
HAL Id: hal-00019314
https://hal.archives-ouvertes.fr/hal-00019314

Preprint submitted on 20 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Step-by-step Process to Build Conform UML
Protocol State Machines

Arnaud Lanoix, Jeanine Souquières

To cite this version:
Arnaud Lanoix, Jeanine Souquières. A Step-by-step Process to Build Conform UML Protocol State
Machines. 2006. �hal-00019314�

https://hal.archives-ouvertes.fr/hal-00019314
https://hal.archives-ouvertes.fr

A Step-by-step Process to Build Conform UML Protocol
State Machines

Arnaud Lanoix
LORIA – CNRS

Campus scientifique
F-54506 Vandoeuvre-Lès-Nancy

Arnaud.Lanoix@loria.fr

Jeanine Souquières
LORIA – Université Nancy 2

Campus scientifique
F-54506 Vandoeuvre-Lès-Nancy

Jeanine.Souquieres@loria.fr

ABSTRACT

We propose an approach to the incremental development
of protocol state machines using operators which preserve
behavioral properties. We introduce two specializations of
the protocol conformance relation proposed in UML 2.0, in-
spired from the work on formal methods as the specification
refinement and specification matching. We illustrate our
purpose by some development steps of the card service in-
terface of an electronic purse: for each step, we introduce
the idea of the development, we propose an operator and we
give the new specification state obtained by the application
of this operator and the property of this state relatively to
the previous one in terms of conformance relation.

Keywords

Protocol state machine, incremental development, construc-
tion operator, exact conformance, plugin conformance

1. INTRODUCTION
Software design is an incremental process where modifi-

cations of the functionalities of a system can occur at every
stage of the development. In order to increase the software
quality, it is important to understand the impact of these
changes in terms of lost, added or changed global behaviors.

UML 2.0 [22] introduces protocol state machines (PSMs)
to describe valid sequences of operation calls of an object.
These PSMs are a specialization of generic UML state ma-
chines without actions nor activities. Transitions are speci-
fied in terms of pre/post conditions and state invariants can
be given. State machines are used for developing behavioral
abstractions of complex, reactive software. Typically, state
machines provide precise descriptions of component behav-
ior and can be used – combined with a refinement process
– for generating implementations. This framework provides
a convenient way to model the ordering of operations on
a classifier. Notice also that the literature about PSMs is
quite poor [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCESM ’06, Shanghai, China
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The notion of conformance of PSMs is an important is-
sue for the development. It is considered in UML 2.0, but
limited to explicitly declaring, via the protocol conformance
model element, that a specific state machine ”conforms” to
a general PSM. The definition given in [22] remains very
general and does not ease it use in practice.

The conformance between development steps has been
studied in formal specification approaches. For example,
the B method proposes a refinement mechanism [21, 4, 1]: a
system development begins by the definition of an abstract
view which can be refined step by step until an implemen-
tation is reached. The refinement over models is a key fea-
ture for developing incrementally models from a textually-
defined system, while preserving correctness. It implements
the proof-based development paradigm [3, 25]. In the frame-
work of algebraic specifications, this notion of conformance
has been studied and has given several specification match-
ing [29]. Meyer and Santen propose a verification of the
behavioral conformance between UML and B [18].

This notion is also very important in the field of test. In
this domain, conformance is usually defined as testing to
see if an implementation faithfully meets the requirements
of a standard or a specification. Conformance testing means
the use of conformance relations, like the conf or ioco rela-
tions [26, 27], based on Labeled Transition Systems (LTS)
or process algebras.

More generally, there are a lot of studies about confor-
mance relations between two LTSs. Among them, we can
cite equivalence relations [8], (bi)simulations [20, 9] or re-
finement [5, 12].

The notion of conformance have been taken into account
for the statechart [10] or UML 1.x state diagrams [6]. The
equivalence of state machines has been studied in [15], the
conformance testing in [14] and some refinements in [2, 17,
11]. The majority of these works are based on a seman-
tics of state machines given in terms of LTS using extended
hierarchical automata [19, 13, 28].

The idea of following an incremental construction is not
new and has been addressed in several works. For example,
Scholz [24] makes proposition for the incremental design of
a part of the statechart specifications. A formal definition
of the consistency between UML and B, based on transfor-
mation rules is defined in [23]. The proposed framework
based on multi-view specifications and development opera-
tors, takes into account the specification development pro-
cess to guarantee the production of correct specifications.

