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Abstract 

A method is presented to evaluate the detection performance of real-time QRS detection algorithms to propose a 

strategy for the adaptive selection of QRS detectors, under variable signal contexts. Signal contexts are defined 

as different combinations of QRS morphologies and clinical noise. Four QRS detectors are compared under 

these contexts by means of a multivariate analysis. This evaluation strategy is general and can be easily extended 

to a larger number of detectors. 

A set of morphology contexts, corresponding to 8 QRS morphologies (Normal, PVC, premature atrial beat, 

paced beat, LBBB, fusion, RBBB, junctional premature beat), has been extracted from 17 standard ECG records. 

For each morphology context, the set of extracted beats, ranging from 30 to 23000, are resampled to generate 50 

realizations of 20 concatenated beats. These realizations are then used as input to the QRS detectors, without 

noise, and with 3 different types of additive clinical noise (electrode motion artefact, muscle artefact, baseline 

wander) at 3 signal-to-noise ratios (5dB, -5dB, -15dB). Performance is assessed by the number of errors, which 

reflects both false alarms and missed beats.  

The results show that the evaluated detectors are indeed complementary. For example, the Pan and Tompkins’s 

detector is the best in most contexts but the Okada’s detector generates less errors in presence of electrode 

motion artefact. These results will be particularly useful to the development of a real-time system that will be 

able to choose the best QRS detector according to the current context.  

 

Keywords: ECG analysis, QRS detection, algorithms evaluation, best algorithm selection, real time 

signal monitoring  
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1. Introduction 

Electrocardiogram (ECG) analysis is an important tool in the management of cardiac diseases. One of the most 

relevant tasks in automatic ECG analysis is the detection and characterization of every wave, particularly of the 

QRS complex, after which a more complete analysis can be obtained (PASSARIELLO et al., 1993; CARRAULT et 

al., 2003). Therefore, choosing the QRS detection algorithm is an essential step in the development of a real-time 

ECG analysis system. Experience, over several years, shows that the proposed strategies for ECG analysis and 

particularly for QRS complex detection based on signal processing techniques, have reached an asymptotic 

detection performance. This is mainly due to the multiplicity of situations met in clinical environments. An 

alternative would be to use the best detection algorithm, according to the current context. A first step to reach 

this objective is to develop an evaluation methodology to compare different QRS detectors under a combination 

of noise and QRS morphologies. 

Some quantitative performance comparisons of QRS detectors are presented in the literature (POLI et al., 1995; 

KADAMBE et al., 1999; BENITEZ et al., 2001). These evaluations are usually performed on a set of records 

extracted from standard ECG databases (such as the MIT-BIH, CSE, AHA, ) and are based on detection 

scores, generally expressed as sensitivity-specificity pairs. An average score, calculated over a set of different 

records, is assumed to reflect the overall performance of the detectors. A limitation of this method is that an ECG 

is composed of multiple noise levels and types, and a variety of beat morphologies. As reported by KOHLER et 

al. (2002), an average score hides the problems that are still present in case of noisy or pathological signals 

because it does not explain what are the specific features of the ECG that affect the detection. Moreover, a 

reliable comparison implies that QRS detectors performance evaluation must be done from the same test signal 

database, which is not the case in the literature.  

A good example of a study comparing QRS detectors is FRIESEN et al. (1990). They compared nine simple QRS 

detection algorithms with respect to a gold standard ECG waveform. This waveform was corrupted with five 

types of artificial noise, modelling typical clinical noise. The authors concluded on the best of the nine QRS 

detectors, by comparing their average performance and clearly exhibited that each detector performance is 

related to the noise context. However, this study does not taken into account neither the filtering stage, nor the 

effect of QRS morphologies. Other studies have taken into account the influence of clinical noise, such as in SUN 

et al. (2002) with simulated noise or MOODY et al. (1984) with experimental noise. Nevertheless, the influence 

of QRS morphologies on the detector performance was not evaluated. NYGÅRDS and SÖRNMO (1981) studied the 

distance between manual and automatic QRS delineation methods, adding gaussian noise at different signal-to-
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noise ratios, but this work was limited to only two QRS morphologies and two different methods (manual and 

automatic). This brief state of the art shows that current comparisons, reported in the literature, do not evaluate 

the QRS detectors sensitivity to the global signal context (beat morphology, noise, etc.). 

