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ALMOST SPLIT REAL FORMS FOR HYPERBOLIC
KAC-MOODY LIE ALGEBRAS

HECHMI BEN MESSAOUD

ABSTRACT. A Borel-Tits theory was developped for almost split forms of sym-
metrizable Kac-Moody Lie algebras [J. of Algebra 171, 43-96 (1995)]. In this
paper, we look to almost split real forms for symmetrizable hyperbolic Kac-
Moody Lie algebras and we establish a complete list of these forms, in terms
of their Satake-Tits index, for the strictly hyperbolic ones and for those which
are obtained as (hyperbolic) canonical Lorentzian extensions of affine Lie al-
gebras. These forms are of particular interest in theoretical physics because of
their connection to supergravity theories.

Introduction. Since their appearance in the late 1960s, as generalizations of
semi-simple complex Lie algebras, the (infinite-dimensional) Kac-Moody Lie alge-
bras have played an increasingly crucial role in various areas of mathematics as well
as theoretical physics. The hyperbolic Kac-Moody Lie algebras (which constitute
a subclass of Lorentzian Kac-Moody algebras [22]) and some of their (almost split)
real forms have appeared, besides the affine Kac-Moody algebras, in a variety of
problems in the realms of string theory ([14], [13], ...) and supergravity theories
([34], [16], ...).

Almost split forms of symmetrizable Kac-Moody Lie algebras were studied in
[28], [29], [30] and [2] for an arbitrary field of characteristic 0 : A Borel-Tits Theory
was developed for these forms and a classification in the real case (in terms of
the Satake-Tits index with the corresponding relative root system) was done for
affine Lie algebras ([2]). In [27], G. Rousseau gave a realization, in terms of the
loop algebras, for all the almost split real forms of affine Lie algebras. The same
construction was done by V. Back for an arbitrary field of characteristic 0 instead
of the real field ([2], §5). Some forms (which may be almost anisotropic or almost
compact in the real case) of symmetrizable Kac-Moody algebras are defined by
generators and relations ([1], [10]). Almost compact real forms of affine Kac-Moody
algebras were studied in [4] and [26] and entirely classified in [7]. The conjugate
classes of their Cartan subalgebras were classified in [8].

This paper is devoted to the classification (in terms of the Satake-Tits index) of
almost split real forms for some symmetrizable hyperbolic Kac-Moody Lie algebras
(namely, the strictly hyperbolic Kac-Moody algebras and Kac-Moody Lie algebras
which are obtained as (canonical) Lorentzian extensions of affine Lie algebras) which
we consider the most met in supergravity theories ([16]).

The paper is organized as follows. In section 1, we recall the construction of
(symmetrizable) Kac-Moody Lie algebras and groups from the so-called general-
ized Cartan matrices and we set the notations. We give also a description of the
automorphisms group and the invariant bilinear form for any indecomposable and
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2 HECHMI BEN MESSAOUD

symmetrizable Kac-Moody algebra when the defining generalized Cartan matrix is
non-singular (since in this case description is less complicated, and it is in particular
valid for the hyperbolic case).

Sections 2 and 3 are mostly an exposition of known results on almost split forms,
of symmetrizable Kac-Moody Lie algebras, and their relative root systems ([2], [3])
but rewritten here, in the real case, for hyperbolic Kac-Moody algebras. The main
results are Theorem 2.2.7, Theorem 2.3.1 and Theorem 2.6.3 which are also valid for
a symmetrizable Kac-Moody algebras with non-singular generalized Cartan matrix.

In section 4, we apply the results of sections 2 and 3 to give a complete list
of almost split real forms for the subclass of strictly hyperbolic Kac-Moody Lie
algebras and hyperbolic Kac-Moody Lie algebras which are obtained as (canonical)
Lorentzian extensions of affine Lie algebras. Note that the classification of almost
split real forms could be done for any symmetrizable hyperbolic Kac-Moody Lie
algebra, but as the list of these algebras is long (at least 136), we have restricted
ourselves to the selected subclass of hyperbolic algebras cited above.