Our work deals with the incremental development process
of PSMs, and, in particular, with the conformance between

two development steps. In order to help a conform step-by-
step construction process, we propose development opera-
tors. Based on formal specification matching, we propose
two specializations of the protocol conformance relation,
called ExactConformance and PluginConformance expressing
two levels of the preservation of the behavior.

The paper is structured as follows. Section 2 introduces
our running case study and presents UML 2.0 protocol state
machines. After a presentation of UML 2.0 PSM redefi-
nition, Section 3 gives two specializations of the protocol
conformance, namely the exact conformance and the plugin
conformance. Section 4 presents some development steps of
the case study; for each step we introduce the idea of the
development, we propose an operator, and we give the new
specification state and the property of this state relatively
to the previous one in terms of conformance. Section 5 con-
cludes and gives some perspectives.

2. PROTOCOL STATE MACHINES
The Unified Modeling Language (UML) features state ma-

chines is based on the widely recognized statechart nota-
tion introduced by Harel [10] to express behavior of various
model elements (i.e. class or interface). UML 2.0 [22] in-
troduces a specialization of state machines, called the Pro-
tocolStateMachine (PSM), to express usage protocol. It is a
convenient way to model life-cycle for objects by providing
support for modeling the order of invocation of its opera-
tions.

2.1 Case study: CEPS card
We consider as running example, a part of the Common

Electronic Purse Specifications (CEPS) [7]. The system is
based on an infrastructure of terminals on which a customer
can pay for goods, using a payment card which stores a
certain - reloadable - amount of money. In the sequel, we
will focus on the card application.

<< interface >>

CardService

- balance : int

- balance_max : int

+ initPurchase()

+ debitPurchase(purchase_amount : int)

+ finishPurchase()

+ cancelPurchase()

+ initLoad()

+ creditLoad(load_amount : int)

+ finishLoad()

+ cancelLoad()

Card

LoadTerminal PurchaseTerminal

Terminal

CardService

*

*

reads

Figure 1: Card class diagram

Figure 1 show the main classes of the system: Card repre-
sents a payment card while LoadTerminal and PurchaseTer-
minal represent respectively terminals used to reload the
payment card and terminals used for purchases. The Card
provides the CardService interface to communicate with the
terminals.

The interface CardService provides two attributes: balance
represents the amount of money available on the card and
balance max the maximum amount of money associated to
the card. As specified in the class diagram, terminals can
only interact with the card through the methods provided
by the interface. These methods are:

• initPurchase() models the initialization of a purchase,

• debitPurchase(purchase amount: int) models the debit
of purchase amount from the card balance,

• finishPurchase() models the end of a purchase,

• cancelPurchase() models the cancel of a purchase,

• initLoad() models the initialization of a load,

• creditLoad(load amount: int) models a credit of the
card balance,

• finishLoad() models the end of a load,

• cancelLoad() models the cancel of a load.

2.2 UML 2.0 protocol state machines
A protocol state machine has the characteristics of a ge-

neric state machine (composite states, concurrent regions,
etc.) with the next restrictions on states and transitions:

• States cannot show entry actions, exit actions, internal
actions, or do activities.

• State invariants can be specified.

• Pseudostates cannot be deep or shadow history kinds;
they are restricted to initial, entry point and exit point
kinds.

• Transitions cannot show effect actions or send events
as generic state machines can.

• Transitions have pre and post-conditions; they can be
associated to operation calls.

A PSM may contain one or more regions which involve
vertices and transitions. A protocol transition connects a
source vertex to a target vertex. A vertex is either a pseu-
dostate or a state with incoming and outgoing transitions.
States may contain zero or more regions.

• A state without region is a simple state; a final state is
a specialization of a state representing the completion
of a region.

• A state containing one or more regions is a composite
state, that provides a hierarchical group of (sub)states;
a state containing more than one region is an orthog-
onal state, that models a concurrent execution.

• A submachine state is semantically equivalent to a
composite state. It refers to a submachine (sub PSM)
where its regions are the regions of the composite state.

Figure 2 presents the abstract syntax of the ProtocolState-
Machine model element.
We now introduce some basic definitions used below.

• An unreachable vertex is a vertex which is a target of
any incoming transitions. This is expressed in OCL by
vertex.incoming->isEmpty().

