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Abstract Checking the regularity of the inverse jacobian matrix of a parallel robot
is an essential element for the safe use of this type of mechanism. Ideally
such check should be made for all poses of the useful workspace of
the robot or for any pose along a given trajectory and should take
into account the uncertainties in the robot modeling and control. We
propose various methods that facilitate this check. We exhibit especially
a sufficient condition for the regularity that is directly related to the
extreme poses that can be reached by the robot.
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1. Introduction
Determining if a parallel robot may be in a singular configuration dur-

ing its motion is a problem that is of high practical interest. Many papers
have addressed first the determination of the inverse jacobian, denoted
J−1, of such robots and then the analysis of the singularity condition
that can be deduced from the singularity of this matrix. J−1 relates the
joint velocities to the twist of the end-effector and is usually pose de-
pendent. In a singularity the end-effector will exhibit non-zero velocities
for some motion although the actuators are locked. The determinant
of J−1 is usually complicated but for most parallel robots J−1 has as
rows the Plücker vectors of well-defined lines. Consequently Grassmann
geometry may be used to characterize the geometry of the singularity
and to deduce simplified singularity conditions [Monsarrat 01; Merlet
89; Wolf 04]. It must be noted that even for robot with less than 6 d.o.f.
it is necessary to consider the full jacobian matrix i.e. the matrix that
involves the full twist of the end-effector. Indeed for a robot with n d.o.f.



the jacobian that relates the n d.o.f. velocities to the n actuated joint
velocities may be not singular while J−1 is singular [Bonev 01].

A singularity detection algorithm should be able to determine the
presence of a singularity within a motion variety with dimension 1 to n
for a n d.o.f. robot. An important point is that the singularity detection
should be certified i.e. the algorithm should provide a safe answer even
if numerical round-off errors occur. This certification constraint usually
rules out the use of an optimization procedure.

2. A singularity detection scheme
This singularity detection problem has been addressed in [Merlet 01]

where an efficient algorithm was exhibited. This algorithm proceeds
along the following steps: symbolic computation is used to determine
an analytical form of the determinant of J−1and its sign at a particular
pose X1. Then an interval analysis based method [Jaulin 01; Moore 79],
that takes round-off errors into account, allows one to determine if the
motion variety includes a set of poses in which the determinant has a
sign opposite to the one found at X1.

The main difficulty with this algorithm (apart of using efficiently in-
terval analysis) is the calculation of the closed-form of the determinant
as will be illustrated on a difficult example, the Gough platform.

2.1 The inverse jacobian of a Gough platform
We define a reference frame (O,x,y, z). The attachment points of

the leg i on the base will be denoted by Ai. The attachment points
on the platform will be denoted by Bi and it is well known that the
coordinates of Bi in the reference frame can be obtained as function of
the pose parameters. The inverse jacobian matrix is then constituted of
the normalized Plücker vectors of the line associated to each leg:

J−1 = ((
AiBi

||AiBi||
OAi ×OBi

||AiBi||
)) (1)

Note that we may use the non normalized Plücker vector to define an-
other matrix M = ((AiBi OAi ×OBi)) with the property that the
sign of J−1 is the same than those of |M|. As M is simpler than J−1 it
will be used for the singularity detection.

2.2 Evaluation of the determinant
Being given a motion variety the pose parameters are functions of the

variety parameters and thus the components of the inverse jacobian may
be obtained as functions of the variety parameters. As mentioned earlier



a closed-form of the determinant is obtained by symbolic computation.
It should be noted that this is not strictly necessary. Indeed being
given ranges for the variety parameters interval arithmetic may used
to determine ranges for each component of the inverse jacobian. We
get then an interval matrix J−1

I i.e. a matrix whose components are
intervals. Classical method for the calculation of determinant may then
be used to obtain an interval evaluation of the determinant but with a
large overestimation of the minimum and maximum of the determinant.
Indeed interval arithmetic is very sensitive to multiple occurrence of the
same variable. Consider for example the matrix A whose determinant
is xy and its interval version AI when x and y lie in the range [1,2]

A =
(

x x
y 2y

)
AI =

(
[1, 2] [1, 2]
[1, 2] [2, 4]

)
(2)

The interval evaluation of |AI | may be calculated as [-2,7]. Hence the
closed-form of the determinant allows one to show that |A| will always
be positive for any value of x, y in [1,2], while the use of the interval
matrix does not allow such conclusion. We have put an emphasis on
interval matrices that will be justified by the influence of uncertainties.

