive frames to estimate the
motion of each camera.

B. Segmentation of the road plane in the image

Two sorts of features can be detected from images
of urban environments : edge lines and Feature Points,
we develop in II-C.1. Edge lines represent the fusion of
segments issued from the same contour after a Canny edge
detection. Due to the perspective projection, a subset of
parallel lines in the 3D scene projects onto the image
as a pencil of edge-lines called Vanishing Lines (VLs)
which converge to the same point, called Vanishing Point
(VP). The VP, which belong to the plane at infinity, is the
projection in the image plane of the common intersection
of 3D parallel lines.

Among all the VPs we can detect in the image, we only
focus on the Dominant Vanishing Point (DVP). The DVP
is the intersection of the 3D edge-lines parallel to the road
boundaries. In the following, VLs only represent the subset
of edge-lines converging to the DVP location.

1) Extraction of the Dominant Vanishing Point: By
definition, the DVP location X is invariant to the translation
motion of the camera. Thus, the variation of the DVP
coordinates in the image has two different origins : the
pan angle when the vehicle turns and the tilt angle when
the vehicle speeds up or brakes. The variation on the tilt
angle infers moreover to the representation in image of the
road plane normal Nk.

In normal conditions of traffic, we assume that the DVP
coordinates satisfy a stationary process in both images.
The Kalman filter we implement provides a prediction
X̃k of the DVPs locations at each new frame. A subset
of edge-lines is also selected in each image which either
converge to the DVP prediction or have similar character-
istics (orientation, gradient, location) than the VLs used
at the last iteration. The observation of Xk used in the
Kalman filter is then recursively computed by solving the
weighted least square system formed by the selected edge-
lines. The smoothness of the filtered representation of the
DVP coordinates in Fig.2 confirm our assumption.

2) Matching of coplanar Vanishing Lines: The matching
between VLs in two views splits into two steps. In the first
step, we try to find correspondences between VLs detected
at the last iteration with the current ones, according to the
fact that the variation between two consecutive images of
the same camera is really weak. We also segment the road
plane area with the extrema corresponding VLs.

In the second step, after the estimation of the current
homography Hk, we match the two stereo pencils of VLs
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Fig. 2. Chronogram of the left (red) and right (green) DVP coordinates
(uX at the top, vX at the bottom), along a video sequence recorded on
the harbor sequence which consists on an over-pass of a stopped vehicle
along a straight road.

considering the angle difference between the projection of
the left VLs with the right ones. Only the couples which
have a difference less than 5◦ and the same gradient are
considered as good matches.

At the first iteration (k = 1), we assume that we can
extract from L1 and R1 two sets of VLs converging to the
DVPs Xl1 and Xr1. We hence estimate the DVP locations
X1 as the coordinates which minimize the mean square
weighed distance between most of the edge-lines. The
method could be viewed as a Hough transform where the
DVP location is the intersection of most of VLs. We then
identify the correspondence between the VLs which formed
the two pencils of VLs using the invariance of the cross-
ratio.

C. Homography between two views

Two types of homography are estimated at each iteration.
The first one permit us to determine which are the features
lying on the road plane among all those are detected in
the stereo images. Indeed, only the features lying on the
road plane verify the planar homography Hk between the
stereo views. The second type of computation estimates the
motion of each camera HLk and HRk between two frames,
considering the coplanar features we have just extracted.

The use of a rigid stereo rig makes the identification of
coplanar features simplest. We indeed possess a prediction
of the estimated homography H̃k = Hk−1 which ease the
matching operation and the rejection of outliers (see Fig 3).
The rigid motion between two cameras fixed on a vehicle
only depends on the pan/tilt rotation angles of the vehicle:

Hk−1 = Kr.[R − Tt.Nk−1

dk−1

].K−1

l

Hk = Kr.[R − Tt.Nk

dk

].K−1

l

with Kl,Kr matrix of intrinsic parameters of the left and
right cameras and Nt = [Nt, d] 3D coordinates of the π

plane normal, considering the center of the left camera
as the framework origin. R and T represent the rigid
transformation between the camera frames. The variation
of the 4th coordinate dk is not significant in our application
because the altitude of the left camera from the road plane
varies with the tilt angle which is less than 10 ◦.
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Fig. 3. We consider the homographies Hk−1 and Hk induced by the π

plane between the rigid stereo rig in frame (k−1) and k. Only the pan/tilt
rotation motion between the two orientations of the left camera infer to
these homographies estimations. This orientation is fully characterized by
the representation of the plane normal. The rotation motion between two
frames can hence be deduced from the variation between the normalized
plane normal Nk−1 and Nk .