1. PRELIMINARIES

We recall the most important known facts about Kac-Moody algebras and groups,
we add some facts in the hyperbolic case and set the notations.

1.1. Generalized Cartan matrices. An n x n matrix A = (a; ;) is called a gen-
eralized Cartan matriz if it satisfies :

(1) (7%} =2 (ZZ 1,2,...,7’1)

(2) Qi,j € {O,—sz’_._} (7’7&‘7)

(3) ai,; = 0 implies a;; = 0.

The matrix A is called decomposable if for a suitable permutation 7 of {1,2,...,n}
B 0
0 C
A is not decomposable, it is called indecomposable.

The matrix A is called symmetrizable if there exists an invertible diagonal matrix
D = diag(dy,ds, ..., d,) such that DA is symmetric. The entries dy, da, ..., d,, can be
choosen to be positive rational and, if moreover the matrix A is indecomposable,
they are unique up to a constant factor.

It was stated in [17] that the collection of indecomposable generalized Cartan ma-
trices is divided into three mutually exclusive types : finite, affine and indefinite.
A classification of these matrices in terms of their Dynkin diagrams is done for the
finite and the affine type ones and it can be found (for example) in [17], chap 4.
An indecomposable generalized Cartan matrix A is called strictly hyperbolic (resp.
hyperbolic) if it is of indefinite type and all of its principal submatrices have all
their indecomposable constituents of finite (resp. finite or affine) type. This means
that the Dynkin diagram corresponding to A reverts to that of finite (resp. finite
or affine) type upon deletion of one of the vertices.

2 —s
—t 2
st > 4, cover all the rank—2 generalized Cartan matrices of indefinite type, they
are symmetrizable and strictly hyperbolic and they have been treated by Lepowsky
and Moody in [20]. The Dynkin diagram corresponding to the strictly hyperbolic
matrix Hy; (we may assume 0 < s < t) is the following :

it takes the form (ar@ ~(j)) = where B and C are square matrices. If

The matrices Hy; = where s and ¢ are positive integers such that
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Hown:  +—

The classification by Saglioglu ([31]) of hyperbolic Dynkin diagrams shows that
there is no strictly hyperbolic (resp. hyperbolic) generalized Cartan matrix of or-
der larger than 4 (resp. 10). The number of hyperbolic generalized Cartan matrices
of order from 3 to 10 is necessarily finite (cf. [31]).

Note that a symmetrizable hyperbolic generalized Cartan matrix is non-singular
and the corresponding symmetric matrix has signature (+ + ... + —) cf. [23]. In
particular, hyperbolic generalized Cartan matrices are Lorentzian.

1.2. Kac-Moody algebras and groups. (See [17] and[25]). Let A = (a; ;) be
an n X n indecomposable and symmetrizable generalized Cartan matrix with a re-
alisation (b, II = {aq, a2, ...,an}, II'={ai,as,...,a, }), where b is a vector space
over the complex field C such that dimh = n 4 corank(A4), II and II" are linearly
independent in h* and h respectively such that (a;,a;) = a; ;. It follows that if
A is non-singular then IT" (resp. II) is a basis of ) (resp. h*) and we denote by
P = (p1,p2,...,pn) the dual basis of II in b.

Let g = g(A) be the complex Kac-Moody algebra associated to A : it is generated
by {bh,e;, fi; i =1,2,...,n} with the following relations

[bab] =0, [ehfj} :(Si,jalv' (i’j: 1’2a-"7n)§
(1'2'1> [haei] = <O‘ia h>ei7 [hvfl} = 7<O‘i7h>fi (h € h)a

(ade;)' % (e;) =0, (adfy)'=“9(f;) =0 (i # 7).
The Kac-Moody algebra g = g(A) is called of finite, affine or indefinite type if the
corresponding generalized Cartan matrix A is.