2.3 The influence of uncertainties
Uncertainties are inherent part of a real system such as a robot. They

occur at the modeling level: the geometry of the real robot differs from
its theoretical model due to the manufacturing tolerances (for example
for the Gough platform the locations of the Ai, Bi are known only up to
a known accuracy). Uncertainties are also due to control: there will be
a deviation of the robot motion from the theoretical motion variety.

An ideal singularity detection scheme should be able to determine
if the robot may be in a singular pose in spite of these uncertainties.
Although we may add the uncertainties as additional unknowns in the
components of J−1, a drawback is that the calculation of the closed-form
of the determinant may become difficult. For example for the Gough
platform Maple is no more able to calculate the determinant as soon as
we add the uncertainties on the Ai, Bi. In that case we have to resort to
a numerical interval evaluation of the determinant based on the interval
version of J−1, but we have seen that this leads to a large overestimation
of the determinant, that will result in a large computation time for the
singularity detection scheme. It is thus necessary to develop methods
that check the regularity of the set of matrices defined by an interval
matrix, without calculating its determinant. These methods should take
into account that J−1 is a parametric matrix, i.e. that its components
are not independent.



3. Various methods for regularity check

3.1 A classical regularity check
Checking the regularity of all matrices in a set defined by an interval

matrix is a classical problem in interval analysis and is known to be
NP-hard. Among possible approaches the one having shown the largest
efficiency in our case has been a method proposed by Rohn [Kreinovich
00]. We define the set H as the set of all n-dimensional vector h whose
components are either 1 or -1. For a given box we denote by [aij , aij ] the
interval evaluation of the component J−1

ij of J−1 at the i-th row and j-th
column. Given two vectors u,v of H, we then define the set of matrices
Auv whose elements Auv

ij are

Auv
ij = aij if ui.vj = −1, aij if ui.vj = 1

These matrices have thus fixed numerical components corresponding to
lower or upper bound of the interval J−1

ij . There are 22n−1 such matrices
since Auv = A−u,−v. If the determinant of all these matrices have the
same sign, then all the matrices A′ whose components have a value
within the interval evaluation of J−1

ij are regular. Hence for the 6 × 6
J−1 of a Gough platform if the determinant of the 2048 matrices of Auv

have the same sign, then all matrices in the set are regular.
But Auv includes matrices that are not inverse jacobian as the depen-

dency of the components of the matrix are not taken into account. This
may be seen, for example, for the interval matrix AI (2) that includes
the following matrices

A1 =
(

1 1
1 4

)
A2 =

(
1 2
2 2

)
A3 =

(
1 2
1 2

)
(3)

The matrices A1,A2 belong to the set Auv and have determinants with
opposite signs. Consequently the test proposed by Rohn fails, which is
quite normal as the matrix A3, that belongs to AI is singular. For the
Gough platform the first column of J−1 is written as x + Fi, x being a
coordinate of the center of the platform; if the range for x is [x, x] while
the range for Fi is [a,bi], then Auv includes matrices with elements x+ai

and x + bk that does not belong to the set of inverse jacobian matrices.

