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Abstract

This paper gives a comparison of two dif-
ferent systems that induce cardiac arrhyth-
mia rules by symbolic learning: Kardio and
Calicot. In particular, it proposes a de-
tailed methodology to compare them and
gives some results of this comparison.

Introduction

Coronary Care Units (CCU) were introduced in the
60’s in order to monitor the vital functions of patients
suffering a cardiac attack and, especially, to prevent,
detect and control lethal arrhythmias by therapeutic
actions. Cardiac arrhythmia detection and recogni-
tion have been studied in order to assist physicians
and trigger alarms when necessary. In this article, we
compare two systems that focus on this subject: Kar-
dio [1] and Calicot [2]. Both systems can induce car-
diac arrhythmia identification rules by symbolic learn-
ing. The aim of this paper is to give a methodology
to compare these two different systems by a specific
evaluation method that handle their differences while
preserving a valid, quantitative comparison. The first
part sketches the architectures and principles of the
two systems. The second part presents the compari-
son methodology and the obtained results. The last
part concludes on the positive features of each system
and their possible future.

1 Compared architectures

1.1 Presentation

This section does not give a detailed description of
each system architecture but points out their differ-
ences and similarities as shown in Figure 1. Further
details can be found in [1] for Kardio and in [2] for
Calicot.

The aim of Kardio is to diagnose cardiac arrhyth-
mias from ECG descriptions. To do so, it looks for
rules that describe all possible cardiac arrhythmias
(single or multiple) corresponding to a given symbolic
description of an ECG. Rule learning relies on a qual-
itative model of the heart that simulates the cardiac
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Figure 1: Architectures

electrical activity: over 2,400 heart disorders can be
related to over 140,000 ECG descriptions (see number
1, Fig.1). Then, using deductive and inductive infer-
ence techniques, simulations produced by the qualita-
tive model are automatically transformed into a set of
compressed prediction and diagnostic rules (number
3, Fig.1). The diagnostic rules can answer the ques-
tion “which heart disorders could be the source of a
given ECG feature?”. They can be used for a pre-
cise diagnosis only using a diagnoser (ie an abductive
method) and are difficult to compare with the expert
system-like rules of Calicot. Thus, we have decided to
focus on the prediction rules. They are causal rules of
the form :
P ⇒ (S1 ∨ S2 ∨ . . . ∨ Sn) where P is an arrhythmia
and S1, . . . Sn are selected ECG features of the form
Si ≡ (Si1

∧ Si2
. . . Sin

).

These rules are used to filter out non possible di-
agnosis: if a given ECG does not match the ECG
description, the arrhythmia P is eliminated as a pos-
sible diagnoses. Kardio has been able to induce rules
for 943 heart conduction defects from 5,240 ECG de-



scriptions.
The architecture of Calicot can be described in two

steps : the first one, on which we focus, is done off-line
(see Figure 1) and its aim is to build a set of high-level
symbolic characterizations of cardiac arrhythmias, di-
rectly from real ECGs [2]. The learning step (num-
ber 4, Fig.1) relies on inductive logic programming
(ILP) techniques. It makes use of learning examples
(number 5, Fig.1) which are either real signals (like
the labelled ECG signals from the MIT-BIH database
[6]) or signals obtained by simulating arrhythmias on
the Carmen cardiac model [5]. The second step is an
on-line step which is in charge of analyzing the signal
and identifying arrhythmias by matching the symbolic
representation of the signal to prestored characteriza-
tions.

1.2 Analysis

In Calicot, the qualitative description of the ECG is
computed from signal analysis methods. In contrast,
the qualitative description of the signal in Kardio is
directly given by the heart model (there is no signal
processing step). In Calicot, the qualitative language
is bounded by signal processing technologies because
a very precise description of each heart wave is very
difficult to obtain directly from a real signal. The lan-
guage used in Kardio could be, thanks to the model,
as rich and powerful as needed. For example, ambigu-
ities remain in distinguishing between a Left Bundle
Branch Block (LBBB) and a Right Bundle Branch
Block (RBBB) on a real signal (both arrhythmias
come from an intraventricular conduction disturbance
but the first one comes from the left bundle branch
and the second one from the right bundle branch).
Kardio avoids this problem by using attribute values
like wide-lbbb or wide-rbbb to describe the signal, even
if this refinement level is difficult to reach by signal
processing algorithms. We can then expect that the
discrimination power of Kardio is better than the dis-
crimination power of Calicot since Calicot cannot dis-
tinguish some arrhythmias.