The derived algebra g’ of g is generated by the Chevalley generators e;, fi;
(i =1,2,...,n) and the center ¢ of g liesin )’ = hng' = > ", Caj. If the gener-
alized Catan matrix A is non-singular (that is the case when A is of finite type or
hyperbolic) then g = g’ is a (finite or infinite)-dimensional simple Lie algebra and
the center ¢ is trivial.

The Chevalley Cartan involution w of g is the involutive automorphism such
that w(h) = —h (h € h) and w(e;) = —f; (i =1,2,...,n)

The subalgebra § is a maximal ad(g)—diagonalizable subalgebra of g, it is called
the standard Cartan subalgebra of g. Let A = A(g,h) be the corresponding root
system; then II is a root basis of A and A = AT UA~, where A* = AN Z*T is
the set of positive (or negative) roots relative to the basis II.

The Weyl group W of (g, h) is generated by the fundamental reflections r; (i =
1,2,...,n) defined by r;(h) = h — {a;, hya; for h € b, it is a Coxeter group on
{r1,ra,...,rn} with length function w — I(w), w € W. The Weyl group W acts on
h* and A, we set A" = W (II) (the real roots) and A = A\ A" (the imaginary
roots). Any root basis of A is W—conjugate to IT or —II. The opposite root basis
—II is W —conjugate to II if and only if the generalized Cartan matrix A is of finite
type.

For a € A, let g, be the root space of g corresponding to the root a. We have
the root space decomposition g = b @ (DacAba)-

A Borel subalgebra of g is a maximal completely solvable subalgebra. A parabolic
subalgebra of g is a (proper) subalgebra containing a Borel subalgebra. The stan-
dard positive (or negative) Borel subalgebra is b* := b @ (Dpeca+da). A parabolic
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subalgebra pT (resp. p~) containing b™ (resp. b™) is called positive (resp. negative)
standard parabolic subalgebra of g; then there exists a subset J of II (different from
II) such that p* = p*(J) := (Daca,8a) + bT, where Ay = AN (ZJ), and we say
that p* is of type J (cf. [19]). If J is of finite type (i.e Ay is finite) the standard
parabolic subalgebra p* is said of finite type.

In [25], D.H. Peterson and V.G. Kac construct a group G, which is the connected
and simply connected complex algebraic group associated to g when g is of finite
type, depending only on the derived Lie algebra g’ and acting on g via the adjoint
representation Ad : G — Aut(g). It is generated by the one-parameter subgroups
Uy = exp(ga), a € A, and Ad(U,) = exp(adgy)).

For each i = 1,2, ...,n there exists a monomorphism ¢; : SLy(C) — G satisfying

i (( (1) ' )) — expltes), o (( - )) — exp(tfy), te C

0 1

sovmi=o: ((©) ) = emlenenn(-foespte) = expl-fexplesesp(~ £

then Ad(m;) induces the fundamental reflection r; on h and we may always view
an element of the Weyl group W as an automorphism of g.

Let N (resp. H) be the stabilizer (resp. fixator) of h in G, then H is a normal
subgroup of N and N/H is isomorphic to the Weyl group W.

The center Z(G) (= Ker(Ad)) of G is contained in H, it is isomorphic to
Hom(Z™/AZ™, C*) and it is finite when the generalized Cartan matrix A is non-
singular.

The Cartan subalgebras of g are conjugated by G. If g is not of finite type,
there are exactly two conjugacy classes (under the adjoint action of G) of Borel
subalgebras : G.bT and G.b~. A Borel subalgebra b of g which is G—conjugate
to b (resp. b™) is called positive (resp. negative). It follows that any parabolic
subalgebra p of g is G—conjugate to a standard positive (or negative) parabolic
subalgebra and we say that p is positive (or negative).