3.2 Pre-conditioning
A classical approach in interval analysis for regularity check is to pre-

condition the matrix by multiplying it by a real matrix K, usually the
inverse of the mid-matrix, i.e. the matrix whose components are the mid-
point of each range of the components. The purpose of this strategy is



to get S = KJ−1 close to the identity matrix so that its determinant
|S| = |K||J−1| may be interval evaluated with a lower overestimation.
If we apply this strategy to the matrix (2) the inverse of the mid-matrix
and the interval matrix KAI are:

K =
(

4/3 −2/3
−2/3 2/3

)
S = KAI =

(
[0, 2] [−4/3, 4/3]

[−2/3, 2/3] [0, 2]

)
(4)

The interval evaluation of |S| is [−8/9, 44/9] ≈ [−0.8889, 4.88889] while
|K| is positive. In term of sign determination this interval evaluation is
indeed sharper than the one obtained with a direct evaluation of |A|, but
is still not satisfactory. We propose another method which consists first
to compute symbolically the matrix S, using kij as components of K and
then plugging in the numerical values. The symbolic matrix Ss = AK
and its interval version SK for the numerical K are

Ss =
(

x(k11 + k21) x(k12 + k22)
y(k11 + 2 k21) y(k12 + 2 k22)

)
SK =

(
2x/3 0

0 2y/3

)
(5)

If we use now the range [1,2] for x, y the interval evaluation of |S| is
[4/3,8/3] that shows that all matrices have a positive determinant. Note
that we have used AK instead of KA, which is justified as it allows to
reduce the multiple occurrences of the variables. However as J−1 exhibits
the same variables in a column it is better to pre-multiply it by the
conditioning matrix.

3.3 A regularity test for parametric matrices
Assume that some components of some rows (denoted the linear rows)

of a parametric matrix A = aij can be written as linear combination with
real or interval coefficients of a set of unknowns {x1, x2, . . . , xn}.

We denote by A′ the set of real or interval matrices that can be derived
from A by assigning independently to each linear rows either a lower or
upper bound to each unknown xi that appears in the linear combination.
For example for matrix A the set A′ is

A′ = {
(

1 1
1 2

)
,

(
1 1
2 4

)
,

(
2 2
1 2

)
,

(
2 2
2 4

)
} (6)

The following theorem hold:
Theorem 1: If the determinant of all matrices in the set A′ have all

the same sign, then all matrices in the set A are regular

Proof (derived from [Popova 04]): Assume that there is a singular
matrix A0 in the set A. Without lack of generality we will assume that



the first row of A0 is linear. We consider the unknown x1, whose value
for A0 is x0

1 and lie in [x1, x1]. Each component of the first row of A
may be written either as λ1

1jx1+b1j or a0
1j if the component is not linear.

Using row expansion the determinant of the matrix may be written as

|A| =
∑

k=j1,...,jm

(−1)k+1(λ1
1kx1 + b1k)M1k +

∑
l 6∈{j1,...,jm}

(−1)l+1a1lM1l (7)

where {j1, . . . , jm} are the column indices of the linear components of
A and M1j denotes the minor associated to the first line and column j.

For x1 = x0
1 this expression will cancel. If we assume now that x1 =

x0
1 + dx1 we get

|A| = dx1(
∑

k=j1,...,jm

(−1)k+1λ1
1k) = dx1K1 (8)

K1 being either a real number or an interval. We may always assign dx1

to either x1−x0
1 or x1−x0

1 so that |A| is positive or has a positive upper
bound. Thus by assigning x1 or x1 to x1 we have constructed a matrix
A+

1 whose determinant will be positive or has a positive upper bound.
The process may be repeated for constructing a matrix A−

1 whose de-
terminant will be negative or has a negative lower bound. Starting from
these matrices we may now assign x2 to x2 or x2 to get a matrix A+

12

whose determinant is |A+
1 | plus a positive quantity (i.e. still positive)

and a matrix A−
12 whose determinant will be lower than the determinant

of |A−
1 | (i.e. still negative). The process is repeated for each unknowns

in the row. As soon as all unknowns in the row have a fixed value the
process is repeated for the next linear row. When all linear rows have
been processed the matrices A+, A− belong to A′. Note however that
the assignment of the unknowns in a row to ensure that |A+| is positive
may differ between two linear rows. Hence if there is a singular matrix
in A, then we are able to determine matrices whose determinant have
opposite signs (or whose lower bound is negative and upper bound is
positive), which concludes the proof.