1) The Feature Points: The computation of a homog-
raphy requires at least 4 independent coplanar features.
However, the linear dependency (that is the DVP) between
the VLs do not allows a homography computation using
only a pencil of corresponding VLs. We then extract with a
Harris detector the feature points (FPs) in the region of the
image considered as the road area. We only consider those
which have an appropriate Harris score [8] upper than an
experimentally threshold. This value of threshold allow the
detection of reliable FPs between images.

The main features we can detect on the road plane are
edges of road markers and their corners when they have
acute angles. The Harris filter sometimes detects few cracks
on the asphalt, corners of large variations of the pattern like
in the pedestrian crossing area or painted arrows.

Unfortunately, other features can be detected on the road
plane area: they generally represent obstacles lying on the
road plane which do not belong to the road plane. These
features have to be rejected before the computation of the
homographies.

2) Matching of the Feature Points: The matching of the
FPs is the crucial step of the whole algorithm. Indeed, we
search couples of corresponding FPs in two views consid-
ering a-priori knowledge on the scene. The relative motions
between the corresponding FPs are strongly constrained by
the plane:



1) the foreground of the image is generally free from
dynamic obstacles,

2) the stereo rig is rigid: the corresponding coplanar FPs
follow the same motion, whose we know a prediction
in image Hk,

3) in case of matching between two stereo images, if
the cameras have equivalent intrinsic parameters and
parallel image planes, then the relative motion is
mainly a lateral translation,

4) the distance between the coordinates of the same
FP in two consecutive images increases with the FP
ordinate. The DVP location looks stationary whereas
FPs on the bottom of images have relative motions
higher than 30 pixels.

We also establish a list of corresponding candidates for
each FP of the both images. We create a sparse matrix
Corr [nfp1, nfp2] which is fulfilled with the covariance
correlation between [30 ∗ 30] pixels regions, centered on
each couple of the list. We next reset to 0 each coeffi-
cient under a fixed threshold. Two FPs can be considered
as corresponding if their covariance correlation is upper
than 0.5 between two stereo images and 0.8 between
two consecutive images of the same camera. The pairs
of corresponding FPs are finally obtained by the SVD
decomposition of this appropriate correspondence strength
matrix, according to [9].
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Fig. 4. Left view of the stereo rig. The yellow FPs are detected in
the blue region of interest, limited by the matched VLs (orange dashed
lines) and a-priori knowledge. The coplanar FPs highlighted in red, as the
DVP (red cross), allows the stereo homography Hk . Most of FPs located
at an altitude lower than 20 cm from the road plane are rarely rejected
with the left/right homography computation. In this frame, there is not
enough true features lying on the road plane to constrained correctly the
homography computation although the prediction was satisfying. In the
same way, short cameras motion or short period of image acquisition do
not permit to distinguish direct features issued from dynamical obstacles
to real FPs.

Nevertheless, this operation provides unreliable results
on FPs in two cases: the discrimination between FPs is
ambiguous due to their proximity or their re-projection
distance is lower than the threshold condition like in Fig.4.
Therefore, the list of corresponding FPs is updating during

the step of homography computation.
3) Estimation of a homography: According to [6], the

homography computation requires VLs even if FPs are
detected on them to improve the robustness. Indeed, the
VLs constraint the plane motion in occluding parts. Nev-
ertheless, our method could not be associated to a basic
lane detector because we only assume the road has parallel
borders.