• Two outgoing transitions trans i and trans j of a same
state are inconsistent if their respective preconditions
are inconsistent. This is expressed in OCL by
not ((trans i.preCondition implies trans j.preCondition)
or (trans j.preCondition implies trans i.preCondition)).

• A crossing transition trans is a transition where its
source state and its target state are not in the same
region. This is expressed in OCL by
not (trans.source.container = trans.target.container).

ProtocolStateMachine

Region
StateMachine

Vertex

State Pseudostate
kind : PseudostateKind

FinalState

Trigger

Transition

ProtocolTransition
Operation

+region+stateMachine

0..1 1..* +container

0..1

* +subvertex

+container 1

+source

+target

1
1

*
*

+outgoing

+incoming

+transition

+state 0..1

+region*

*

0..1+trigger

0..*

0..1

0..1

+stateInvariant
Constraint

0..10..1

0..10..1

+preCondition+postCondition

*
*

+referred

<<enumeration>>

PseudostateKind

initial

entryPoint

exitPoint

*

+submachine 0..1

+submachineState

ProtocolConformance

+specificMachine

+generalMachine

+conformance

1

1

*

*

DirectedRelationship

Figure 2: Overview of the abstract syntax of the ProtocolStateMachine model element

2.3 Example: CardPSM

CardPSM

Ready

[balance > 0]

 initPurchase()

finishPurchase()

cancelPurchase()

ask

ok

cancel

Purchase :

PurchasePSM

ask

cancel

Load :

LoadPSM

ok

[balance < balance_max]

initLoad()

finishLoad()

cancelLoad()

Figure 3: CardPSM

We associate a PSM called CardPSM to the CardService
interface. As presented Figure 3, it includes two sub PSMs:
PurchasePSM for the purchase functionalities, and LoadPSM
for the load functionalities.

The initial state of CardPSM is Ready. Once a terminal
activates the initPurchase() method and if there is money
on the card (expressed by the precondition [balance>0]), a
purchase is initialized, and the entry point ask of the sub-
machine state Purchase of PurchasePSM is reached (see Fig-
ure 4).

PurchasePSM

Purchase

Debited

[balance > 0]

ask

ok

Purchase

Canceled

[purchase_amount > balance]

debitPurchase() /

[balance = balance@pre][purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Purchase

Initialized

cancel

Figure 4: PurchasePSM

• If there is enough money on the card, which is en-
sured by precondition [purchase amount <= balance],
the debitPurchase() method is called and the purchase
is realized. The sub PSM reaches the PurchaseDeb-
ited state. The money on the card must be decreased:
this is expressed by the post-condition of the transition
[balance = balance@pre - purchase amount]). Finally,
the exit point ok is reached. Then, PurchasePSM is
exited and the card returns to the state Ready by the
activation of the method finishPurchase().

• If there is no enough money on the card, that is en-
sured by the precondition [purchase amount > balance],
the purchase is canceled. First, a state PurchaseCan-
celed is reached, followed by the exit point cancel, that
exits the sub PSM PurchasePSM. The Ready state of
CardPSM is now reached using the method cancelPur-
chase().

LoadPSM

Load

Credited

[balance < balance_max]

ok

ask

Load

Canceled

[balance + load_amount

<= balance_max]

creditLoad() /

[balance = balance@pre

+ purchase_amount]

Load

Initialized

cancel

[balance + load_amount

> balance_max]

creditLoad() /

[balance = balance@pre]

Figure 5: LoadPSM

A load is initialized from the state Ready of CardPSM when
the precondition [balance < balance max] is true and the init-
Purchase() method is called; that initializes an instance of
LoadPSM. The sub PSM LoadPSM describes all the behav-
iors corresponding to a reload of the card, as shown Fig-
ure 5.

3. CONFORMANCE RELATIONS
The protocol conformance relation [22] is used to explicitly

declare that a specific state machine conforms to a general

PSM (see Figure 2). The given semantics is the preservation
of pre/post conditions and state invariants of the general
PSM in the more specific one. For our point of view, the
definition of the protocol conformance relation remains too
very general to be used in practice and does not allow the
designer how to decide on conformance between two PSMs.

State machine redefinition is also considered in UML 2.0.
A specialized state machine is an extension of a general state
machine where regions, vertices and transitions have been
added or redefined. So, it has additional elements.