1.3. Automorphisms of Kac-Moody algebras. We give here a description of
the group Aut(g) of automorphisms of g when the indecomposable and symmetriz-
able generalized Cartan matrix A is non-singular and of indefinite type (that is the
case when A is of hyperbolic type) more details can be found in [2] or [19] for the
general case.

A linear or semi-linear automorphism ¢ of g over C is called of the first kind
(resp. second kind) if it transforms a Borel subalgebra into a Borel subalgebra of
the same (resp. opposite) sign. We denote Aut;(g) the subgroup of automorphisms
of g of the first kind. If o is of the first kind, then wo is of the second kind and one
can see easily that Autq(g) and wAut;(g) form a partition of Aut(g).

The adjoint group Ad(G) is a normal subgroup of Auti(g) and Aut(g). As the
generalized Cartan matrix A is assumed to be non-singular, the adjoint group is
exactly the inner automorphisms group (denoted Int(g) in [2]) in fact, the group
H = Hom(®!,Za;, C*) acts, in this case, on g as Ad(H).

Let Aut(A) be the group of all permutations p of {1, 2, ...,n} such that a,) ;) =
a;,j. We view Aut(A) as a subgroup of the group Aut(g) by requiring p(e;) = e,
and p(f;) = fy(;)- Clearly, the group Aut(A) is contained in Aut;(g), it commutes to
the Chevalley Cartan involution w and we denote Out(A) the group {1,w}x Aut(A).
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‘We have

(13.1) Auty(g) = Aut(A4) x Ad(G)
e Aut(g) = Out(A) x Ad(G)

1.4. The invariant bilinear form. (See [17]) We recall that the generalized Car-

tan matrix A is supposed indecomposable and symmetrizable. There exists a non-

degenerate ad(g)— invariant symmetric C—bilinear form (., .) on g, which is entirely

determined by its restriction to h, such that

(e, h) = (O‘i’;i)<ai,h>, i=1,2,...,n, heh.

Set d; = (aQT) and D = diag(dy,ds, ..., dy,), then the matrix DA is symmetric and

i

we may thus assume that
(1.4.1) (i, @) is a positive rational for all .

The form (., .) is clearly Ad(G)—invariant and invariant by the Chevalley Cartan
involution w (since w acts by —1 on b).

If moreover the generalized Cartan matrix A is non-singular, then the invariant
bilinear form (., .) satisfying the condition 1.4.1 is unique up to a positive rational
factor. It follows that the form (., .) is Aut(A)—invariant; indeed, if p is a diagram
automorphism, then the invariant bilinear form (p(z), p(y)) satisfies the condition
1.4.1; hence, there exists a positive rational A such that (p(z),p(y)) = Az, y),
Vz,y € g; but p is of finite order and we have necessarily A = 1. Then we deduce
from 1.3.1 that the bilinear form (., .) is Aut(g)—invariant.

2. ALMOST SPLIT REAL FORMS

From now on we suppose that the generalized Cartan matrix A is indecompos-
able, symmetrizable and non-singular of indefinite type. The associated Kac-Moody
Lie algebra g is defined as in 1.2.

2.1. Definitions and notations. A real form gr of g corresponds to a semi-
involution (or a conjugate-linear involution) o’ of g such that gg is the fixed point
real subalgebra ga/. The real form gg is said almost split (resp. almost compact) if
the corresponding semi-involution o is of the first kind (resp. second kind).

The real subalgebra of g (viewed as a real Lie algebra) generated by e;, f;, i =
1,2,...,n is an almost split real form of g; it is called the standard split form and
the corresponding semi-involution of the first kind o7, is called the standard normal
semi-involution of g.

The standard Cartan semi-involution of g is w' = o, w = wo),, it is of the second
kind and the corresponding almost compact form is the standard compact form of
g. A Cartan semi-involution of g is a G—conjugate of w’.

