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Abstract: In this article, we show that the generating series of polynomial dynamical
systems are exactly the generating series of the subclass of weighted Petri nets where each
transition has a single input place with arc weight 1. We propose furthermore an algorithm
to check whether a given Petri net corresponds directly to a dynamical system. In many
cases, different initial markings correspond to different dynamical systems. We finally prove
that the place invariants for the Petri nets correspond to scaling Lie symmetries of the
corresponding dynamical system, as well as that the invariants of the symmetry group of
the dynamical system corresponds to implicit places in the corresponding Petri net.
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Systémes dynamiques polynomiaux et réseaux de Petri
pondérés

Résumé : Dans cet article, nous montrons que les séries génératrices des systémes dy-
namiques polynomiaux sont exactement les mémes que les séries génératrices d’une sous—
classe de réseaux de Petri pondérés, dans lesquels chaque transition a une seule place d’entrée
avec le poids de 'arc égal 4 1. Nous proposons ensuite un algorithme pour vérifier si un
réseau de Petri donné correspond directement & un systéme dynamique. Dans de nombreux
cas, des marquages initiaux différents correspondent a des systémes dynamiques différents.
Nous montrons enfin que les invariants de places dans les réseaux de Petri correspondent
aux symétries de Lie de changement d’échelle du systéme dynamique correspondant, ainsi
que les invariants du groupe de symétrie du systéme dynamique correspondent aux places
implicites de réseau de Petri correspondant.

Mots clés : Séries formelles, systémes dynamiques, séries génératrices, réseaux de Petri
pondérés.



Weighted Petri nets and polynomial dynamical systems 3

1 Introduction

The notion of formal power series in noncommutative variables was introduced by M.P.
Schiitzenberger [14], in relation to automata and formal languages. Many problems from the
theory of formal languages use formal power series : for example, arithmetic problems of the
theory of formal languages, study of stochastic processes and of the context—free grammars.
The formal power series also represent an interesting tool for solving combinatorial problems :
enumeration of planar graphs, permutations and rearrangements in monoids.

Two principal families of formal power series have been studied : rational series and a
subfamily of them formed by the recognizable and algebraic series. The rational series were
also introduced by M.P. Schiitzenberger who showed that certain properties of rational series
in one variable have a good generalization in noncommutative variables. He established the
equivalence between the recognizability and the rationality of proper formal power series.

Another application of formal power series lies in the treatment of dynamical systems.
M. Fliess [5] developed the idea that the generating series of a system can be used to code
the input/output behavior of the system. Rational formal power series are generating series
for bilinear dynamical systems and are recognized by weighted finite state automata.

Petri nets were introduced by Petri in 1962 and are widely—used graphical and mathe-
matical tools which can be applied to many discrete distributed systems [9, 11, 12, 13]. They
are used to model systems with concurrency and resource sharing, to describe synchronous
and asynchronous behavior of systems, as well as to study the mathematical models which
govern the behavior of systems. Moreover, they can be also used as a visual-communication
aid similar to flow charts, block diagrams, and networks.

In a recent article [8], the class of polynomial dynamical systems was considered. It
was shown that their generating series are generated by weighted multi—set grammars and
accepted by weighted multi—set automata. This article is a continuation of [8] as it deals with
polynomial dynamical systems and shows how their generating series can also be interpreted
as generating series of a certain type of Petri nets.

In the section 2, we introduce dynamical systems and their generating series. In the
section 3, we introduce weighted Petri nets and their generating series. In the section 4, we
describe the main result : the relationship between the weighted Petri nets and polynomial
dynamical systems. In the sections 5 and 6, we study when there is a dynamical system
corresponding to a given Petri net structure, at least for some initial markings. Finally, in
the section 7, we show that there are Petri net properties which have counterparts in the
corresponding dynamical system.

2 Preliminaries

Definition 2.1. An affine dynamical system is a system of ordinary differential equations
of the form

PI nl1781
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(1) =vo(x) + D v (x)us (1),

where
1. u(t) = (ui(t), ..., un(t)) € R™ is the input vector,
2. x(t) € M is the current state, where M is a real differential manifold, often R™,
3. {vo,Vv1,...,Vn} is a family of smooth vector fields on M,
4. h: M — R is a smooth function called the observation map,
5

. s(t) € R is the output function.