Nevertheless, as explained in section 1.1, the final
aim of Calicot is to analyze the signal on-line in order
to identify arrhythmias by matching the symbolic rep-
resentation of the signal to prestored patterns. Conse-
quently, the qualitative language needs to fit what sig-
nal processing algorithms can currently achieve. Us-
ing Kardio rules for on-line analysis would meant to
use signal processing algorithms able to produce on-
line very detailed descriptions of the signal adapted
to Kardio language. However, even if signal process-
ing technologies are evolving very quickly, so precise
descriptions are unconceivable in the next few years
(especially under the noisy conditions which are often
associated with CCU or ambulatory recording).

In contrast, for the same reasons, the validation of
the Calicot rules can be done on real signals. Indeed,
it is easy to translate the Prolog rules induced by the
ILP module into chronicles [4] and, to compare the on-

line diagnosis results with labels provided by experts
annotations. For Kardio, the only way to validate
results is to ask an expert. We can then wonder if this
is reliable. Indeed, a human expert judges the rules
according to his own criteria and could not be able to
evaluate information coming from an unknown sensor.

Finally, the semantics of the rules of the two sys-
tems is different. To give a precise diagnosis, it is not
possible to use Kardio diagnostic rules without a di-
agnoser. However, the authors suggest to use their
prediction rules by modus tollens, and then, to filter
out the possible diagnoses by identifying that some
symptoms are absent in the ECG description. On the
contrary, Calicot induces associative rules which link
symptom patterns to disorders and can be directly
used for diagnosis by modus ponens.

2 Proposed comparison methodology
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Figure 2: Comparison methodology

Figure 2 shows the principles of the methodology.
To compare the two systems, we have selected a few
rules for common arrhythmias from Kardio and Cal-
icot : Sinus rhythm, LBBB and Mobitz rules. Each
rule is then transformed into a CRS chronicle[4].

Chronicle recognition consists in skimming the flow
of events coming from an observed process and de-
tecting the specific events that belong to a chronicle.
This process is similar to pattern-matching associated
with temporal constraint satisfaction. In this article,
chronicles are used to compare the detection capacity
of each system from a set of events produced directly
from real ECGs or from a cardiac model.

The next step is to translate Kardio prediction rules
into CRS chronicles. Since we are dealing with a sub-
set of Kardio knowledge, the closed world assumption
is not valid and we cannot use the predicate comple-
tion [3] to transform the prediction rules into rules
concluding positively on disorders. We have then de-
cided to transform Kardio prediction rules by taking a
weak version of the contrapositive. The resulting rule
(S1∨S2∨. . .∨Sn) ⇒ ¦P can be interpreted as follows:
“if (S1 ∨ S2 ∨ . . .∨ Sn) describes the ECG then P is a
possible disorder”. This implies that if an arrhythmia
is recognized, it does not mean that this arrhythmia



is the only possible diagnosis corresponding to a given
ECG. We can just assume that a non-recognized ar-
rhythmia is not a possible diagnosis.

The cardiac model used for the experiments is Car-
men. Carmen is a macroscopic-level semi-quantitative
cardiac model that is able to synthesize ECG signals
and generate a physiological interpretation by means
of ladder diagrams [5]. Different cardiac rhythm dis-
orders can be simulated by manually defining an ap-
propriate set of model parameters or by direct identi-
fication of the model parameters from real ECG sig-
nals. During a simulation, the model can also gen-
erate different symbolic representations of each syn-
thesized ECG wave, describing its instant of occur-
rence, its morphology and its relation with the pre-
ceding wave(s). These symbolic representations have
been constructed so as to be compatible with Kardio
and Calicot description languages. Figure 3 shows a
generated symbolic ECG in the Kardio and Calicot
description language. These events are the input of
CRS.

