
HAL Id: inria-00001081
https://hal.inria.fr/inria-00001081

Submitted on 1 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Master-slave Tasking on Heterogeneous Processors
Pierre-François Dutot

To cite this version:
Pierre-François Dutot. Master-slave Tasking on Heterogeneous Processors. International Parallel and
Distributed Processing Symposium, Apr 2003, Nice, France. �inria-00001081�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50465642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00001081
https://hal.archives-ouvertes.fr

Master-slave Tasking on Heterogeneous Processors

Pierre-François Dutot
Laboratoire ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint Martin, France

Pierre-Francois.Dutot@imag.fr

Abstract

In this paper, we consider the problem of scheduling
independent identical tasks on heterogeneous processors
where communication times and processing times are differ-
ent. We assume that communication-computation overlap
is possible for every processor, but only allow one send and
one receive at a time. We propose an algorithm for chains of
processors based on an iterative backward construction of
the schedule, which is polynomial in the number of proces-
sors and in the number of tasks. The complexity is O(np2)
where n is the number of tasks and p the number of proces-
sors. We prove this algorithm to be optimal with respect to
the makespan. We extend this result to a special kind of tree
called spider graphs.

1 Introduction

Parallel computation on heterogeneous platform is one
of the most important issue in high performance com-
puting nowadays. Famous parallel applications such as
SETI@home [9] or the Mersenne prime search [8] are using
a wide variety of commodity computing resources to extend
as much as possible the pool of volunteers they depend on.

In this paper we deal with the problem of scheduling in-
dependent equal sized tasks, as used in the previously cited
applications, on a sub-class of “grid” computing platform
where communication links and computation nodes may be
of any kind, and therefore have different speeds. This prob-
lem has already been adressed in [2] for the special case of
fork graphs. The steady state for trees is also studied in the
same paper. Some of the authors of [2] also wrote a research
report [3] with a good bibliography covering many similar
problems. In order to approach the more difficult problem
of scheduling on general trees, we study in this paper the
case of chains of processors. The results on the chains and
fork graphs are then merged into an algorithm for a sub-
set of trees called spider graphs, where only one node (the

master node here) can have an arity greater than 2.
This work is also related to divisible tasks as first in-

troduced by [5]. Robertazzi et al studied many variations
around this topic for divisible tasks. In [1] they first studied
the homogeneous tree problem. Then in [10] they looked
at the bus problem which is identical to a fork graph with
homogeneous communications and heterogeneous compu-
tations times. They also recently worked [4] on star
graph with heterogeneous communications and computa-
tions times. The main difference is that we are working
with quantums of workload whereas a divisible task can be
divided in fractions of any size. A closer link can be made
with recent results as presented in [7], where the author re-
duces a homogeneous grid with multi-port communication
to a heterogeneous chain. Readers interested in divisible
tasks may want to read [6] where an “optimal” solution used
in [7] is improved.

In the next section we present the model and give some
basic definitions needed for the proofs. In section 3 we de-
scribe our chain algorithm. Some basic properties of the
schedule produced are given in section 4. Section 5 con-
tains the proof of optimality of the chain algorithm. Then
we recall some of the results on fork graphs in section 6
that we need for the algorithm on spider graphs which is
presented and proved optimal in section 7. We briefly con-
clude in section 8.

2 Definitions

For now, we consider a chain of heterogeneous proces-
sors as depicted in figure 1. Each processor has an incoming
link with latency ci and needs the working time wi to pro-
cess a task. The processors are numbered from 1 to p, the
first being the closest to the source of tasks.

Every processor can only have one communication on
his incoming link at a time. Similarly it can only send one
task at a time, and process another. In all the article

�
i; j �

denotes the set of all integers between i and j (inclusive).

c
1

c
2 p

c
w

1
w

2
w

p

Figure 1. Chain where the first node is the
master node.