Let gr be a real form of g and ¢’ the corresponding semi-involution of g. If V
is a o’ —stable C—subspace of g we denote Vg := V' the fixed point set of ¢’ in V.
Conversely, if Vg is a R—subspace of grg we denote V' the ¢’ —stable C— subspace
Vk ®r C of g. The semi-involution ¢’ acts on the Kac-Moody group G associated
to g and we denote by Gg := G the fixed point subgroup of o’.
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A Cartan subalgebra of gg is a subalgebra whose complexification is a Cartan
subalgebra of g. A split toral subalgebra of gr is an ad(gr)—diagonalizable sub-
algebra. Any split toral subalgebra tg of gr is contained in a Cartan subalgebra
hr. If tg is a mazimal split toral subalgebra, then by is said a mazimally split (or
mazimally noncompact) Cartan subalgebra.

2.2. The index of an almost split real form. A Borel-Tits Theory of almost
split K—forms of Kac-Moody Lie algebras, where K is an arbitrary field of char-
acteristic 0, was developed by G. Rousseau in [28], [29] and [2]. We recall (and
rewrite in the real case) the main results on these forms for the class of Kac-Moody
algebras that we have fixed above.

Proposition 2.2.1. Let gr be a real form of g and o’ the corresponding semi-
wmwvolution. Then ggr is almost split iff o’ stabilizes a proper parabolic subalgebra of
g. In particular, almost compact real forms of g are almost R—anisotropic.

If the real form gr is almost split then o’ stabilizes a finite type parabolic subalgebra
p of g. If p is a Borel subalgebra, then the real form gr is split or quasi-split.

Theorem 2.2.2. Let gr be an almost split real form of g and € = + or —, then the
group Gr is transitive on pairs (i, pg) where tr is a mazimal split toral subalgebra
of gr and pg is a minimal parabolic subalgebra of gr of sign € and containing tg.

Definition 2.2.3. The rank of gg is the common R—dimension r of its maximal
split toral subalgebras.

Remark 2.2.4. The centralizer g of tg in g is the Levi subalgebra of pg, its derived
algebra [ is a compact real semi-simple Lie algebra.

The maximal split toral subalgebra tg is contained in a unique [up to a conju-
gation by Zg, (tr)] maximally split Cartan subalgebra hg of gr. In particular the
maximally split Cartan subalgebras of gg are Ggr—conjugate.

Take a G—conjugate of o/, we may assume that h (= hr ® C) is the standard
Cartan subalgebra of g and p¢ = p¢(X) is a finite type standard parabolic subalgebra
of sign €. Therefore, the two opposite parabolic subalgebras p*(X) and p~ (X) are
o’ —stable and we have

(2.2.1) tchcbt cpt(X).

Thus the pair (h, bT) [resp. (tg,pg (X))] is called a standardization of g [resp. gg]
and we say that the standardization (h, b*) is compatible with (tg, p (X)). O

Definition 2.2.5. [The x—action of o’] Actually, the derived Levi subalgebra [
is that of pT(X) , it is the subalgebra gx generated by g, a € Ax. Note that
o’(b%), as bT, is a positive Borel subalgebra satisfying the condition 2.2.1; hence
there exists wx € Wx [the Weyl group of A(h,[) viewed as a subgroup of W]
such that wxo’(b%) = b' and thus wxo’ induces on II an involutive (or a trivial)
diagram automorphism o’* called the x—action of ¢’.

One knows ([2]; Prop. 2.7) that t is the subspace of h defined by the following
equations :
(2.2.2)  «a(h)=0Va e X, and «a(h) = B(h)if o, 8 € I satisfy 8= c"*(a)

The restriction of ¢’ to the derived Levi subalgebra [ is compact and we may assume
that ¢’ coincides with the standard Cartan semi-involution w’ on [. In particular
o’ commutes with wy on h and so w3 = 1y is the unity of W.
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Definition 2.2.6. [The index of gg] The Satake-Tits index of gr is the data con-
sisting of the Dynkin diagram of g, the x—action of ¢’ on it and X = type(p™(X)).