This work presents a methodology to compare a set of QRS detectors under different noise conditions and 

QRS morphologies, in order to determine the best detector for a given context. Such an evaluation would be 

useful for the inference of general algorithm selection rules for on line monitoring. A signal context is defined 

here as a particular combination of noise and QRS morphologies. A change of the noise energy or a change of 

the QRS morphology within an ECG record implies a change of context. To create different context signals, 

typical clinical noise and QRS morphologies were extracted from actual ECG records. Since the filtering stage is 

taken into account in every real application of QRS detection, the ECG waveform was filtered in order to reduce 

noise. The tested detectors were chosen considering both complexity and efficiency but prioritising the low 

complexity against the efficiency, since the paper is devoted to real-time cardiac monitoring.  

The next section introduces the databases, the filtering stage, and the evaluated QRS detection algorithms. 

Then, the method to generate the context database, considering both noise and QRS morphologies, is described. 

In the same section, the scoring criterion, which is the number of errors generated under each context, is detailed. 

Finally, the results of the principal component analysis on the score data are presented. 

2. Material  

2.1. The databases 

ECG signals were excerpted from the MIT-BIH Arrhythmia Database (MBAD) (MARK and MOODY, 1988). The 

clinical additive noise was extracted from the MIT-BIH Noise Stress Test Database (MOODY et al., 1984). Noise 

was recorded on physically active volunteers using standard ECG recorders, leads, and electrodes in positions in 

which the ECG of the subjects was not visible. Three noise records were generated (see Fig. 1, b, d, and f), by 

selecting intervals that contained predominantly baseline wander (bw), muscle (EMG) artefact (ma), and 

electrode motion artefact (em). 

2.2. Filtering stage 

It is based on the work of SENHADJI et al. (1992). Succinctly, using a multiresolution analysis, the signal is 

reconstructed from only the details corresponding to the QRS complex spectrum band (1.9, 45 Hz). This step is 

very important because the filter distorts the ECG signal (JENKINS and CASWELL, 1996) and consequently, the 

performance of the QRS detectors depends also on the quality of the pre-processing filter (Fig. 1, e). 
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--Figure 1-- 

 

2.3. Evaluated QRS detection Algorithms 

Many QRS detection schemes are described in the literature (OKADA, 1979; FRADEN and NEUMAN, 1980; PAN 

and TOMPKINS, 1985; GRITZALI, 1988; POLI et al., 1995; SILIPO and MARCHESI, 1998; KADAMBE et al., 1999; 

WIEBEN et al., 1999; DASKALOV and CHRISTOV 1999) and are still being proposed (BENITEZ et al., 2001; BURKE 

and NASOR, 2004; DOTSINSKY and STOYANOV, 2004). Since it would be impracticable to compare all of them, 

only four were selected according to these criteria: ability to work in real-time, ease of implementation, 

robustness to noise, and knowledge of their performance in noiseless situations. The four chosen detectors were 

those proposed by PAN and TOMPKINS (1985) (P&T), GRITZALI (1988), FRADEN and NEUMAN (1980), and 

OKADA (1979). FREISEN et al. (1990) presented those of FRADEN and NEUMAN (1980), and OKADA (1979) as 

AF2 and DF2 in their study; they demonstrated that these detectors are sensitive to different types of noise and 

are, in this sense, complementary. This selection enabled us to compare our results to those of FRIESEN et al. 

(1990).  

 

3. Method  

This section describes the generation of the context signals and the scoring criteria. 

3.1. Context generation 

To build the test signals database, different types of QRS morphologies were combined with additive clinical 

noise. The original QRS waveforms were extracted from 17 records of the annotated MBAD. These records 

were chosen because of their recording quality and the presence of different QRS morphologies. To simulate the 

real time buffer, segments of 20 QRS, usually around 23 seconds, were built. This corresponds to the typical 

length of 8192 samples (FRIESEN et al., 1990) for a sampling frequency of 360 Hz. Only the data recorded by the 

Modified Lead II (MLII) were used. 