Definition 1 A schedule for n tasks on a given chain of
processors of length p is a set of functions giving for ev-
ery task i a processor number P (i) where it will be exe-
cuted, a starting time T (i), and the set C(i) of communica-
tion times for all the communication links taken by the task.
C(i) = {Ci

1; C
i
2; · · · ; C

i
P (i)} where Ci

j is the emission time
of the communication from processor j − 1 to processor j

concerning task i. In the following sections C(i) will be
called the communication vector

P (i) :
�
1; n � →

�
1; p �

T (i) :
�
1; n � → N

C(i) :
�
1; n � → {N

i|i ∈
�
1; p � }

A schedule is feasible iff it satisfies the four properties:

∀i ∈
�
1; n � , ∀k ∈

�
2; P (i) � Ci

k−1 + ck−1 ≤ Ci
k (1)

∀i ∈
�
1; n � Ci

P (i) + cP (i) ≤ T (i) (2)

∀i, j ∈
�
1; n � , i 6= j

P (i) = P (j) =⇒ |T (i) − T (j)| ≥ wP (i) (3)

∀i, j ∈
�
1; n � , i 6= j, ∀k ∈

�
1; p �

(k ≤ P (i) and k ≤ P (j)) =⇒ |C i
k − C

j
k| ≥ ck (4)

The first property states that a task cannot be reemitted
by a processor before the reception is completed. The sec-
ond one states that a task must have been completely re-
ceived before starting the execution. The third one says that
two tasks executed on a single processor cannot overlap.
The last property says that the communication of two tasks
on the same link cannot overlap.

Without loss of generality, we will always consider
schedules where tasks are emitted from the master in their
index order C1

1 ≤ C2
1 ≤ · · · ≤ Cn

1 .
Figure 2 presents a simple schedule on a chain with two

processors. The values ci are the labels on the edges and
the values wi are the numbers on the nodes. The dashed
curve denotes a delayed task, i.e. the second task has been
received and buffered, and had to wait the completion of the
first task before starting its execution.

The objective function is the makespan defined as the
smallest time where all tasks are done.

Definition 2 The makespan Tmax is defined as follows:

Tmax = max
i∈ � 1;n �

(

T (i) + wP (i)

)

2

3

5

3

140

Figure 2. A representation of a schedule

Although two communication vectors may have different
lengths, they can always be compared in the following way:

Definition 3 Let A = {a1, . . . , ai} and B = {b1, . . . , bj}
two different communication vectors, we say that A is infe-
rior to B (A ≺ B) iff one of the two following conditions is
verified:

• ∃k ∈
�
1; min(i, j) � such that ak 6= bk and let l be the

smallest number such that al 6= bl, we have al < bl

• i > j and ∀k ∈
�
1; j � ak = bk

3 The algorithm

Inputs : a length p, the value of the chain (ci)i∈ � 1;p � ,
(wi)i∈ � 1;p � and the tasks to be scheduled task1 . . . taskn.

Outputs : A feasible schedule for the n tasks.

As our algorithm builds the solution from the end, we in-
troduce a constant T∞ = c1 +(n−1)×max(w1, c1)+w1.
This time is the time of the simple schedule placing all the
tasks on the first processor. Our algorithm is a greedy algo-
rithm, tasks are scheduled one after another and a schedul-
ing decision is never reconsidered afterwards. When all the
tasks are scheduled, a shift of C1

1 units of time is applied to
T (i) and C(i) for all i to set the starting time of the schedule
to 0.

We will need two more variables for the algorithm called
respectively the “hull” (h) and the “occupancy” (o). These
variables are vectors of length p corresponding to the time
from which the communication links (respectively the pro-
cessors) might be used. They are both initialised at T∞ for
all their values.

To schedule task taskn we consider the p greatest com-
munication vectors (according to the order defined in def.3)
kC(n) corresponding to the execution of the task on the p

processors ending at time T∞. The values of these vectors
are:

∀k ∈
�
1; p � kC(n) =

{

kCn
1 ; · · · ; kCn

k

}

with

∀i ∈
�
1; k � kCn

i = T∞ − wk −

k
∑

j=i

cj

Among these p communication vectors we take the
greatest (there is only one as their length differ) and set
C(n) with it.