We will be working with the causal functional that associates to the set of n input
functions (also called commands) u(t) the corresponding output function y(¢). To the com-
mands wui(t),ua(t), ..., u,(t) we associate the alphabet Z = {z0,21,...,2n} of (n + 1) let-
ters, zo being associated to the drift (which we will represent as an additional constant
input function ug(t) = 1). To every multi-index I = (i1,1i2,...,i;) we associate the word
W = 2] = 2, Ziy * - Zi,- These words form Z*, the free monoid over Z. (The empty word is
denoted by \.)

The behavior of causal functionals is uniquely described by two noncommutative power
series: the generating series and the Chen series.

The generating series G =, -.(G|z1)z1 of the system [5] is the geometric contribution
and it is independent of the input. Its coefficients (G|zr) are obtained by iteratively applying
Lie derivatives with respect to the vector fields v; to the observation map and evaluating
the resulting expression at the initial state xq:

(Glz1) = (Glzi 2iy -+ 2i) = Vi 0 0 Viy 0 vy, 0 b .
(The Lie derivative of the function f(xq,...,2,) with respect to the vector field v =
(v1,...,v,) is defined by v(f) = >, vz-g—ji.) The generating series completely describes
the causal functional. More precisely, two formal power series define the same functional if
and only if they are equal [6, 15].

The Chen series Cy(t) = ), c z-(Cu(t)|2r)2r measures the input contribution [3, 4], and
is independent, of the system. The coefficients of the Chen series are calculated recursively
by integration using the following two relations:

o (Cult)e) =1,

o (Cyu(t)w) = /0 (Cu(T)|v)u;(T)dr for a word w = z;v.

Trisa



Weighted Petri nets and polynomial dynamical systems 5

The causal functional y(¢) is then obtained locally as the product of the generating series
and the Chen series [7]:

y(t) = (GlICu(D) = D (Gluw)(Cult)lw) (2.2)

weZ*

This formula is known as the Peano—Baker formula, as well as the Fliess’ fundamental
formula.
3 Weighted Petri nets and their generating series

Definition 3.1. A weighted Petri net is a sextuple WPN = (P,T, K, F,W, My), where

e P={pi,...,pm} is a finite set of places,

T ={t1,...,t,} is a finite set of transitions,

e K :T — R is a transition weight function,

FC(PxT)U(T x P) is a set of arcs,

e W:F —{1,2,3,...} is an arc weight function,

My : P —{0,1,2,...} is the initial marking,
e PNT =0 and PUT # 0.

The firings in a weighted Petri net work the same way as for “ordinary” non—weighted
Petri nets, except, of course, for the weights. Before the start of a computation, its weight
is 1. During the firing of the transition ¢ in the net, the current weight of the computation
is multiplied by the weight of this transition and also, for each input place p of ¢, by CF,
where n is the number of tokens in the place p and k the weight of the arc from p to the
fired transition .

Example 3.2. An ordinary Petri net can be interpreted as a weighted net by assigning
weight 1 to each transition.

Remark 3.3. In what follows, we will slightly relax this “classical” definition of Petri nets
by allowing different transitions to have the same label, i.e. the word “set” is replaced by
“multi-set” in the definition of the set of transitions 7" above. Another way to look at it is
to equate the transitions the end of a firing sequence.

Definition 3.4. Let W PN be a weighted Petri net. Then its generating series G is a formal
power series defined in the following way :

e to the set of transitions T = {t1,...,tn} corresponds the alphabet of the generating
series {z1, ..., zn} (if there are several transitions labeled t;, they all correspond to the
same letter z;),

PI nl1781
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e to a token in the place p; corresponds a (real) constant x; (which may be considered a
formal variable),

e to the firing sequence firing the transitions t;,,...,t;, and ending at the marking
M(p) = (ki,...,km) corresponds the monomial ([}~ , xf) ( H§:1 K(ti,))zi, - Ziy»

e the generating series G is the formal sum of the monomials corresponding to all the
possible transitions in the net.

In particular, the support of the generating series is the language of traces of executions
of the Petri net, whereas the coefficients code the markings. So the generating series is a
generalization of this concept which take into account the different ways to obtain a given
word.

Definition 3.5. A weighted Petri net structure is a quintuple WPNS = (P, T,K,F, W),
where the elements are the same as above, except that no initial marking is specified.

4 Weighted Petri nets and polynomial dynamical sys-
tems

Definition 4.1. A dynamical system is called polynomial if its right-hand side is polynomial
in the states.