 

Firstly, we construct the context called the morphology contexts. Eight QRS morphology signals, containing 

complexes of one type only, ranging from 30 to 23000 QRS segments, were extracted from 17 MBAD records 

(Tab. 1). To preserve the RR interval between two adjacent QRS, the samples of the nth QRS segment were 

extracted from the original record interval: 
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 where the variable  controls the power of the noise and P(X) is the power of  X. To remove as much original 

noise as possible, the original ECG was filtered, as described in 2.2, before the addition of the noise. 

Uncorrupted morphology contexts were also tested. A total of 4000 realizations for 80 contexts were obtained. A 

typical context is shown in Figure 1 (c). 

-- Table 1 -- 

3.2. Scoring criterion  

The evaluated QRS detection algorithms are based on a non-linear transformation of the ECG signal, followed 

by thresholding. Only the transformation stage of each algorithm was applied to each buffer of 20 QRS. To 

better compare the detection results, a set of threshold values was chosen for each algorithm under each context, 

rather than using the original threshold definitions. For further details about these algorithms, the reader is 

invited to consult the corresponding references. 

 

An event is detected if a segment of the signal is above the threshold  and the occurrence of this event is the 

date of the sample presenting the maximum amplitude in this segment. If an event belongs to a window of 128 

ms around the QRS annotation, then it is labelled as a True Positive (TP), otherwise it is labelled as a False 

Positive (FP). If two or more events belong to a same window, only one is labelled TP, the others are ignored. 

False Negatives (FN) are the QRS annotations not associated to any event (i.e. the event is missed). The 

probability of detection (Pd) and the probability of false alarm (Pfa) are computed as: 

T

FP

FNTP

TP

N

N
Pfa

NN

N
Pd

)(
)(,

)()(

)(
)(







 


  



MS no 04/102 

 7 

where N. is the number of TP, FN, FP for the given threshold , and NT is the maximum number of false 

alarms for the whole set of thresholds under the hypothesis of QRS absence. The scoring criterion, to evaluate 

the detectors, is the number of errors (Ne) defined as:  

 *)(*)(  FNFP NNNe   (1) 

where * is the optimal threshold value, estimated from Receiver Operating Characteristics curves (i.e. the Pd 

versus Pfa curves), and corresponds to the nearest point of the ideal detection point (i.e. Pfa = 0; Pd = 1) 

(HERNÁNDEZ et al., 1999). 

 

3.3. Analysis of the results 

Ne values were calculated for all the combinations of R signal realizations, D detectors, M morphologies and N 

types of noise totalling RxDxMxN Ne values. The number of Ne values grows considerably with the number of 

contexts and the interesting results could be difficult to analyse in such an amount of data. That is why a 

Principal Components Analysis (PCA) was performed to analyse the results. The aim of PCA is to represent a 

large set of multidimensional data in a smaller space, by maximizing the inertia for each orthogonal direction 

(KRZANOWSKI, 1998).  

If Mn,p is a matrix of n statistical individuals described by p quantitative variables, Xn,p is a matrix of Mn,p where 

the variables are reduced-centred. In this particular case, the eigenvectors a
k

p,1 of X
T
X,  k  {1, 2, …, p}, are 

the principal factors and 
k

n,1 = Xn,pa
k

p,1,  k  p is the k
th

 principal component that corresponds to the 

individuals of X projected on the k
th

 orthogonal axis (i.e. the coordinates). The explained variance 
k
 of the k

th
 

axis is equal to 
k
/p, 

k
  [0,1], ( 

k
/p =1) where 

k
 is the k

th
 eigenvalue of X

T
X. The higher the value of 

k
, the 

better the 
k
 resumes the p variables of X. 

In this application, the matrix to analyze is constituted of Ne values of the 4 detectors, for all combinations of 

QRS morphologies and noise levels and types. Values of 
k

n,1 are thus a linear combination of the reduced-

centred version of this matrix by the corresponding eigenvector a
k

p,1, representing a synthesis of all the variables. 