KARDIOCALICOT

4377 qrs[abnormal]
5208 qrs[abnormal]
5239 p_wave[normal]
6323 p_wave[abnormal]
6525 qrs[abnormal]
7408 p_wave[normal]
7618 qrs[abnormal]
8111 qrs[abnormal]
8493 p_wave[abnormal]

4377 qrs[wide_LBBB]
5208 qrs_ectopic[wide_LBBB]
5239 p_wave[normal]
6323 p_wave[abnormal]
6525 qrs[wide_LBBB]
7408 p_wave[normal]
7618 qrs[wide_LBBB]
8111 qrs_ectopic[wide_LBBB]
8493 p_wave[abnormal]

..... .....

Figure 3: Example of an ECG description for Calicot
and Kardio

The chronicle recognition results are then used to
evaluate the recognition performance of each system.
To cope with the differences between the semantics
of the rules of the two systems, we have decided to
count as a true positive recognition (TP) an arrhyth-
mia which is in the set of possible diagnoses and should
be recognized, as false negative (FN) an arrhythmia
which is not in the set whereas it should have been,
and as false positive (FP) an arrhythmia which is in
the set whereas it should not be. In the FP case, if
the arrhythmia which should be recognized is not one
of the three studied arrhythmias, it is exceptionally
count as a TP if the detected arrhythmia is the sinus
rhythm. Indeed, in Kardio rules, the sinus rhythm
can often be combined with other disorders and in
this case, it is still possible that the right arrhyth-
mia would have also been recognized. In practice,
the true negative recognitions (TN) are computed as
TN = Tot − TP + FP + FN where Tot is the total
amount of recognitions.

The criteria used for the comparison are the sensi-
tivity which gives the probability of correct classifica-
tion of a given observed rhythm, and the specificity,

that reflects the ability of the system to not propose
a particular rhythm class if the observed rhythm does
not belong to that class. They are respectively com-
puted by :
SENS = TP

TP+FN
, SPEC = TN

FP+TN
.

3 Results

Two experimentations were achieved and the results
are given in confusion matrices in Tables 1,2,3 and
4. The first experiment compares directly Kardio and
Calicot and, the second one compares Calicot with
a weakened Kardio. In each experiment, the matrix
rows represent the detection and the columns repre-
sent the annotation given by Carmen in the first ex-
periment and by the MIT database for the second one.
The word UK is used for “Unknown” arrhythmias ie
arrhythmias which are not considered in this paper
(for example rbbb or pvc). The word NR is used for
“non recognized” arrhythmias.

3.1 Kardio vs Calicot

In the first experiment, it was decided to leave the
Kardio language unchanged and to compare it directly
to Calicot. To do so, we need to use the same ECG
but with two different symbolic representations to fit
the two systems. Since we had no real ECG described
in Kardio language, we used Carmen (see section 2) to
produce different symbolic descriptions for the same
ECG (see Fig. 3). The synthesis is performed in three
steps:
Firstly, before starting the simulation, the cardiac
model is initialized. A set of model parameters, which
has been previously identified from real ECG signals
and represents a given cardiac pathology (LBBB or a
Mobitz rhythm), is loaded into Carmen.
Secondly, in order to generate different scenarii asso-
ciated with the same cardiac disorder during the sim-
ulation, a model driver algorithm modifies randomly
the following physiological model properties, every 4
seconds:

• Heart rate: from 40 to 190 beats per minute, us-
ing a uniformly distributed random variable.

• Atrio-ventricular conduction delay: a normally
distributed random variable is used to define
a conduction delay between 80 and 320 ms.
This delay is distributed throughout the different
atrio-ventricular structures of the model.

• Bundle branch conduction delay: the altered bun-
dle branch (left or right) is chosen randomly and
its conduction delay is defined with a normal dis-
tribution between 11 and 50 ms.

• Ectopic focus activation: an ectopic focus with
a uniform random discharge period (defined be-
tween 1200 and 2100 ms) and a randomly chosen
ventricular location is activated with probability
0.2.



Thirdly, at the end of the simulation, the internal sym-
bolic representation of each wave generated by the
model during the simulation, is translated into Cal-
icot or Kardio language.