Schematically, the Satake-Tits index is the so-called Satake-Tits diagram on
which the roots of X are denoted by white circles o and those of IT\ X are denoted

by black circles o. If 0"*(a;) = a; then it will be indicated by o o (or
R

) depending on whether these two roots are both in X

v ; 6
° ]? ) or by 1 (or
[¢]

R

or in IT\ X and on their positions on the Dynkin diagram.

Let us notice that the colouring of the vertices is chosen here so that the Satake-
Tits diagram for the split form is the Dynkin diagram of its complexified algebra
(with black vertices); it differs from that of Helgason ([15], Chap X) where the roots
of X are black and those of IT \ X are white.

As the derived Levi subalgebra [ has a unique compact form (up to a conjugation)
we have as in the classical case ([35], [32]) :

Theorem 2.2.7. [[2], Théoréme 2.8] The knowledge of the Satake-Tits index de-
termines the real form gr up to an R—isomorphism.

2.3. The classification problem and the admissible indices. In practice, the
problem is to tell whether such an index comes from an almost split real form of
g or not. An index coming from a real form will be said admissible. To recog-
nize admissible indices one established in [2] a one to one correspondence between
conjugacy classes (under Ad(G) or Aut(g)) of almost split real forms and those of
involutions of the second kind of g.

The semi-involution ¢’ and the standard Cartan semi-involution w’ are assumed
to stabilize the same Cartan subalgebra § (which is maximally split for ¢’). Using
an argument going back to Elie Cartan, one proved that there exists a unique (up
to H "'—conjugation) Cartan semi-involution which stabilizes h and commutes to
o’ (see [18] or [26]). By conjugating by H, one may assume that o’ commutes to
w'. Then o := ¢’w’ is a C—linear involution of the second kind of g. Hence t = ¢
is a maximal o—split toral subalgebra of g and the minimal ¢’—stable parabolic
subalgebra pT(X) is o—split, within the meaning of Kac and Wang [19], and it is
minimal for this property. In particular the standardization (h,b") is a split pair
for o and thus the restriction of o to [ (= gx) is trivial, cf. ([19], §5) or ([2], §4).
The main result of Kac and Wang on involutions of the second kind is that split
pairs for o are G”—conjugate ([19], 5.32). Consequently, we have the following
result:

Theorem 2.3.1. [[2], Théoréme 4.4] consider :
(1) the semi-involutions of the first kind o’ of g,
(2) the involutions of the second kind o of g,
(3) the relation : o' ~ o iff :
(a) c'oc = o0’ is a Cartan semi-involution,
(b) o' and o stabilize a same Cartan subalgebra a,
(c) a is contained in a minimal o’ —stable parabolic subalgebra p of g.
Then this relation induces a one to one correspondence between conjugacy classes
under Ad(G) [resp. Aut(g)] of semi-involutions of the first kind and those of invo-
lutions of the second kind of g.
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Remark 2.3.2. The condition (c) in the theorem is equivalent to require that a” is
a maximally split Cartan subalgebra of gg/.

The involution of the second kind o acts as the Cartan semi-involution oo’ on
the real form gr corresponding to ¢, it is called the Cartan involution of gg, and
we have the corresponding Cartan decompostion :

gr=Et®dp
In ([9], Proposition 2.3) we proved that the Cartan involutions of gg (or equivalently,
the Cartan semi-involutions of g commuting to ¢’) are Gg—conjugate. O

2.4. Involutions of the second kind. Let ¢ be an involution of the second kind
of g. We may assume that (h, ") is a split pair, so there exists X C II of finite
type such that o(A*) N A+ = AT and thus p*(X) is a minimal o—split parabolic
subalgebra. Then o can be written in this way (see [19], 4.39) :

o =1wAd(nx)Ad(s)

where

i) 7 is an involutive diagram automorphism stabilizing X and w is the standard
Cartan involution.

ii) nx € N" N N“NGx such that its image in W is the longest element wq(X),
where G x is the subgroup of G generated by the U,, o € Ax, and Wx the subgroup
of W generated by the r;, i € X.

iii) s € HO.