In this sense, each axis reflects a particular combination of the original Ne data. The most predominant Ne 

variables for a given axis k, can be identified by calculating the correlation between the k
th

 principal factor a
k 

and the j
th

 variable x
j
: Corr(a

k
,x

j
) = a

k
j


 and by selecting the highest correlation values. 

 

 

3.4. Resampling (pseudo-bootstrap) algorithm to compute score of contexts  
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Init. Experiment: For a given morphology context, suppose a set Q of BT beats of K samples. 

Step 1 Resampling: Draw a random selection of B beats (B=20), with replacement, from Q to obtain the 

resampled population Q*.  

 

Step 2 Linking: Concatenate the B beats of Q* using a sigmoid function on several samples so as to minimize 

the baseline shift between two adjacent beat segments as in WENDLING et al. (1997). 

 

Step 3 Addition of noise: Corrupt the concatenated beats by real additive noise at a specific Signal-to-Noise 

Ratio to obtain S. The added noise segment is chosen randomly from a specific noise record of the MIT 

noise stress database. For the generation of uncorrupted morphology contexts, the step 3 is ignored. 

 

Step 4 Filtering: Filter S using the filter described in section 2.2 (filtering stage) to obtain the signal S’. 

 

Step 5 Calculation of the score: Use S’ as input of each one of the detectors. The score is the number of error 

(Ne) computed using (1). 

 

Step 6 Repetition: Repeat steps 1 to 5 to obtain R realizations (R=50) of the same context. 

 

Step 7 Repetition: Repeat the algorithm for each given context to collect all the scores. 

 

Step 8 Presentation of the results: Project all the scores on principal axes (PCA) to visually analyse their 

dispersion. 

 

4. Results  

Ne values were calculated for all the combinations of the 50 signal realizations, 4 detectors, 8 morphologies and 

10 types of noise, totalling 16000 Ne values. These Ne values were organized into two different matrices: 

 M1: This matrix is composed of Ne values for the 4 QRS detectors, applied to the 50 signal 

realizations, (200 rows) and 80 columns, corresponding to the combinations of the 8 morphologies and 

10 types of noise.  This forms a matrix of 200 individuals described by 80 variables. 

 M2: Rows are the 50 realizations of each context (50x8x10 = 4000) and columns are the four detectors. 

This forms a matrix of 4000 individuals described by 4 variables. 

PCA has been applied to these matrices in order to study: 1) the dependence of detector performance with 

respect to the contexts (PCA of M1) and 2) the contexts according to the detectors performance (PCA of M2).  

For each PCA, four particular context type groups have been analysed: the QRS morphology context (i.e. 

contexts without noise), the baseline wander noise context (bw at all SNR), the muscle artefacts context (ma at 

all SNR), and the electrode motion artefact context (em at all SNR). In each case, the two principal components 

(i.e. the projected individuals) were plotted, according to their explained variation. For each group of context 

types, different symbols were used and two properties were looked after: the barycentre, which gives information 

about the quality of the detection (plotted in bold black) and the dispersion, which gives information about the 
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robustness of the detection. To interpret the meaning of the PCA axes, examples of subsets of correlation values 

for the two main axes along the initial variables are shown in Tab. 2 and Tab. 3. 

 

4.1 Detectors performance according to the contexts (M1) 

Five PCA were performed on M1, one for the global data matrix, and one for each context type. Concerning 

PCA on global contexts (Fig. 2), the first axis is mostly correlated to the Ne values of ma noise at low SNR 

levels, while the second axis is correlated to the Ne values of ma noise contexts versus em noise contexts (see 

correlations Tab. 2). The first axis (
1
= 25.6%) shows that P&T and Gritzali are superior to AF2 and DF2. The 

second axis (
2
= 11.6%) shows that AF2 is particularly sensitive to em noise, DF2 is particularly sensitive to ma 

noise, and P&T and Gritzali are less sensitive to noise than DF2 and AF2 (coordinates near zero). In order to 

obtain a comparison of these detectors on specific contexts, four additional PCA have been performed:  

 PCA on QRS morphology contexts (
1 

= 32.8% and 
2 

= 13.6%): It emphasized the dispersion of AF2 and 

DF2, whereas the Gritzali and P&T present similar low Ne values.  