The rules learned by the two systems are then trans-
formed into CRS chronicles. Examples of CRS chron-
icles for Kardio and Calicot are given in Figures 4 and
5. A comment is given after each event to give a brief
description of the meaning of the predicate or, the Pro-
log rule from which the chronicle is generated. We can
notice that only one chronicle is needed to recognize
an LBBB with Calicot whereas the chronicle shown in
Figure 5 is the first one of thirteen chronicles that de-
scribe the LBBB arrhythmia in Kardio. Indeed, Kar-
dio language is a lot more precise than that of Calicot.
For example, in Figure 5, we can see that the domi-
nant QRS should be wide lbbb and the ectopic QRS
should be whether wide lbbb or wide other whereas in
the Calicot rule shown in Figure 4, there is no dif-
ference between a dominant and an ectopic QRS, we
only know that the shape of the QRS wave should be
abnormal.

chronicle lbbb[]() {
occurs(0,0,p_wave[*],(start+1,R0-1))//no p_wave in [START,R0-1]
occurs(0,0,qrs[*], (start+1,R0-1))//no qrs in [START, R0-1]
event(qrs[?w0], R0) //(qrs( R0 ,abnormal, _ ),
?w0 in {abnormal}

occurs(0,0,p_wave[*],(R0+1,P1-1))//no p_wave in [R0+1, P1-1]
occurs(0,0,qrs[*], (R0+1,P1-1))//no qrs in [R0+1, P1-1]
event(p_wave[?w1], P1) //p_wav( P1 ,normal, R0 ),
?w1 in {normal}
R0 < P1

occurs(0,0,p_wave[*],(P1+1, R1-1))//no p_wave in [P1+1, R1-1]
occurs(0,0,qrs[*], (P1+1, R1-1))//no qrs in [P1+1, R1-1]
event(qrs[?w2], R1) //qrs( R1,abnormal, P1),
?w2 in {abnormal}

P1 < R1
R1 - P1 in normalpr1 //pr1( P1 , R1 ,normal)

end - start in nb_cycles1}

Figure 4: A CRS chronicle for Calicot corresponding
to the LBBB arrhythmia

The experiment results are given in Table 1 for
Kardio and Table 2 for Calicot. First, we can no-
tice that there are a lot of non recognized mobitz for
both systems. This comes from the arrhythmia an-
notations provided by Carmen. Indeed, Carmen gen-
erates events randomly. It could generate some rare
event patterns labeled as a mobitz (for example, four
consecutive p waves). However, since those patterns
are not very common in medicine, the corresponding
rules have not been induced by both systems and then,
these patterns are not recognized. This brings a lot
of false negative for the mobitz class. Moreover, Cal-
icot rules for mobitz are more precise than Kardio.
Indeed, it specifies that the p wave occurring in a mo-
bitz should be normal whereas Kardio does not spec-
ify anything on the shape of the p wave so the latter
has more recognitions for mobitz and his sensitivity

chronicle lbbb[]() {
occurs(0, 0,qrs[*], (start+1, R0-1)) //no qrs in [START, R0-1]
event(qrs[?w0], R0) //qrs(R0,_,wide_LBBB),
?w0 in {wide_LBBB}

occurs(0, 0,qrs[*], (R0+1, R01-1)) //no qrs in [R0+1, R01-1]
event(qrs_ectopic[X], R01) //qrs_ectopic(R01,R0,X),
R0 < R01

X in {wide_LBBB,wide_other}
occurs(0, 0,qrs[*], (R01+1, R1-1)) //no qrs in [R01+1, R1-1]
event(qrs[?w3], R1) //qrs(R1,_,wide_LBBB),
?w3 in {wide_LBBB}

R0 < R1
R1 - R0 in shortrr1 //rr1(R0, R1, short)

end - start in nb_cycles1}

Figure 5: A CRS chronicle for one of the Kardio rule
for LBBB

mobitz lbbb normal UK Total

mobitz 114 0 0 32 146
lbbb 0 20 0 0 20

normal 14 6 2765 0 2785
NR 909 3 0 0 912

Total 1037 29 2765 32 3863

Sensit 0.11 0.69 1 0
Specif 0.99 1 0.98 1

Table 1: The confusion matrix for Kardio rules with
Carmen signal

mobitz lbbb normal UK Total

mobitz 30 0 0 20 50
lbbb 0 22 0 705 727

normal 1 0 1816 0 1817
NR 1328 7 0 0 1335

Total 1358 29 1816 725 3928

Sensit 0.02 0.76 1 0
Specif 0.99 0.66 1 1

Table 2: The confusion matrix for Calicot rules with
Carmen signal

is better. Besides, we can notice that the results for
lbbb and more particularly the number of false pos-
itive is a lot better for Kardio (0) than for Calicot
(705). This comes from the fact that Calicot never
makes the difference between an rbbb and an lbbb as
explain in section 1.2. Finally, there are a lot more TP
in the normal class for Kardio (2785) than for Calicot
(1816). This comes from the choice we made about
the detection of unknown arrhythmias as explained
in section 2. Indeed, when Kardio detects a normal
rhythm instead of an unknown one (for example rbbb)
we have considered that it was a correct detection for
the normal class because Kardio has eliminated the
mobitz and the lbbb.