To determine Ad(s), one needs to know the restriction of Ad(nx) on gx and the
action of Ad(nx)? on g. From the condition o|gx = 1, one gets that wo(X) acts
on hx(:=hNgx) as (—7) [i.e T|hx = —wo(X)].

2.5. How to choose nx ? By using the results of Tits on the word problem ([36]
or [2]) one gives in [2] an explicit formula of nx and then one shows that the
restriction of Ad(nx) on gx is equal to that of 7w (see [2], 4.9). More precisely,
for any reduced expression (r;,7;,...r;, ) of the longest element wy(X) of Wx, the
element nx := (m;,m;,...m;,) € N"N N N Gx does’nt depend on the choice of
the reduced expression of wy(X) and the automorphism Ad(nx) coincides with the
traditional prolongation of wy(X) in an automorphism of g of order dividing 4 (see
[2], 4.7 and 4.8) . Thus it is shown that:

Ad(nx)* = wo(X)? = exp(irad(2px))

where 2px is the sum of the positive coroots of Ax (see [2], 4.10.3).
In table 1 below we give, for each complex simple Lie algebra, a reduced expression
of the longest element wy of the corresponding Weyl group, by noting that in the
case A,, n > 1, we have :

wo(X) = (r1r2...mn).(r1...rp—1)...(r172).71
and that in all the other cases the Coxeter number h is even, and thus wo(X) =
()%, where ¢ is a selected Coxeter transformation such that () transforms the
fundamental chamber into its opposite (cf. [12], chap V §6, Proposition 2). In the
same table we give also the expression with the «a; (extracted from the “ Planches
de Bourbaki ” [12]) of the sum of the positive coroots 2p".
In our situation, we choose for nx the product of the elements corresponding to the
connected components of X, and those are the products obtained from the table 1
if one replaces r; by m; = exp(e;) exp(—f;) exp(e;).
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Table 1
Name Dynkin diagram | wg 2p
1 2 n
Ana n>1 | —o—e—...—0—0 (rira..rp)(rirz..rn—1 | nai+2(n—1)as+...4i(n—i+1)aj+...
I (rira)ry ot naog,
1 2 3
Bna n>3 | —@—..... »k.ﬁiﬁ (rirg...rp)™ 2nai+...+i(2n—i+1)aji+...
...+(n71)(n+2)anll+%a;
1 2 m
Chnyn>2 | @8c..co@<® | (rira...rn)" (2n—1)ait...+i(2n—i)ai+...
(=D (n+a,1+n%ay,
1 2 n—1
Dy, n>a | o6 0-e"0 | (rirg.rn)n1 2(n—1)ai+...+i(2n—i—1)ai+...
b 2D (0,7 o)
1 3 4 5 6
Ee oo o & o | (riraryrarsrg)d 2(8ait1las+15a3+21ait+
i 15a5+8a)
2
1 3 4 5 6 7
Er o o o ¢ 6 | (rirarararsrers)? 340 +4905+6603+960 i +
l 7505 +52a5+27a%
2
1 3 4 5 6 7 8
ES 0006000 | (rirorgryrsrerrrs)t® 2(46i +68a3+91a3+135ai+
l 110a3+84a5+57a7+29a3)
2
Fy o e>o o (r17ar3ra) 220 i +42a5+30a3+16a]
1 2 3 4
G2 ? 9 (rir2)? 2(5ai+3as3)

2.6. What is Ad(s) then ? Using the fact that o|gx = 1, one can write (see the
proof of 4.10.4 in [2]) :

Ad(s) = exp(imad(3_ ¢ (p; = Pr(s)))

jen

where ) is a complete set of representatives of the 7—orbits in IT\ X and ¢; € Q
(j € Q) such that :