T∞ = c1 + (n-1) * max(w1,c1) + w1

// Initialisation of h and o vectors.
for i = 1 to p do

hi = oi = T∞

endfor

// Initialisation of C(i)
for i = 1 to n do

C(i) = {0; · · · ; 0}
endfor

// Computation of the
// communication vectors

for i = n downto 1 do
for k = p downto 1 do

kCi
k = min(ok − wk − ck,hk − ck)

for j = k-1 downto 1 do
kCi

j = min(kCi
j+1 − cj,hj − cj)

endfor
if C(i) ≺ kC(i)

then C(i) = kC(i)
endfor
P (i) = length(C(i))
T (i) = oP (i) − wP (i)

oP (i) = T (i)
for k = 1 to P (i)

hk = Ci
k

endfor
endfor

// Apply the time shift
for i = n downto 1 do

T (i) = T (i) − C1
1

for k = P(i) downto 1 do
Ci

k = Ci
k − C1

1

endfor
endfor

return C,P and T

Figure 3. The algorithm in pseudo-code.

The task is placed on the processor P (n) corresponding

to this communication vector C(n) with time T (n) = T∞−
wP (n). The hull and occupancy are updated with:

oP (n) = T (n) ∀i ∈
�
1; P (n) � hi = Cn

i

When taskj has been scheduled, we place taskj−1 in
the following way. First we compute the kC(j − 1) vectors
with:

kC
j−1
k = min (ok − wk − ck, hk − ck)

kC
j−1
i = min

(

kC
j−1
i+1 − ci, hi − ci

)

Then we choose the greatest kC(j − 1) and set C(j −
1) and P (j − 1) accordingly. Finally we set T (j − 1) =
oP (j−1) − wP (j−1).

The vectors o and h are updated with:

oP (j−1) = T (j − 1) ∀i ∈
�
1; P (j − 1) � hi = C

j−1
i

To prove that the schedule is feasible, we just have to
show that it verifies the four conditions given earlier. This
proof is left to the reader.

The algorithm is written in pseudo-code in the figure 3.
The complexity of this algorithm is O(np2), as the vector
comparison is in O(p).

4 Properties of the schedule

Before going into the detailled proof of the optimality of
our algorithm, we need to describe some useful properties
of the schedule our algorithm outputs.

Lemma 1 Let h be a communication hull, k and l two
processors, and i a task. If kC(i) ≺ lC(i), then for
every q ≤ min(k, l) we can prove {kCi

q ; · · · ;
kCi

k} ≺

{lCi
q ; · · · ;

lCi
l }.

The idea motivating this lemma is illustrated in figure 4.
There should be no crossing in two possible communication
vectors of the same task, as for all k the communication
vector kC(i) is the greatest of all possible vectors. With the

Figure 4. There is always a better solution
than a crossing

two vectors drawn on the figure, we can see that a better

option for the dash-dotted vector would be the vector drawn
with a solid line.

As k and l are two different processors, the length of the
communication vectors differs. If lC(i) is a prefix of the
kC(i) the lemma is verified.

Here kC(i) cannot be a prefix of lC(i) because
kC(i) ≺ lC(i). Therefore if lC(i) is not a prefix
then there is an r such that kCi

r < lCi
r and all smaller

terms are equal. As ·Ci
r is defined in the algorithm

as min(·Ci
r+1 − cr, hr − cr),

kCi
r < lCi

r implies
kCi

r+1 < lCi
r+1. This inequality can be proved recursively

for all terms until the end of the smallest vector, which
concludes the proof of the lemma. �

Lemma 2 Let (ci)i∈ � 1;p � , (wi)i∈ � 1;p � be a chain of pro-
cessors, and n tasks scheduled by our algorithm on this
chain. Let n′ be the number of task of this schedule ver-
ifying P (i) ≥ 2. The schedule of these tasks is the same
as the schedule of n′ tasks on the sub-chain (ci)i∈ � 2;p � ,
(wi)i∈ � 2;p � with our algorithm, with a time shift of Tshift =
min(i/P (i)≥2)(C

i
2).