Theorem 4.2. The generating series of polynomial dynamical systems are the same as the
generating series of weighted Petri nets having the property that each transition has exactly
one input place with arc weight 1. The correspondence is the following ;

e the places p; of the Petri net correspond to the states x; of the dynamical system,

e the transitions t; correspond to the input functions u;(t) of the dynamical system (the
same transition may appear several times in the net),

e the initial marking (k1,...,kn) corresponds to the output function []x;(t)* of the
dynamical system (note that any dynamical system can be rewritten, by adding new
states, in such a way so that there is only one monomial in the output),

o the summand Auy(t) [[x;(t)™ on the right-hand side of the equation for the state x
corresponds to the transition labeled ti having the following properties : its weight is
A, it has a single input place p; with arc weight 1, its output places are the p; for j
with n; # 0, and the weights of the arcs leading to p; are ezactly n;,

e the token values x; in the generating series of the net correspond to the initial condi-
tions x;(0) = x; of the dynamical system.

Irisa



Weighted Petri nets and polynomial dynamical systems 7

The proof is done by recursion. We present the proof in the “classical” case when all the
transitions have different labels. The more general case is proven in a similar manner, thus
several possible transitions have to be considered at the same time.

The coefficients of the empty word A are the same. Now let us take a firing sequence
tiys... b, of length k ending at the marking M = (l1,...,ly). Its contribution to the
generating series of the Petri net is C'( [, @)z, -+ -z, for some C. By the recursion
hypothesis, the corresponding term in the dynamical system is the same, and it was obtained
as (vy, 00 vy, 05(t)],_ )z, - Ziy-

Now we want to calculate the coefficient of the word z;, - " 2 %4, There are two
possibilities. If the transition ¢;,_, is not firable, this coefficient is zero. The Lie derivative
of w(t) = CT[;%; 2;(t)" with respect to v;,,, vanishes, too. If t;, , is firable leading to the
marking M = (p1,...,pm), then this coefficient is C' - K (t;,,,) [[;~, #¥". Applying v, ,, to
w(t), we obtain C' - K (t;,,,) [Ti~, =i (t)P?, thus concluding the proof. O

Example 4.3.

r = u1ry + qu2

y/ _ U3I2
/

2= ugyz
S =2z

t1

Remark 4.4. Omitting the initial marking for the Petri nets and the output function
for the corresponding dynamical systems, we obtain a relationship between the Petri net
structures and a class of dynamical systems where the output function is not specified.

5 Weighted Petri net structures and polynomial dynam-
ical systems

If a transition in a Petri net structure has more than one input place, or if an input arc weight
at a transition is different from 1, we can study whether there is a polynomial dynamical
system in which the states correspond exactly to the places of this net. If this property

does not hold in general, it may at least hold for certains initial markings. The following
algorithm can be used for a given marking.

Algorithm 5.1.

1. describe all the markings reachable from the initial marking,

PI nl1781



8 Foursov € Hespel

2. construct the reachability graph with arc labels kz; (where k is the weight of the fired
transition), the summits are labeled by products of tokens,

3. construct the corresponding dynamical system (which may be infinite if the net is not
bounded), where the state s,, corresponds to the summit S,,,

4. correspond to the summit S, = [T X} the product s, (t) = [T2;(t)",
5. replace all the s,(¢) in the above dynamical system by these expressions,

6. if there are places such that all the output transitions have only one input place with
arc weight 1, add the differential equations corresponding to these places,

7. using differential algebra, reduce this system (assuming that all z;(t) # 0),

8. if the reduced form contains only polynomial differential equations in the states, we
obtain the corresponding polynomial dynamical system, otherwise such a polynomial
system does not exist.

Remark 5.2. To study the same problem for a Petri net structure, this algorithm should
be at first applied to several initial markings in order to see whether the behavior changes
with the initial marking. If it does not change, the formal general behavior has to be proven
by other means.

In the remainder of this section we present 5 examples which are typical of the rela-
tionship between Petri net structures and polynomial dynamical systems. The transition
weights are all equal to 1.

Example 5.3. Consider the following simple Petri net, :

o

Y t

Its reachability graph is

. 21 . 221 . 321 . 421

The corresponding infinite dynamical system is
(Y1) =nu(y®)"*,  n=1

which reduces to a single polynomial equation y(t)" = uy(¢)y(t)? with the output condition
s = y(t). Since all markings are reachable from this initial marking, this diffential equation
is the dynamical system corresponding to the above Petri net structure. [

Example 5.4. Consider the following Petri net :

Irisa



Weighted Petri nets and polynomial dynamical systems 9

B

Its reachability graph is

. 21 . 321 . 621 . 10z

The corresponding infinite dynamical system is
(y(®)™) =n(n — Duy (t)y(t)" /2, n>2

which reduces to the system {y(t)’ = 0,uy(¢)y(t) = 0}. There is thus no polynomial dy-
namical system corresponding to this net. The same is true for any other initial marking.
0