 PCA on bw noise contexts (
1 

= 26.2% and 
2 

= 9.76%): It showed the particularly poor performance of 

AF2.  

 PCA on ma noise contexts (
1 

= 43.8% and 
2 

= 17%): This analysis showed that detectors are well 

separated. The P&T is the best according to its low Ne.  

 PCA on em noise contexts: The first axis is related to the medium SNR level contexts while the second axis 

is correlated to low SNR values (Tab. 3). P&T and Gritzali present low Ne on the first axis (
1
= 21.8%) but 

are well separated on the second axis (
2
= 15.2%) where DF2 shares particularly low Ne with P&T (Fig. 3).  

-- Table 2 -- 

-- Figure 2 -- 

-- Table 3 -- 

-- Figure 3 -- 

 

4.2. Contexts influence on the detectors performance (M2) 

PCA on morphology contexts (Fig. 4) emphasizes the differences between the detection performance of 

premature Ventricular contraction beats (V), Fusion of ventricular and normal beats (F), Left bundle branch 

block beats (L), and the rest of the QRS morphologies. For the first axis (
1 

= 60.8%), the correlation 
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Corr(a
1
,X) = [-0.53 -0.84 -0.84 -0.86]

T
, where the values are respectively associated to the variables of 

X [AF2 DF2 Gritzali P&T], indicates that the first axis  represents the global performance of all detectors. The 

barycentre coordinate on the first axis of the V beat is negative (-3.43 ±0.99) and its high dispersion shows the 

lack of robustness of all the detectors for this QRS morphology. The barycentre and the dispersion of the F beat 

coordinate (-0.24 ±0.67) point out the difficulty to detect this kind of beat. The R (0.89 ±0.02) and J (0.81 ±0.11) 

beats present the lowest dispersions. The second axis (
2 

= 20.4%) is mainly correlated to AF2 (Corr(a
2
,X) = [-

0.84 0.01 0.21 0.23]
T
) and enhances the poor detection performance of this detector for the L beat.  

-- Figure 4 -- 

 

Similar tests were performed for baseline wander noise, muscle artefact, and electrode motion artefact at 

different SNR levels (5 dB, -5dB, -15 dB). These results show that bw does not affect significantly the detector 

sensitivity while, in presence of ma or em, the detector sensitivity becomes highly signal-to-noise dependent. 

More specifically, the P, V, and L beats are harder to detect with em and ma noise than the other beats whatever 

the SNR level. 

4.3. Overall analysis and discussion 

PCA results highlight the interesting data present in the raw results. A low average number of errors (Ne<0.19) 

is observed for the R and J beats for uncorrupted QRS waveforms. A medium score is estimated for the QRS 

complexes corresponding to the N, A, and P types (0.2<Ne<0.4) while V and F beats cause a high number of 

errors (Ne>1.4). The ma noise decreases all the performances and the differences induced by the morphologies 

are no longer perceivable at -15dB. The em noise is quite disruptive and emphasizes the dispersion of QRS 

detection for different morphologies.  

AF2 and DF2 show a lot of disparity in the results according to the QRS morphologies. AF2 is better than DF2 

for N beat and DF2 is the best for A, P, L, R and J beats. But both are very ineffective for V (Ne>5) and F 

(Ne>2.45) QRS complexes. AF2 presents particularly poor performance (Ne>9) for L beats. As FRIESEN et al. 

(1990), we observed that DF2 is better than AF2 in presence of bw noise while AF2 is better than DF2 in 

presence of ma noise. Moreover, our study shows that DF2 is still better than AF2 in the presence of em noise. 