More formally, let (σ(i))i∈ � 1;n′ � be the n′ tasks of the
sub-chain, putting a hat on the variables concerning the
sub-chain we have:

∀i ∈
�
1; n′ � P̂ (i) = P (σ(i))

∀i ∈
�
1; n′ � T̂ (i) = T (σ(i)) − Tshift

∀i ∈
�
1; n′ � ∀q ∈

�
2; P̂ (i) � Ĉi

q = C
σ(i)
q − Tshift

The proof of this lemma derives from the previous
lemma. Looking at the algorithm, we can see that kCi

2

does not depend on the value of kCi
1, as we compute the

kCi
q with q going from k downto 1. The execution of the

algorithm on the chain (ci)i∈ � 1;p � , (wi)i∈ � 1;p � is the same as
the execution of the algorithm on (ci)i∈ � 2;p � , (wi)i∈ � 2;p � (as
with the previous lemma we proved that if kC(i) ≺ lC(i)
we have {kCi

2; · · · ;
kCi

k} ≺ {lCi
2; · · · ;

lCi
l }), with the

exception of the n − n′ tasks which will be placed on
the first processor. The biggest difference is the first time
reference and the final time shift which give a time lag
between the two schedules. �

5 Proof of optimality

Theorem 1 The heuristic given in section 3 is optimal with
respect to the makespan (termination date of the last task).

For the limit cases when p = 1 or n = 1 the algorithm is
clearly optimal. In the first case the processor is filled either
without delays in the communications or without delays in

the computation. In the second case the algorithm picks one
of the processors on which the makespan is minimal.

The proof of the general case is based on the assumption
that there is a chain and a number n such that the optimal
schedule is faster than our schedule. We will show that this
assumption brings a contradiction.

Among all the chains for which our algorithm is not op-
timal we choose one where p is minimal. As we said above
p > 1, therefore our algorithm is optimal for the non-empty
set of chains of length strictly less than p.

For the considered chain, let n be the smallest number
of tasks for which our algorithm is not optimal. Again, we
have n > 1 as our algorithm is optimal for a single task.

Let T
opt(n)
max be the optimal makespan for n tasks and

T
alg(n)
max be the makespan of our algorithm. We supposed

that T
opt(n)
max < T

alg(n)
max . As we considered the smallest n,

we have T
opt(n−1)
max = T

alg(n−1)
max .

At this point we need to introduce another notation. We
add a lower left indice when needed on all the previous
notations when a value is corresponding to a given heuris-
tic. For example opt(n)P (i) is the processor on which the
task i is scheduled in the optimal schedule for n tasks and

k
alg(n−1)C

i
q is the emission time of the communication con-

cerning task i between processors q − 1 and q if the task
is to be placed on processor k with our algorithm on n − 1
tasks.

When we remove the first task of the schedule opt(n) we
have a schedule of n − 1 tasks, which is necessarily longer
or equal to the schedule of our algorithm on the n − 1 last
tasks, as we said that our algorithm was optimal for n − 1

tasks. This is written: T
opt(n)
max − opt(n)C

2
1 ≥ T

alg(n−1)
max =

T
alg(n)
max − alg(n)C

2
1 .

Equation (4) from definition 1 implies that opt(n)C
2
1 ≥

opt(n)C
1
1 + c1 ≥ c1. Which means that the full communica-

tion of the first task has to be completed before the second
task can be emitted. Rewritting this with the previous equa-
tion we have: alg(n)C

2
1 ≥ T

alg(n)
max − T

opt(n)
max + c1.