A simple state can be redefined to a composite state by
adding one or more regions. A composite state can be rede-
fined by either extending its regions or by adding regions as
well as by adding entry and exit points. A region can be ex-
tended by adding vertices and transitions and by redefining
states and transitions. A submachine state may be rede-
fined by another submachine state that provides the same
entry/exit points and adds entry/exit points.

Our purpose is to introduce specializations of the protocol
conformance relation to describe different levels of confor-
mance preserved by the incremental construction. Let PSM
and PSM’ be respectively a PSM and a transformation (i.e.
a redefinition) of this PSM.

1. ExactConformance: PSM’≡PSM.

We have an ExactConformance relation between PSM’
and PSM if the two PSMs are equivalent and com-
pletely interchangeable. All Observable functionalities
provided by PSM and by PSM’ must be the same. The
ExactConformance relation is symmetric.

2. PluginConformance: PSM’⊑PSM.

We have a PluginConformance relation between PSM’
and PSM when PSM’ provides all the functionalities
of PSM and when the new functionalities provided by
PSM’ don’t conflict with the ones of PSM. We are able
to ”plugin” PSM’ for PSM.

It is to be noted that the ExactConformance relation is
a strong requirements often incompatible with a construc-
tion process, which adds add new functionalities. Sometimes
a weaker match can be enough. As shown Figure 6, the
ExactConformance relation is a specialization of the Plug-
inConformance relation; we can easily demonstrate that if
PSM’≡PSM then PSM’⊑PSM.

ProtocolConformance

PluginConformance

ExactConformance

DirectedRelationship

Figure 6: Hierarchy of conformance relations

We have introduced another conformance relation, de-
noted by PSM’⊒PSM, whose is the reciprocal relation of the
PluginConformance relation: PSM’⊒PSM iff PSM⊑PSM’. In

other words, this relation occurs between PSM’ and PSM
when PSM’ provides less functionalities than PSM, but all
the functionalities provided by PSM’ are provided by PSM.

Notation. In UML 2.0 [22], the keyword ”extended” is
used to express that a state machine is an extension of an-
other state machine. We propose the keywords ”exact” and
”plugin” to express the two conformance relations we have
introduced.

4. CONFORM DEVELOPMENT
Let us see some development steps of the case study, start-

ing from the protocol state machine CardPSM 0 presented
Figure 7. It gives a first view of a part of the services offered
by the interface CardService.

Its initial state is Ready. If there is money on the card, the
state PurchaseInitialized is reached. Next, the PSM reaches
the PurchaseDebited state, if there is enough money on the
card, which is ensured by precondition [purchase amount <=
balance]: the money on the card must be decreased, ex-
pressed by the post-condition [balance = balance@pre - pur-
chase amount]. Finally, if the precondition [0 <= balance] is
verified, the card returns to the state Ready.

CardPSM

Ready
Purchase

Initialized

Purchase

Debited

[balance > 0]

 initPurchase()

[0 <= balance]

finishPurchase()

[purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Figure 7: CardPSM 0

Our objective is to elaborate from CardPSM 0 a more com-
plete PSM that presents the functionalities provided by the
CardService interface. For each step, we give the general idea
of the evolution involved, the development operator which is
applied on the current state and the conformance property
that is preserved.

4.1 Modifying preconditions
In this first description, the precondition [0 <= balance]

of the transition finishPurchase is useless: [0 <= balance] is
always implied by the previous transition. We want delete
this precondition, i.e. replace it by a new one equals to true.

We have defined the operator Transition::change preCondi-
tion(newPreCondition:Constraint) which replaces the preCon-
dition of a Transition by a new one, newPreCondition. This
operator preserves

• the PluginConformance if newPreCondition is weaker
than preCondition. This is expressed in OCL by
preCondition implies newPreCondition;

• the ExactConformance if newPreCondition is equivalent
to preCondition. This is expressed in OCL by
(preCondition implies newPreCondition) and

(newPreCondition implies preCondition).

Figure 8 gives the result of the application of change pre-
Condition() on the transition finishPurchase of CardPSM 0.

CardPSM {plugin}

Ready
Purchase

Initialized

Purchase

Debited

[balance > 0]

 initPurchase()

finishPurchase()

[purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Figure 8: Step 1 – CardPSM 1

PluginConformance is preserved because 0 <= balance im-

plies true.