P&T is the best detector (partly because of its band pass filter) whatever the morphology of the QRS complex, 

excepted for the V and the F morphologies, without noise and with bw noise, where Gritzali exhibits a better 

detection performance. However, both algorithms show a very poor performance for the V beats (Ne>3). In 

presence of em noise, P&T could be substituted by DF2 for several QRS morphologies (N, A, V, Paced).  
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A limitation of this study is related to the fact that the P, L, R, and J beats have been extracted from less than 

three patients, whereas the others beats have been obtained from five patients at least (see Table 1). This could 

occasion a bias in the study of the generated morphology contexts. However, results emphasize that the 

performance of the evaluated detector depends on the signal context. These results could be used to state 

algorithm selection rules such as: 

If <noise is bw or no noise> and <morphology is likely to be V or F> then use Gritzali 

If <noise is em at –15 dB> and <morphology is likely to be N or A or V or Paced> then use DF2 

5. Conclusion 

This paper has presented a new method for comparing QRS detectors, which takes into account the direct 

consequences on detection performance due to beat morphologies (and their corresponding differences in 

frequency contents) and clinical noise. The major goal has been to propose a robust methodology to determine 

which is  the best QRS detector in a particular context. The results show that the evaluated QRS detectors are 

complementary. For example, the Pan and Tompkins’s detector is the best in most contexts but the Okada’s 

detector generates less errors in presence of electrode motion artefact. 

The consequences of the transition between two different QRS morphologies were not studied but could be 

assesed to improve the method. Even if the study is limited to simple algorithms here, the method is general and 

other detectors such as those recently proposed (BENITEZ et al., 2001; BURKE and NASOR, 2004; DOTSINSKY and 

STOYANOV, 2004) and described by KOHLER et al. (2002), could be evaluated in the same manner. Moreover, the 

methodology is not restricted to the QRS complex and could be applied to other ECG signal waves (P waves 

detection algorithms) or to other biomedical signals such as EEG waves detection (spikes detection algorithms).  

This work shows that an improved QRS detection performance can be obtained by selecting the most appropriate 

algorithm for a given context (SHEKHAR et al. , 1994) based upon, for example, the selection rules proposed above. 

Obvioulsy, the implementation of this kind of approach depends on the correct estimation of the current signal 

context (noise and expected QRS morphologies). This is part of our current work that will lead us to the 

development of a strategy of QRS detector driving in real time monitoring. 



MS no 04/102 

 12 

Acknowledgments 

The authors wish to thank Pr. M.-O. Cordier, Dr. R. Quiniou and Dr. E. Roux, for their thoughtful comments. 



MS no 04/102 

 13 

References 

BENITEZ, D., GAYDECKI, P., ZAIDI, A., AND FITZPATRICK, A. (2001):  ‘The use of the Hilbert transform in ECG signal 

analysis’, Comput. Biol. Med., 31, pp. 399–406       

BURKE, M., AND NASOR, M. (2004): ‘Wavelet based analysis and characterization of the ECG signal’, J. Med. Eng. Technol., 

28(2), pp. 47–55     

CARRAULT, G., CORDIER, M.-O., QUINIOU, R., AND WANG, F. (2003): ‘Temporal abstraction and inductive logic programming 

for arrhythmia recognition from electrocardiograms’, Artif. Intell. Med., 28, pp. 231–263   

DASKALOV, I. K., AND CHRISTOV, I.I. (1999): ‘Electrocardiogram signal preprocessing for automatic detection of QRS 

boundaries’, Med. Eng. Phys., 21, pp. 37–44   

DOTSINSKY, I.A., AND STOYANOV, T.V. (2004): ‘Ventricular beat detection in single channel electrocardiograms’, Biomed. 

Eng. Online, 3(1) 

FRADEN, J., AND NEUMAN, M. (1980): ‘QRS wave detection’, Med. Biol. Eng. Comput., 18, pp. 125–132   

FRIESEN, G., JANNETT, T., JADALLAH, M., YATES, S., QUINT, S., AND NAGLE, H. (1990): ‘A comparison of the noise sensitivity 

of nine QRS detection algorithms’, IEEE Trans. Biomed. Eng., 37, pp. 85–98  

GRITZALI, F. (1988): ‘Towards a generalized scheme for QRS detection in ECG waveforms’, Signal Process., 15, pp. 183–

192   

HERNÁNDEZ, A.I., CARRAULT, G., MORA, F., THORAVAL, L., PASSARIELLO, G., AND  SCHLEICH, J.M. (1999): ‘Multisensor 

fusion for atrial and ventricular activity detection in coronary care monitoring’, IEEE Trans. Biomed. Eng., 46(10), pp. 