The couples of corresponding features lying on the road
plane have coordinates which satisfy the linear system
issued from the next two equations, where l,p respectively
represent the coordinates of a VL and a FP in two images:

l2 ∝ H
−t.l1 and p2 ∝ H.p1

The linear system is then composed of two distinct sub-
systems formed by the coordinates of the VLs and the
FPs. It is difficult to optimize the conditioning number
of the system matrix due to the two types of coordinates:
[cos(θ), sin(θ),−ρ]t for the VLs and [u, v, 1]t for the FPs.
We then estimate iteratively the homography considering
the match of VLs as right. We also reject the FPs which
do not lie on the road plane. According to II-B.2, as
soon as the coplanar FPs are identified, we verify the
correspondence between the two pencils of VLs.

We qualify the reliability of the homography computa-
tion by considering the variance of the distance between
projected FPs. If the variance is over the threshold

√
2.65.σ

with σ = 1 pixel, we re-estimate the homography with
a robust RANSAC (random sample consensus) algorithm.
The threshold of correspondence is also equal to

√
5.99.σ

with this estimator according to [10]. This method is also
used for the first iteration (k = 1) when no prediction of
H1 is available.

D. The super-collineation matrix

The computation of homographies depends on the copla-
nar features we achieve to detect. To improve the quality
of each estimation by rejecting some outliers, we introduce
spatial and temporal constraints on feature locations by
considering several views. The goal of the algorithm is
to estimate iteratively the ideal coordinates of the features
such as the homographies hence induced verify cross-
composition between different views.

1) The method: Malis and Cipolla [11] describe an
efficient method to impose the constraints between the
homographies computed from a sequence of views of
a planar structure. Taking into account multiple views
provides a set of constraints between the coordinates of
coplanar features in different views. Moreover, it minimizes
the effects of errors on the matching step and it reduces
numerical instability when the motion between two views
is not significant.

Such a method improves the consistence of the current
homographies (Hk,HLk,HRk) estimation. Nevertheless,
we also face a hard compromise between increasing the
distance between two views to reduce the numerical insta-
bility and keeping a significant number of correspondent
features to constraint the computations of homographies.



The method introduces a super-collineation matrix SHk

[3m ∗ 3m] which contains all the [3*3] homographies
between the m(m − 1) couples of different views. In our
case, we use the three stereo couples corresponding to the
frames (k − 2), (k − 1) and k, the number of images is
then m = 6. The authors demonstrate that rank(SHk) = 3
whatever m ≥ 3.

2) The Virtual Feature Points: Taking into account
the coplanar VLs characteristics in the SHk estimation
requires an adaptation to the FPs coordinates. We therefore
introduce the Virtual Feature Points (VFPs) to use the same
representation as the FPs. The VLs effectively do not verify
the same homography than the FPs. Furthermore, all the
VLs converge to their respective DVP, the constraints due
to the VLs locations are always applied when we use the
VFPs.

The VFPs are then issued from the intersections of the
coplanar pencil of VLs with a line lying on the road plane,
defined by two coplanar FPs whose the coordinates are
known in the m views. The global feature matrix F [3m,n]
is then composed of the coordinates of the FPs and the
VFPs in the m images with n = nFP + nV L.

3) Tracking of coplanar features over the sequence:
The 3 homography computations (Hk,HLk,HRk) provide 3
lists of correspondences between the features of the couples
of views. We then verify and identify the cross links to
fulfilled a dedicated structure where each coplanar feature
is labeling. We hence record principally the coordinates,
the number of the frame and its type (left or right image).
Nevertheless, if no correspondence between the left or right
images (Lk−1Lk or Rk−1Rk) makes the link between a
couple of features detected at the last frame with their new
locations in the current frame, the algorithm regards the
current couple of features as new.

4) Estimation of the super-collineation matrix: The
initialization of the (3 ∗ 3) homography of SH

1

k between
each couple of images is issued from the composition
of the previous estimation of homographies at the frame
k, k − 1, k − 2, e.g.:

SH
1

k(Lk, Rk−2) ∝ HLk.HLk−1.Hk−2

.
For q≥2, the estimation of the sub-matrix SH

q
k(Mr,Mc)

is computed from the homography between the coordinates
F

q
k of the n selected features in the images mr and mc:

F
q
k(Mr, :) ∝ SH

q
k(Mr,Mc).F

q
k(Mc, :)

with Mr = (3mr−2 : 3mr) and Mc = (3mc−2 : 3mc)
when {mr,mc} ∈ [1,m].