Example 5.5. (the correspondence works with an equivalent Petri net, but only for certain
initial markings) Now, consider the following Petri net structure :

151

The reachability graph for the initial markings Y Z" is

PI nl1781
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which is not polynomial, but rational. However, since z(t) is a constant, this is not a real
problem for this initial marking, as an equivalent Petri net can be easily found. However,
it gives a hint that the writing may be impossible for other initial markings and that it
is impossible to devise an equivalent Petri net in which each transition has only one input
place. Indeed, for the initial marking Y2Z™ we have :

markings where | X|+|Y| > 1. Therefore, this Petri net structure does not have an equivalent
dynamical system. [

Example 5.6. (Petri net with dead transitions) Now, consider the following Petri net
structure :

o

For the initial marking X the reachability graph is

Uy us

uz us

Irisa
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So the corresponding system is

2(t) = us(t)y(t) + ua(t)=(t)
y(t) = ua(t)a(t)
(1) = us(t)=(1)

s =alt),

which corresponds to the net above without the transition ¢;. This transition is actually
dead for this initial marking, so it can be simply ignored. However, this is not the case for
other initial markings. For the initial marking X X, the reachability graph is

The corresponding system contains the above system, but also a non—differential equation

Example 5.7. (same compatibility condition for any initial marking) Finally, let us consider
the following Petri net structure with the initial markings X7 and Y ZV.

; O b

The reachability graphs are respectively

PI nl1781
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The obtained systems are not equivalent, but the reduced system contains the same
non—differential constraint

in both cases. This compatibility condition is moreover obtained for any initial (live) mark-
ing. O

Remark 5.8. However, as it could be noted in the cases above, even when there is no
polynomial dynamical system which can be directly obtained from the Petri net structure,
the generating series may still be one of a polynomial dynamical system. For example, the
generating series of any bounded Petri net is rational. It is obvious from the fact that the
reachability graph is in fact a finite weighted automaton and thus the formal power series
recognized by it is rational.

6 Classes of Petri net structures directly corresponding
to polynomial dynamical systems

Definition 6.1. A Petri net structure belongs to the class PDS if each transition has only
one input place with arc weight 1.

Remark 6.2. The states machines clearly belongs to the class PDS.

Remark 6.3. The class of marked graphs is not a subset of PDS. The following net is the
simplest counterexample.

Trisa
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to

It is not hard to see that this Petri net structure does not correspond to a dynamical
system, even though there are (different) dynamical systems corresponding to any initial
marking.

The examples show that a Petri net structure may have a corresponding dynamical
system if it involves only the transitions of the form

and

tq to t3

where t; and t5 have no other input places, whereas Y and Z have no other output tran-
sitions. The non—differential equations in the examples above come from the transitions
where at least one of these properties is violated. For example, the example 5.7, there is the
following conflict :

ta 2}
even though this conflict does not happen for the initial marking X 7.

Example 6.4. The existence of several input places to a transition may or may not be an
obstruction to rewriting it in polynomial form. Let us for example consider the following

Petri net (a marked graph) :
€)= ()

ta
As long as there are some tokens in the place X, the transition ¢; is always firable. So we
can replace the above net by the following equivalent net :

PI nl1781
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® ()

2
where k is the (initial) number of tokens in the place X. The latter net behaves exactly
in the same way as the former one, but it corresponds directly to a polynomial dynamical
system. []

Conjecture 6.5. A (weighted) Petri net corresponds to a polynomial dynamical system if
and only if it can be transformed to a net of the class PDS by eliminating the self-loops at
the nodes that have no other input and output arcs except for these self-loops.

7 Symmetries of dynamical systems and invariants of
Petri nets

Definition 7.1. Let ¥ be a system of ordinary differential equations x'(t) = F(t). A Lie
symmetry group of the system X is a local group of transformations G acting of the space of
independent and dependent variables for the system with the property that whenever x = £(t)
is a solution of X, then x = g-f(t) is also a solution of the system (here g-£(t) denoted the

group action). In other words, a symmetry group sends solutions of X to (other) solutions
of X.

In what follows, we will use the term “Lie symmetry” or simply “symmetry” for the
infinitesimal generators of the symmetry group. This point of view is equivalent to the above
definition. The infinitesimal generators of the symmetry group are vector fields tangent to
the hypersurface defined by the system in the jet space (for more details see [10, 2]). The
symmetries are found by applying the prolonged vector field to the equations of the system
and restricting the obtained formula to the hypersurface defined by the system [10, 2].