So if our algorithm does not give an optimal schedule,
there is some idle time on the first communication link be-
tween the emissions of the first and the second task. We will
now consider the two cases P (1) = 1 and P (1) ≥ 2.

• If P (1) = 1 the first processor has no idle time in
computation, or else (as the task are executed as late
as possible) the communication would have been de-
layed. This implies that we did one more task on the
first processor than the optimal schedule (or else the
total time would be equal). Thus the optimal algo-
rithm did one more task than we did on the sub-chain
(ci)i∈ � 2;p � , (wi)i∈ � 2;p � within a total time less or equal

to T
alg(n)
max − c1 − 1. As our algorithm could not do

as many tasks within the same time limits (or else we

would not have P (1) = 1 as one kC1
1 would be greater

than 1C1
1) it is not optimal for a number of tasks less

or equal to n on the sub-chain (ci)i∈ � 2;p � , (wi)i∈ � 2;p � ,
which contradicts the hypothesis that p is minimal.

• If P (1) ≥ 2 it implies that the task could not be placed
on the first processor because it is fully loaded (the re-
maining avalaible time is less than w1) and that our al-
gorithm was less efficient than the optimal on the sub-
chain with a number of task lesser or equal to the num-
ber placed by the optimal on this sub-chain (we loaded
the first processor as much as possible, but don’t know
if the optimal schedule did). Which again contradicts
the hypothesis that p is minimal.

The two cases lead to the conclusion that the hypothesis
was wrong, and this ends the proof of theorem 1. �

6 Extension to spiders

A spider is a special kind

Figure 5. A spider.

of tree where only the mas-
ter node is allowed to have
several children. A very
simple example is presented
in figure 5. In this arti-
cle, the master node will al-
ways be the root of the spi-
der. A feasible schedule on
a spider graph is a sched-
ule where each node only
sends one task at a time
and each processor com-
putes one task at a time as
before. The added difficulty here is that the master node is
connected to many children and must choose for each task
the child that will receive it.

Mixing the previous algorithm with another one al-
ready published by another research group [2] concerning
fork graphs, we can achieve an optimal algorithm for the
scheduling problem on spiders which is polynomial in the
number of tasks and the number of processors.

We will first briefly recall how the algorithm for fork-
graphs was designed before going into the details of our
algorithm on spiders. First, it takes as input a fork graph,
a number n of tasks and a time limit Tlim. The algorithm
succeeds if it can schedule n tasks with a makespan lower or
equal to Tlim. If it cannot then no such schedule is possible.

The algorithm on fork-graphs is based on a tranforma-
tion of the problem where any processor can compute any
number of tasks into a problem where there are more pro-
cessors which can compute only one task each. This trans-
formation is easily done replacing every processor (ci, wi)

with a set of processors with the same value for the incom-
ing link and different processing times as represented on
figure 6 (where mi = max(ci, wi)).

With a transformed instance, it is clear that the com-
munication time is the only resource shared by all tasks.
Therefore the communication usage should be minimized.
Another interesting property is that any feasible schedule
can be transformed into another feasible schedule where the
tasks are sorted in decreasing order of processing times of
the different processors they are alloted to.

wi

ci

ci

ci

wi + n ∗ miwi + miwi

ci

Figure 6. Transformation of a single node.

Built on those two properties the algorithm can be de-
scribed in the following terms. Given a time bound Tlim,
sort the processors by ascending communication times and
break ties by sorting according to processing times. Then
allocate tasks to processors in this order whenever possible
until no more task can be added. To know if it is possi-
ble to add a task on a given processor, you have to check if
the insertion of the communication time in the schedule is
possible when tasks are ordered by processing times.

The interested reader should refer to the original pa-
per [2] for the complexity analysis, optimality proof and
formal presentation of this algorithm.

7 Spider algorithm

As the fork graph algorithm, our spider algorithm will
take as additionnal input a time limit Tlim.