4.2 Introducing complementary behaviors
When looking at the transition between the states Pur-

chaseInitialized and PurchaseDebited, we see that all the pos-
sible cases are not expressed. What happens when pur-
chase amount > balance ? It can be noticed that this case is
the complementary of the precondition of debitPurchase; it
corresponds to the case where there is not enough money on
the card to realise the initialized purchase. In this case, the
transition debitPurchase cannot been done and a new state
has to be introduced.

State0

State1

State2

[pre1]

trans1

[pre2]

trans2

(a) before

State0

State1

State2

[pre1]

trans1

State3

[not (pre1 or pre2)]

trans3

[pre2]

trans2

(b) after

Figure 9: Operator Vertex::complementary transition()

We have defined a construction operator Vertex::comple-
mentary transition(), that suggests, from a selected Vertex
and its outgoing transitions, a complementary transition such
that the conjunction of all the preconditions of the Ver-
tex.outgoing transitions with the precondition of the com-
plementary transition is equal to true.

Figure 9 illustrates the behavior of this operator. It pro-
poses a new transition trans3 and its target state State3 such
that

(pre1 and pre2 and pre3) = true

where pre3 is the precondition of trans3 defined by

pre3 = not (pre1 or pre2)

This operator is defined in terms of two basic operators:

• Region::add vertex(newVertex: Vertex) that adds a new
Vertex to an existing Region; it preserves ExactConfor-
mance, and

• Vertex::add transition(newTransition: Transition) which
adds a newTransition if no inconsistent transitions ex-
ist from the considered Vertex; generally, this operator
preserves PluginConformance. In the case where Vertex
is unreachable, ExactConformance is preserved.

CardPSM {plugin}

Ready

Purchase

Debited

[balance > 0]

 initPurchase()

finishPurchase()

Purchase

Canceled

[purchase_amount > balance]

debitPurchase() /

[balance = balance@pre]

[purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Purchase

Initialized

Figure 10: Step 2 – CardPSM 2

PluginConformance is preserved by the operator complemen-
tary transition().

The application of complementary transition() on the state
PurchaseInitialized of CardPSM 1 gives the PSM CardPSM 2
presented Figure 10.

CardPSM {plugin}

Ready

Purchase

Debited

[balance > 0]

 initPurchase()

finishPurchase()

Purchase

Canceled

[purchase_amount > balance]

debitPurchase() /

[balance = balance@pre]

[purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Purchase

Initialized

cancelPurchase()

Figure 11: Step 3 – CardPSM 3

Figure 11, a new transition from the state PurchaseCan-
celed to the state Ready has been added by application of
the operator add transition().

4.3 Merging existing states
We have followed until now a bottom-up development

process. The result of this process expressed by the PSM
CardPSM 3 includes

• general informations on the card service interface, and

• dedicated informations about the purchase functional-
ities.

An idea to make evolve our model is to regroup those dedi-
cated informations – the states PurchaseInitialized, Purchase-
Debited and PurchaseCanceled – into a new composite state,
giving it a name as presented Figure 12.

The operator Region::merge states(SET(State)), which is
parameterized by a set of states, is dedicated to regroup
these selected states into a new composite state, as shown
Figure 13. This operator preserves ExactConformance be-
cause it does not modify the behavior, it only change the
”view” of the considered PSM. It is defined as a sequence of
basic operators:

• add vertex() to add a new state,

• State::composite() to transform this new state into a
composite state by adding a new empty region,

• State::change Container(newContainer:Region) to move
the selected states to the new composite state.

CardPSM {exact}

Ready

Purchase

Purchase

Debited

[balance > 0]

 initPurchase()

finishPurchase()

Purchase

Canceled

[purchase_amount > balance]

debitPurchase() /

[balance = balance@pre]
[purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Purchase

Initialized

cancelPurchase()

Figure 12: Step 4 – CardPSM 4

State0

State1

State2

State3State4

(a) before

NewState

State0

State1

State2

State3State4

(b) after

Figure 13: Operator Region::merge states()

4.4 Adding an interface to a composite state
The composite state Purchase contains substates with in-

coming and outgoing crossing transitions, as shown Fig-
ure 12. We propose to build, from the Purchase box, a com-
ponent that interfaces these crossing transitions, introducing
explicit entry point and exit point pseudostates to replace
all the crossing transitions using the construction operator
State::add interface(). It is defined as follow:

• for each crossing substate i.incoming transition, iden-
tified transition i, we add an entry point pseudostate
entry i. We connect transition i to entry i and we add
a new transition from entry i to substate i which pre-
condition is transition i.preCondition;

• for each crossing substate i.outgoing transition, denoted
transition i, we add an exit point pseudostate exit i. We
connect transition i from exit i and we add a new tran-
sition from substate i to exit i which precondition is
transition i.preCondition.