mobitz lbbb normal UK Total

mobitz 427 0 0 0 427
lbbb 0 2006 8 1106 3120

normal 0 0 2292 0 2292
NR 0 0 291 0 291

Total 427 2006 2591 1106 6130

Sensit 1 1 0.88 0
Specif 1 0.73 1 1

Table 3: The confusion matrix for Calicot rules
mobitz lbbb normal UK Total

mobitz 427 0 0 0 427
lbbb 0 2006 0 1432 3438

normal 0 0 7406 0 7406
NR 0 0 0 0 0

Total 427 2006 7406 1432 11271

Sensit 1 1 1 0
Specif 1 0.85 1 1

Table 4: The confusion matrix for weakened Kardio
rules

3.2 Weakened Kardio vs Calicot

In a second step, we have weakened Kardio language
to fit current signal processing algorithm possibilities.
Every shape that was not described as normal was
assumed abnormal and every ectopic QRS was con-
sidered as a dominant QRS. Indeed, nowadays, it is
still difficult to differentiate an ectopic QRS from the
dominant one or to feature precisely a wave shape just
by analyzing the signal.

In this experiment, the signal comes from a real
ECG and the symbolic description is the same for the
two systems. An example of a CRS chronicle for the
weakened Kardio is given in Figure 6. This chronicle
corresponds to the same rule that was used to create
the chronicle of Figure 5.

chronicle lbbb[]() {
occurs(0, 0,qrs[?],(start+1, R0-1)) //no qrs in [START, R0-1]
event(qrs[?w0], R0) //qrs(R0,_,abnormal),
?w0 in {abnormal}

occurs(0, 0,qrs[?],(R0+1, R1-1)) //no qrs in [R0+1, R1-1]
event(qrs[?w1], R1) //qrs(R1,_,abnormal),
?w1 in {abnormal}

occurs(0, 0,qrs[?],(R1+1, R2-1)) //no qrs in [R1+1, R2-1]
event(qrs[?w2], R2) //qrs(R2,_,abnormal),
?w2 in {abnormal}

R0 < R2
R2 - R0 in shortrr1 //rr1(R0,R2,short)

end - start in nb_cycles2 }

Figure 6: A CRS chronicle for one of the weakened
Kardio rule for LBBB

Results are given in Tables 3 and 4. We can notice
that the results are good and quite the same for Kar-
dio and Calicot except that Kardio has twice as much

detections than Calicot. Indeed, the choices made to
classify Kardio detections are all in Kardio advantage
because if there is a multiple detection in Kardio, it
is counted as a true positive for normal if the right
solution is in the set of detected arrhythmias. In par-
ticular, for each normal rhythm, the weakened Kardio
has detected the normal rhythm and a lot of other ar-
rhythmias (lbbb or mobitz ). We can also notice that
there is a lot of FP for lbbb for both systems. This
comes from the fact that Kardio can not distinguish
between a rbbb and a lbbb with its new weakened lan-
guage. These results are similar to those of Calicot
presented in Table 2 for lbbb.

Conclusion

This paper has given a comparison of two cardiac ar-
rhythmia classifiers with very different nature. It has
proven to be very difficult due to the different seman-
tics attributed to the rules of the two systems. We also
have presented a qualitative evaluation methodology
of Kardio which has never been done before. The com-
parison has shown that Kardio with its powerful lan-
guage is more precise than Calicot whereas the latter
is more adapted to current signal processing technolo-
gies and so, to an on-line application. As the signal
processing techniques evolve, we plan to improve the
knowledge base for the ILP module of Calicot to make
Calicot language more powerful. An another interest-
ing experiment will then be compare the new rules
induced by Calicot with the rules of Kardio.

References

[1] I. Bratko, I. Mozetič, and N. Lavrač. Kardio: A
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