Definition 7.2. An invariant of a group action is a real-valued function h(t,x) such that
h =g - h. In other words it does not change under the group action.

The invariants vanish under the action of the infinitesimal generators of the group action.
Therefore, a method of finding them is resolving the system v;(h) = 0 for all infinitesimal
generators v; of the group action.

Theorem 7.3. Consider a weighted Petri net structure from the class PDS. Then
i = > kiN(p;) is an invariant of this net (where N(p;) is the number of tokens in the

0
place p;) if and only if v = Z k’z%a— is a Lie symmetry of the corresponding dynamical
T4

system. Such symmetries are called scaling symmetries.

Trisa
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The proof of the theorem is straightforward : it is easy to see that the system of linear
equations used to find the place invariants for a Petri net is the same as the system used to
find the scaling symmetries of the corresponding dynamical system.

) ) o
’
(2) hy

0
#X ++#Y is the invariant of the net, whereas x— +ya— is a Lie symmetry of the dynamical
Y

Example 7.4.

SRS
I
o g =
[\~
g
IS

ox

system. (Note that in the theory of Lie symmetries the vector fields are usually noted

0 0
o + ba_y rather than (a,b)).

Example 7.5.

= u1x2y23

= uQ:UyQ

is a Lie symmetry of the dynamical

9
Y3y

0
#X —#Y is the invariant of the net, whereas :ca—
x

system.

Proposition 7.6. Consider a weighted Petri net structure from the class PDS. Then
i=> kiN(p;) + k:N(t) is an invariant of this net (where N(p;) is the number of token in

0 0
the place p; and N(t) the number of fired iterations) if and only if v = kit e + Z ki iTig

is a Lie symmetry of the corresponding simplified dynamical system in which all the mputs
u;(t) are considered constant.

. 0 . . . .
Proposition 7.7. v = — is a symmetry of a dynamical system if and only if there are no
X

input transitions at the place X in the corresponding Petri net.

Theorem 7.8. Suppose the monomial f(x1,...,x,) is the only invariant of the Lie symme-
try group of a polynomial dynamical system with arbitrary inputs w;(t). Then f(X1,...,X,)
is a token distribution in the corresponding Petri net which only repeats itself during any
firing sequence (in other words it is a implicit place). In the case the only invariant f is
polynomial, we need to consider the sum of tokens in several Petri nets with the same struc-
ture, but different initial markings. In the case of a rational invariant, an equivalent Petri
net can be given such that this invariant becomes polynomial.

PI nl1781
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The proof is based on a result from the Lie symmetry theory. For a first—order system
of ODEs, the first derivative of an invariant can be expressed in terms of all the invariants
of the system. As there is only one invariant in our case, and as the system is polynomial,
it is straightforward to transpose this result to the Petri nets.

Example 7.9. Let us consider the example 7.5 without the place Z. zy is the only invariant

under the symmetry :E2 —y—, since :EM — yM = 0. The initial marking XY gives
ox oy ox oy

the following reachability graph :

Thus the only reachable markings are powers of XY

Remark 7.10. In the case of several invariants, the situation becomes more complicated.
In the Lie symmetry theory, one construct a minimal family of functionally-independent
invariants. However, the derivatives of any invariant can be expressed as a function of
the other invariants, but not necessarily a polynomial one. This leads us to the following
definition.

Definition 7.11. Let G a transformation group. We call a (finite) family of invariants
polynomially independent, if any invariant of G can be expressed as a polynomial in the
members of this family. Note that such a family may well be functionnally dependent or
functionally independent.

Theorem 7.12. Let ¥ be a dynamical system and let {v1,...,vs} be its Lie symmetry
group. Suppose there exists a family of polynomially—independent polynomial invariants
{filx1, ... xn),. oy frlxr, ... xn)} of this group. Then f1(Xq1,...,Xn), ..., fr(X1,..., X})
are implicit places for the corresponding Petri net structure.

8 Conclusion

In this article we present a new relationship between a subclass of Petri nets and polynomial
dynamical systems, via their generating series. It allows us to express several properties of
Petri nets in terms of the properties of the corresponding dynamical systems.

A interesting direction to follow is to enlarge this relationship to a more general class of
Petri nets and dynamical system. Other direction could be to describe Petri net structures
possessing at least some initial markings whose generating series correspond to a polynomial
dynamical system.

Irisa
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