The first thing to do before merging both algorithms in
one is to rewrite our chain algorithm to take a time limit as
input as well as a number of tasks n and output the schedule
with the biggest number of tasks possible within the time
limit, or the schedule for n tasks if it is feasible in at most
Tlim time units. To achieve this, we have to change T∞ to
that time limit Tlimand change the first for in the computa-
tion of communication vectors to a while and stop when a
task gets a negative emission time C i

1 or when n tasks have
been scheduled.

Let us now consider what has to be done to design an
algorithm for spiders. The algorithm on fork graphs was
based on a transformation of the original fork. This decom-
position induces many single-task nodes with different exe-
cution times. After a first run of our algorithm on chains, we
can make a similar transformation and see a chain as a fork

graph with all communication link set to c1 and processing
times equals to Tlim − Ci

1 − c1. This transformation gives
us a fork where as many tasks can be scheduled in the same
time interval as on the chain.

86 123 10

2 2
2 22

Figure 7. Transformation of the example of
figure 2.

This transformation for the example given in figure 2 is
depicted in figure 7. For example the task that was sched-
uled on the second processor corresponds to the node with
processing time 8.

All the chains leaving from a single master node in the
spider graph can be transformed in this way to form a fork
graph with single task nodes with communication times de-
pending on the chain there are issued from. The maximum
time Tlim being defined, we compute for each chain an op-
timal schedule for Tlim time units, and then we create for
each scheduled task a single task node with a communica-
tion link and processing time as defined above.

Then we can apply the fork algorithm to choose the
nodes where an execution shall take place and reverting to
the original spider we can relate those nodes to an actual
schedule.

More formally the algorithm can be written:

(1) Given Tlim, n and a spider
(2) For each chain of the spider

compute n, C, P, and T

(3) Create the associated fork graph
(4) Compute the optimal schedule on

the fork graph
(5) Revert to a spider schedule

Theorem 2 The algorithm on spider graph is polynomial
in the number of tasks and the number of processors.

The complexity of line 2 is
∑

c np2
c, where pc is the

length of the chain c.
∑

c np2
c < np2 with p the total num-

ber of nodes in the spider. Line 3 is a simple rewriting of
the results in the previous line. Line 4 is quadratic in the
number of single task slaves, which is here bounded by kn,

where k is the arity of the master node. So the complex-
ity of line 4 is bounded by n2k2 < n2p2. Line 5 is again
a simple rewriting of the results in the previous line and is
of lower complexity. The overall complexity is lower than
O(n2p2). �

Lemma 3 A feasible schedule for the fork graph gives a
feasible schedule for the spider graph.

To each node of the fork graph is associated the allo-
cation of the corresponding task in one of the chains. For
a given chain, we can look at all the corresponding nodes
taken in the fork schedule. The resulting schedule on the
chain is very similar to the optimal schedule given by our
algorithm, from which some tasks have been removed. The
only modification is that the emission times on the first link
are choosen by the fork graph algorithm. But as we decided
that the processing time for the node associated to task i on
the chain we are considering is Tlim−Ci

1−c1, the emission
time choosen by the fork graph is necessarily less or equal
to Ci

1. As the optimal schedule was feasible, the same with
some tasks removed and the first communications possibly
done earlier (but without any conflict on the link as ensured
by the fork algorithm) is still feasible. This proves that there
are no tasks overlapping in computation or in communica-
tion within the chain. All we need to check is that the mas-
ter node complies with the “one communication at a time”
policy as it sends tasks to possibly many chains. This is
ensured by the fork algorithm since we do not change the
emission times of the tasks on the first communication link.

�

Lemma 4 A feasible schedule on the spider can be trans-
formed into a feasible schedule on the fork graph.