This transformation preserves ExactConformance.
The result of the application of this operator on CardPSM 4
gives the new PSM CardPSM 5 presented Figure 14.

An alternative to this development step could be to in-
troduce initial and final pseudostates to replace the crossing
transitions.

4.5 Extracting sub PSMs from an existing PSM
At this stage of the development, CardPSM 5 contains a

composite state Purchase interfaced with the remainder of
the PSM using entry point and exit point pseudostates. Our
idea is to extract from this composite state a sub PSM and
replace the composite state by a submachine state, which
instantiates the extracted sub PSM.

CardPSM {exact}

Ready

Purchase

Purchase

Debited

[balance > 0]

 initPurchase()

finishPurchase()

[balance > 0]

ask

ok

Purchase

Canceled

[purchase_amount > balance]

debitPurchase() /

[balance = balance@pre][purchase_amount <= balance]

debitPurchase() /

[balance = balance@pre -

purchase_amount]

Purchase

Initialized

cancelPurchase() cancel

Figure 14: Step 5 – CardPSM 5

The operator State::extract submachine() creates a sub-
PSM from a composite state. The regions of the composite
state are now the regions of the subPSM. It is the same
for the substates, the transitions and the pseudostates of
the composite state. As this transformation is defined in
UML 2.0 as an equivalence relation, extract submachine()
preserves ExactConformance.

CardPSM {exact}

Ready

[balance > 0]

 initPurchase()

finishPurchase()

cancelPurchase()

ask

ok

cancel

Purchase :

PurchasePSM

Figure 15: Step 6 – CardPSM 6

When applying the operator extract submachine() to the
composite state Purchase, we obtain the PSM PurchasePSM
shown Figure 4. The CardPSM 5 machine is now defined
using an instance of PurchasePSM as presented Figure 15.

5. CONCLUSION AND FUTURE WORK
Specifying complex systems is a difficult task which can-

not be done in one step. In a typical design process, the
designer starts with a first draft model, and transforms it
by a step-by-step process into a more and more complex
model.

The design approach we propose in this paper uses a
set of construction operators to make evolve protocol state
machines preserving behavioral properties. Two Confor-
mance relations ExactConformance and PluginConformance
have been defined as specializations of the UML 2.0 proto-
col conformance relation. The use of these operators has
been illustrated on the development of a part of the CEPS
case study.

Further work will focus on a generalization of our step-
by-step construction method of PSM by studying other con-
struction operators, particularly operators for removing ele-
ments: if the source of a transition is unreachable, then re-
moving the transition preserves the ExactConformance rela-
tion, as removing an unreachable vertex or an empty region.
We are currently exploring other particularities of PSMs like
state invariants and transition post-conditions, as well as the
study of the weakness of preconditions.

We also consider the formalization of the definition of the

Conformance relations ExactConformance and PluginConfor-
mance inspired by results in formal methods like refine-
ment [1] and specification matching [29].

Another perspective concerns the implementation of a tool
to assist in the development of PSMs based on our construc-
tion operators. Consider as example the operator comple-
mentary transition() presented section 4.2. An issue could be
an UML modeler which proposes automatically the comple-
mentary transition when we select a state.

6. REFERENCES
[1] J.-R. Abrial. The B Book. Cambridge University

Press, 1996.

[2] M. Al’Achhab. Specification and verification of
hierarchical systems by refinement. In Modelling and
Verifying Parallel Processes (MOVEP’04), 2004.

[3] B-Core(UK) Ltd. B-Toolkit User’s Manual, Release
3.2, 1996.

[4] R. J. Back. A calculus of refinements for program
derivations. Acta Informatica, (25):593–624, 1988.

[5] F. Bellegarde, J. Julliand, and O. Kouchnarenko.
Ready-simulation is not ready to express a modular
refinement relation. In Fundamental Aspects of
Software Engineering (FASE’00), volume 1783 of
LNCS, pages 266–283. Springer Verlag, 2000.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[7] CEPSCO. Common electronic purse specifications,
functional requirements, v6.3, 1999.