1186–1190 

JENKINS, J.M., AND CASWELL, S.A. (1996): ‘Detection algorithms in implantable cardioverter defibrillators’, Proc. of the 

IEEE, 84(3), pp. 428–445 

KADAMBE, S., MURRAY, R., AND BOUDREAUX-BARTELS, F. (1999): ‘Wavelet transform-based QRS complex detector’, IEEE 

Trans. Biomed. Eng., 46(7), pp. 838–848   

KOHLER, B.-U., HENNIG, C., AND ORGLMEISTER, R. (2002): ‘The principles of software QRS detection’, IEEE Eng. Med. Biol. 

Mag., 21(1), pp. 42–57 

KRZANOWSKI, W. (1998): ‘Principles of multivariate analysis’, ATKINSON, A.C., COPAS, J.B., PIERCE, D.A., SCHERVISH, M.J., AND 

TITTERINGTON, D.M. (Eds) ‘Oxford Statistical Science Series’, Oxford University Press, Oxford, U.S., pp. 53-?? 

MARK, R., AND MOODY, G. (1988): ‘MIT-BIH arrhythmia data base directory’, Massachusetts Institute of Technology   

MOODY, G., MULDROW, W., AND MARK, R. (1984): ‘A noise stress test for arrhythmia detectors’, Comput. Cardiol., 11, pp. 

381–384 

NYGÅRDS, M.-E., AND SÖRNMO, L., (1981): ‘A QRS delineation algorithm with low sensitivity to noise and morphology 

changes’, Proc. IEEE Comput. Cardiol., Florence, Italy, pp. 347-350  

OKADA, M. (1979): ‘A digital filter for the QRS complex detection’, IEEE Trans. Biomed. Eng., BME-26, pp. 700–703   



MS no 04/102 

 14 

PAN, J., AND TOMPKINS, W. J. (1985): ‘A real-time QRS detection algorithm’, IEEE Trans. Biomed. Eng., BME-32(3), pp. 

230–236 

POLI, R., CAGNONI, S., AND VALLI, G. (1995): ‘Genetic design of optimum linear and nonlinear QRS detectors’, IEEE Trans. 

Biomed. Eng., 42(11), pp. 1137–1141.  

PASSARIELLO G., MORA F., CARRAULT G., AND LE PICHON J.P. (1993): ‘Intelligent patient monitoring and management 

systems: a review’, IEEE Eng. Med. Biol .Mag., 12(4), pp. 23-33. 

SENHADJI, L., CARRAULT, G., BELLANGER, J.J., AND PASSARIELLO, G. (1992): ‘Some new applications of the wavelet 

transforms’, 14th An. Int. Conf. IEEE-EMBS, Paris, France, 14(6), pp. 2592–2593 

SHEKHAR, C., MOISAN, S., AND THONNAT, M. (1994): ‘Towards an intelligent problem-solving environment for signal 

processing’, Math. Comput. Simul., 36, pp. 347–359  

SILIPO, R., AND MARCHESI, C. (1998): ‘Artificial neural networks for automatic ECG analysis’, IEEE Trans. Signal Process., 

46(5), pp. 1417–1425 

SUN, Y., CHAN, K., AND KRISHNAN, S. (2002):  ‘ECG signal conditioning by morphological filtering’, Comput. Biol. Med., 32, 

pp. 465–479   

WENDLING, F., CARRAULT, G., AND BADIER, J.M. (1997): ‘A comparative study of depth EEG seizure signals: Proposition for 

a method based on a physiologically relevant parameter’, Annal of Biom. Eng., 25, pp. 1026-1039 

WIEBEN, O., AFONSO, V.X., AND TOMPKINS, W.J. (1999): ‘Classification of premature ventricular complexes using filter bank 

features, induction of decision trees and a fuzzy rule-based system’, Med. Biol. Eng. Comput., 37(5), pp. 560–565  

ZOUBIR, A.M., AND BOASHASH, B. (1998): ‘The bootstrap and its application in signal processing’, IEEE Signal Process. 