This lemma can be a little surprising, because a schedule
on the spider can have any kind of structure unrelated to
the schedules built by our algorithm on chains, whereas the
fork graph is built according to these schedules on chains.
Yet another useful property of our algorithm on chains is
that an optimal solution for n tasks is iteratively built on the
optimal solutions for n − 1 to 1 tasks. This is because we
are constructing the solutions from the end of the schedule
going backward in time. Getting back to the proof, let us
consider one of the chains of the spider. The latest task
scheduled on this chain is scheduled in at least Tlim − Cn

1

units of time (where Cn
1 is the emission time of the last

task scheduled by the chain algorithm) as our algorithm on
chains is optimal for one task. For each task scheduled on
the chain we can prove in the same way that if there are n−i

tasks scheduled after it then the task is scheduled in at least
Tlim − Ci

1 units of time. Therefore any task scheduled on
this chain can be associated with one of the single task node
and still complete its execution before the time limit Tlim.

As this is true for all the chains of the spider, this concludes
the proof of the lemma. �

Theorem 3 The schedule produced by our algorithm on
spider graph is optimal.

The proof to this theorem is a simple conclusion of previous
steps. As shown in lemma 4 any schedule on the spider can
be related to a schedule on the associated fork graph. This
holds for the optimal schedule on the spider within Tlim

units of time. The schedule on the fork associated with the
optimal on the spider is not necessarily optimal for the fork.
Therefore as we compute the optimal schedule on the fork
graph we are doing at least as many tasks on the fork as the
spider’s optimal. And reverting to the spider schedule as
shown in lemma 3 we are producing a feasible schedule on
the spider which has at least as many tasks as the spider’s
optimal. �

8 Conclusion

In this article we provided an algorithm polynomial in
the number of processors and in the number of tasks to give
the optimal schedule for identical independent tasks on a
chain of heterogeneous processors. Building on previous
work from other authors we extended this algorithm to a
special kind of trees called spider graphs. This is a first
step toward solving the more general problem of trees of
processors.

The long term objective of this work is to provide good
heuristics for scheduling on complicated graphs of hetero-
geneous processors, by covering those graphs with simpler
structures.

References

[1] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi. Closed
form solutions for bus and tree networks of processors load
sharing a divisible job. IEEE Transactions on computers,
43(10):1184–1196, October 1994.

[2] O. Beaumont, L. Carter, J. Ferrante, A. Legrand,
and Y. Robert. Bandwidth-centric allocation of in-
dependent tasks on heterogeneous platforms. In
International Parallel and Distributed Processing
Symposium, 2002. Technical report avalaible at
http://www.ens-lyon.fr/∼yrobert.

[3] O. Beaumont, A. Legrand, and Y. Robert. Static schedul-
ing strategies for heterogeneous systems. Technical Report
2002-29, École Normale Supérieure de Lyon, July 2002.
Avalaible at http://www.ens-lyon.fr/∼yrobert.

[4] S. Charcranoon, T. G. Robertazzi, and S. Luryi. Optimizing
computing costs using divisible load analysis. IEEE Trans-
actions on computers, 49(9):987–991, September 2000.

[5] Y. Cheng and T. Robertazzi. Distributed computation for a
tree network with communication delays. IEEE Trans. on
Aerospace and Electronic Systems, 24(6):700–712, 1988.

[6] P. Dutot. Divisible load on heterogeneous lin-
ear arrays corrected. Technical report, Labora-
toire Informatique et Distribution, 2002. URL:
http://www-id.imag.fr/Laboratoire/
Membres/Dutot Pierre-Francois.

[7] K. Li. Scheduling divisible tasks on heterogeneous linear
arrays with applications to layered networks. In Workshop
on Parallel and Distributed Scientific and Engineering Com-
puting with Applications, 2002.

[8] Mersenne Prime Search.
URL: http://www.mersenne.org.

[9] SETI at home.
URL: http://setiathome.ssl.berkeley.edu.

[10] J. Sohn, T. G. Robertazzi, and S. Luryi. Optimizing comput-
ing costs using divisible load analysis. IEEE Transactions
on parallel and distributed systems, 9(3):225–234, March
1998.