The algorithm copes even some feature coordinates are
unknown in few images. The iterative optimization algo-
rithm generally stops after 3 iterations unless the system
was ill-conditioned due to errors on feature matching or
the detected features do not constraint enough the homo-
graphies.

The sub-pixellic coordinates of the n selected features in
the Lk and Rk current images are respectively F

q+1

k (3m−

5 :3m−3, :) and F
q+1

k (3m−2 :3m, :) whereas the current
homographies (Hk,HLk,HRk) can be extracted from the
final estimation of SHk:

SHk =




I3 · · · · · · · · · · · · · · ·
· · · . . . · · · · · · · · · · · ·
...

...
...

. . .
...

...
· · · · · · HLk · · · I3 H

−1

k

· · · · · · · · · HRk Hk I3




E. Motion of the cameras

We have recorded a video sequence (see Fig.5) in the
harbor neighborhood of Antibes (France). The vehicle mo-
tion is straight with a change of lane to overtake a parked
car. The road appears structured. The speed was about 10
m/s and the frame rate was 25 Hz . The pinhole model
cameras are uncalibrated. We suppose in the following a
generic calibration matrix such that:

Kl = Kr =




1000 0 364
0 1000 266
0 0 1




We hence compute from each homography the extrinsic
matrix K

−1

2
.H.K1 to finally extract the rotation matrix R12,

the vectors associate to translation motion T12 and the
road normal N in the first view. We use a specific function
which provide the estimated parameters according to a
prediction of N. There is indeed two numerical solutions
to the extraction whose one is wrong.

The Fig.6 represents the evolution of the motion between
the two cameras of the stereo rig. The results are quite
stationary except during the frames 920 and 960 where the
detected features do not constraint enough the homography
computation. A filtering process certainly allows a constant
estimation.
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Fig. 6. Chronogram of the evolution of the rigid stereo rig parameters
over the sequence. Above: angles of rotation around the axis of left
camera. Middle: coordinates of the center of the right camera, the scale
factor d is considered equal to 1 m. Bottom: normalized coordinates of
the road normal, viewed from the left camera.



Fig. 5. Top-left, bottom-right, details of right view during the difficult part (900-990) of the sequence every 10 frames. The algorithm extracts on
the blue region of interest the coplanar VLs (red dashed lines) and FPs (yellow ’+’). The test sequence is a straight motion with an overtaking of a
parked vehicle.

The Fig. 7 shows the estimation of the right camera
motion between two consecutive frames along the se-
quence. The motion estimation remains noisy as expected
but we nevertheless retrieve the vehicle motion: it drives in
straighted lines to stop before the parked car, it overtakes
it and continue its normal cruise. In other hand, we stress
that the clear view obstruction due to the driving vehicle
has no critical effect on the motion estimation between the
frames 892 and 915.
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Fig. 7. Chronogram of the motion parameters between two consecutive
views of the right camera. Above: angles of rotation around the axis of
right camera. Middle: 3D translation coordinates of the center of the right
camera, the scale factor d is considered equal to 1 m. Bottom: normalized
coordinates of the road normal, viewed from the right camera.

III. CONCLUSION AND FUTURE WORKS

We present an original method to estimate the trajectog-
raphy of a stereo rig in the urban environments. We assume
the road as locally planar and detected ocomputationsn
it features (points and lines) considering the constraints
induced by the stereo vision and a-priori knowledge of
the scene. The camera motion is estimated between frames
considering only the coplanar features hence detected. The
homographies computation are improved by taking account
temporal and spatial constraints induced by the feature
locations in multiple views.

Our future work consists on filtering the motion data
considering the motion of the two cameras and next estab-
lish an on-line auto-calibration of the stereo rig to improve
the autonomy of the vehicle. In the peculiar environment
of the urban canyon, we certainly can extract some new
planes from the facades and hence estimate the intrinsic
parameters of the stereo rig.
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