Mag., 15(1), pp. 56–76 



MS no 04/102 

 15 

 

Table 1 The morphology contexts database 

QRS waveform Symbol 
Number 
of QRS 

MIT-BIH records 

Normal beat N 23703 
100,101,103,106,113,115,119,

122,123,201,205,231, 233 

Atrial 
premature beat 

A 81 
100,101,103,124,201,205,231,

233 

Premature 

ventricular 
contraction 

V 2216 
100,101,106,107,109,111,119,

123,124,201,205,231, 233 

Paced beat P 2078 107 

Left Bundle 
Branch Beat 

L 4615 109,111 

Fusion of 

ventricular and 
normal beat 

F 31 109,124,201,205,233 

Right Bundle 

Branch Beat 
R 2785 124,231 

Jonctional 

premature beat 
J 30 124,201 
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Table 2 Correlation between some variables and the 1
st
 and 2

nd
 axes (a

1
 and a

2
) for the global context (first 

PCA) 

Axis 1 
x

j
 

Morphology* L V P N F P P A P J … 

Type of noise ma ma ma ma ma bw em ma bw ma … 

SNR (dB) -15 -5 -15 -15 -15 -5 5 -15 5 -15 … 

   Corr(a
1
, x

j
) 0,86 0,86 0,86 0,81 0,81 0,77 0,77 0,77 0,77 0,77 0,77 > … 

              

Axis 2 
x

j
 

Morphology A P R L N P J … N V J 

Type of noise ma ma ma ma ma ma ma … em em em 

SNR (dB) 5 5 -5 -5 -5 -5 5 … -15 -5 -5 

   Corr(a
2
, x

j
) 0,79 0,73 0,73 0,67 0,67 0,64 0,61 … -0,55 -0,61 -0,61 

*See Tab. 1 for QRS type definition. 
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Table 3 Correlation between some variables and the 1
st
 and 2

nd
 axes (a

1
 and a

2
) for the electrode motion 

artefact context 

Axis 1 
x

j
 

Morphology P N V J V R F L P J … 

SNR (dB) 5 -5 -5 5 5 5 5 5 -5 -5 … 

   Corr(a
1
,x

j
) 0,89 0,73 0,71 0,69 0,64 0,55 0,53 0,48 0,46 0,43 0,41 > … 

              

Axis 2 
x

j
 

Morphology J N L A J F L A R P … 

SNR (dB) -15 -15 -5 -5 -5 -15 -15 -15 -15 -15 … 

   Corr(a
2
,x

j
) 0,67 0,62 0,60 0,60 0,56 0,53 0,51 0,41 0,40 0,38 0,37 > … 
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 List of figures  

 

Figure 1. a) morphology context of LBBB waveforms; b) baseline wander; c) corrupted morphology context by 

d) muscle artefact; e) output of the filtering of the signal c; f) electrode motion artefact. 

 

Figure 2. Principal Components Analysis on global contexts. The first axis (
1
=25.6%) presents a positive 

correlation (see Tab. 2) with the Ne values of ma noise, pvc, SNR = 15dB, etc which are difficult to process. In 

others words, the first axis reflects the positive contribution of the high Ne values (see section 3.3 for an 

explanation of the correlation coefficients). The second axis (
2
=11.6%) presents a positive correlation with Ne 

values of ma noise contexts and a negative correlation with Ne values of the em noise context (see Tab. 2). This 

axis opposes the ma and the em contexts. 

 

 

Figure 3. Principal Components Analysis on morphology contexts corrupted with electrode motion artefact. The 

first axis (
1
=21.8%) presents a positive correlation with Ne values of signal contexts that have SNR  - 5dB 

(see Tab. 3). The second axis (
2
=15.2%) presents a positive correlation with Ne values of noisy signal contexts 

(SNR  –5dB, see Tab. 3).  

 

 

Figure 4. Principal Components Analysis on uncorrupted morphology contexts. The first axis (
1
=60.8%) is 

negatively correlated to the Ne values of the 4 detectors. The second axis (
2
=20.4%) is negatively correlated 

mostly to Ne values of AF2. 
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