[8] R. De Nicola. Extensional equivalences for transition
systems. Acta Informatica, 24(2):211–237, 1987.

[9] J.-C. Fernandez. An implementation of an efficient
algorithm for bisimulation equivalence. Science of
Computer Programming, 13(2-3):219–236, May 1990.

[10] D. Harel. Modeling Reactive Systems With Statecharts.
Mac Graw Hill, 1998.

[11] A. Knapp, S. Merz, M. Wirsing, and J. Zappe.
Specification and refinement of mobile systems in
MTLA and mobile UML. Theoretical Computer
Science, 2005.

[12] O. Kouchnarenko and A. Lanoix. Refinement and
verification of synchronized component-based systems.
In K. Araki, S. Gnesi, and M. D., editors, Formal
Methods (FM’03), volume 2805 of LNCS, pages
341–358. Springer Verlag, 2003.

[13] D. Latella, I. Majzik, and M. Massink. Towards a
formal operational semantics of UML statechart
diagrams. In 3rd Int. Conf. on Formal Methods for
Open Object-Based Distributed Systems
(FMOODS’99), pages 331–347. Kluwer, 1999.

[14] D. Latella and M. Massink. On testing and
conformance relations of UML statechart diagrams
behaviours. In ACM, editor, Int. Symposium on
Software Testing and Analysis, 2002.

[15] A. Maggiolo-Schettini, A. Peron, and S. Tini.
Equivalences of statecharts. In Proc. of the 7th Int.
Conf. On Concurrency Theory (CONCUR’96), pages
687–702. Springer-Verlag, 1996.

[16] V. Mencl. Specifying component behavior with port
state machines. ENTCS, 101C:129–153, 2004.

[17] S. Meng, Z. Naixiao, and L. S. Barbosa. On semantics
and refinement of UML statecharts: A coalgebraic

view. In Proc. of the 2nd In. Conf. on Software
Engineering and Formal Methods (SEFM’04), 2004.

[18] E. Meyer and S. T. Behavioral Conformance
Verification in an Integrated Approach Using UML
and B. In (IFM00), Integrated Formal Methods,
volume 1945 of LNCS, page 358. Springer Verlag,
2000.

[19] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical
automata as model for statecharts. In Third Asian
Computing Science Conference on Advances in
Computing Science (ASIAN’97), pages 181–196,
London, UK, 1997. Springer Verlag.

[20] R. Milner. Communication and concurrency.
Prentice-Hall, Inc., 1989.

[21] J. M. Morris. A theoretical basis for stepwise
refinement and programming calculus. Science of
Computer Programming, 9:287–306, 1987.

[22] Object Management Group. UML superstructure
specification, v2.0, 2005.

[23] D. Okalas Ossami, J. Souquières, and J.-P. Jacquot.
Consistency in UML and B multi-view specifications.
In Proc. of the Int. Conf. on Integrated Formal
Methods, IFM’05, number 3771 in LNCS, pages
386–405. Springer-Verlag, 2005.

[24] P. Scholz. Incremental design of statechart
specifications. Science of Computer Programming,
40(1):119–145, 2001.

[25] Steria. Obligations de preuve: Manuel de référence,
version 3.0.

[26] J. Tretmans. Conformance Testing with Labelled
Transition Systems: Implementation Relations and
Test Generation. Computer Networks and ISDN
Systems, 29:49–79, 1996.

[27] J. Tretmans. Testing Concurrent Systems: A Formal
Approach. In J. Baeten and S. Mauw, editors,
CONCUR’99 – 10th Int. Conf. on Concurrency
Theory, volume 1664 of LNCS, pages 46–65.
Springer-Verlag, 1999.

[28] M. Von der Beeck. Formalization of UML-Statecharts.
In UML’01: Proceedings of the 4th International
Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pages
406–421. Springer-Verlag, 2001.

[29] A. M. Zaremski and J. M. Wing. Specification
matching of software components. ACM Transaction
on Software Engeniering Methodolology, 6(4):333–369,
1997.

	Introduction
	Protocol state machines
	Case study: CEPS card
	UML 2.0 protocol state machines
	Example: 1CardPSM

	Conformance relations
	Conform development
	Modifying preconditions
	Introducing complementary behaviors
	Merging existing states
	Adding an interface to a composite state
	Extracting sub PSMs from an existing PSM

	Conclusion and future work
	References