For example as all matrices in A′ defined by (6) have the same de-
terminant sign, then the set A contains only regular matrices. Another
theorem may be derived for the full inverse jacobian matrices that have
Plücker vectors as rows. Let us define Ai(a1

i , a
2
i , a

3
i ) and Bi(b1

i , b
2
i , b

3
i ) as

two points that belong to the line associated to the Plücker vector i. A
row of J−1 may be written as

((b1 − a1, b2 − a2, b3 − a3, a2b1 − a1B2, a3b1 − a1b3, a1b2 − a2b1)) (9)

so that each row is linear in the bi. Assume now that the locations of
the Ai are fixed, while the locations of the Bi are functions of the end-
effector motion. Using interval analysis (or an optimization method)



being given ranges for the motion parameter we may find a bounding
box Bi for the location of each Bi. Let J−1

? be the set of inverse jacobian
that may be obtained for the motion parameters ranges. Theorem 1
allows one to state the following theorem:

Theorem 2: Let A? be the set of matrices obtained by choosing as
location of Bi all possible combinations of the corners of Bi (there will
be 86 such matrices). If the determinants of all matrices in A? have the
same sign, then all matrices in J−1

? are regular.

The number of matrices in A? may even be reduced in some cases,
using the property that we may choose as Bi any point on the line.
Assume that the bounding box Bi is defined by the set of ranges [bij , bij ],
j ∈ [1, 3] for bj . The following cases may occur:
• ak ∈ [bik, bik] for two indices in [1,2,3], while ak < bik or ak > bik for

one index. The line always enters the bounding box Bi by the face defined
by bk = .bik or bk = bik. We may thus choose as Bi the intersection point
of the line with this face i.e. fix the value of bk. Hence only 4 corners
will have to be checked
• ak ∈ [bik, bik] for only one index. The line may enter the bounding

box by 2 faces and we have to check 6 corners
• ak 6∈ [bik, bik] for all index. The line may enter the bounding box by

3 faces and we have 7 corners to check
• ak ∈ [bik, bik] for all index. In that case the corresponding row

of the jacobian may include a line of 0 and the ranges for the motion
parameters must be bisected

In practice we will have between 46 and 76 matrices in A?. Uncer-
tainties in the locations of the Ai may also be dealt with by considering
that the matrices in A? are interval matrices.

Theorem 2 shows that checking the extreme poses of the Bi may be
sufficient to check the regularity of J−1 over the whole workspace.

4. Examples
The proposed regularity check has been implemented in the singular-

ity detection scheme and has been extensively tested. It appears that
among the three regularity checks the most efficient combination is to
use first the pre-conditioning and then to apply Rohn test on the result-
ing matrix. A 6D workspace W is defined with the ranges x, y in [-15,15],
z in [45,50] and the three Euler angles having the ranges [-15,15] degree.
The computation time on a Dell D400 laptop (1.7 Ghz) is established as
follows:



• 6D workspace without uncertainty: for W no singularity detected
in 3.12s. If the orientation ranges of W is extended to [-40,40] degree a
singularity is detected in 9.46s.
• 6D workspace with uncertainties: for a ± 0.05 uncertainty on each

coordinates of the Ai, Bi points no singularity is detected in W in 43mn
on a cluster of 15 PC’s without the regularity checks and only in 263s
on a laptop if they are incorporated in the detection scheme. For an
uncertainty of ± 0.1 the computation time establishes respectively at
10h 22mn and 1176s.

5. Conclusion
We have proposed regularity checks for the inverse jacobian of parallel

robots that may be used to determine if such matrix may be singular
over a motion variety. They allow to deal with uncertainties in the robot
modeling and control and have been proved to be very efficient. One
of this regularity check, that is sufficient but not necessary, is related
to the extremal poses that can be reached by the end-effector: if the
determinant of a finite number of real matrices that are related to these
extremal poses have all the same sign, then the inverse jacobian matrix
is regular.
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