(2.6.1) 20% + Y 2€(p; —pr(y)) € 2LP = @ 2p;

. i€l
JEQ

here I denotes the index set {1,2,...,n} and for any subset X of II we confuse
sometimes X with the subset Ix :={i € I; o; € X} of I.
Let j € Q and u € Z, then by conjugating o by exp(Fad(u(pj+p+(j)))) € Zyer (9x)
one can replace €; by €; +u without thus modifying the others ¢;, then Vj € €2, the
element €; € %Z may be modified modulo Z.

From 2.6.1 one sees that the class of 2px in ZP/2ZP has a representative in
(ZPH\X)(‘T), where Pp\x = {pi;a; ¢ X}. And by the preceding result, for any
such representative 2px, one may modify the €; in order that :

20x = Y 2€;(pj — pr(j))
JjEQ

Hence we have the following results :
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Proposition 2.6.1. Conjugating by Z .- (gx ), we may assume Ad(s) = exp(Zad(2px))
and this yields

(2.6.2) o= TwAd(nX)exp(%Tad(ZﬁX))

Remark 2.6.2. Any involution of the second kind o taking the form 2.6.2 and the
associated semi-involution of the first kind o’ := 0w’ = 70}, Ad(nx) exp(Fad(2px))
are called standard. Any involution (resp. semi-involution) of the second (resp. the
first) kind is G—conjugate to a standard one. Some involutions of the second kind
(which are not all standard) are considered in [24] by Pati, Parashar and Kaushal
to give the corresponding Iwasawa decomposition for some hyperbolic Kac-Moody
Lie algebras. O

Let o’ be a standard semi-involution of the first kind and gr the corresponding
almost split real form. Then the involutive diagram automorphism 7 induces the
x—action of ¢/ and thus the Satake-Tits index of gg is entirely determined by the
data (7, X). Summarising, we get the following result :

Theorem 2.6.3. Let X C II be of finite type and T an involutive diagram auto-
morphism stabilizing X . Then the couple (1, X) corresponds to an admissible index
iff Tlhx = —wo(X) and the class of 2px modulo 2ZP has a (—1)—fized represen-
tative in ZPm\ x. In particular, if T is trivial (on 11\ X ), then Ad(nx) should be
an involution, i.e. 2px has to be in 2ZP.

3. THE RELATIVE ROOT SYSTEM

Let ¢’ be a semi-involution of the first kind and gr the corresponding almost

split real form. We may assume that o’ is standard (see 2.6.2) and thus o =
o'w = W'o’ is the Cartan involution of gg. Hence hg is a o— stable maximally
split Cartan subalgebra of gr and ar := hy? is a o— stable maximal split toral
subalgebra. The group K := Gf is transitive on the set of o— stable maximally
split Cartan subalgebras (resp. o— stable maximal split toral subalgebras) of gr
(cf.[9], Proposition 2.6).
Warning : Note that ag is a maximal abelian subspace of p (i.e. a Cartan subspace)
but, in contrast to the classical case of real semi-simple Lie algebras, an element
of p is not necessarily ad—gr diagonalizable; moreover a maximal abelian subspace
of p may be infinite dimensional, hence maximal abelian subspaces of p are not
K —conjugate. (I
The (infinite) relative root system A" := A (gr, ar) = {&¢/ = aar #0; o € A(g,h)}
is more surprising, it was studied by Nicole Bardy in ([2], §3) (see also [3], §6). In
our situation, we have explicitly :

ag = © R(p; + pre)
i€Q)

where Q is, as in §2.6, a complete set of representatives of the 7—orbits in I\ Ix.
It follows that the rank of gg is r = ||

Clearly aj = 0iff i € Ix, and for j, k € I\ Ix, A" 3 o = a} iff j and k are
in the same T—orbit. In particular, the set II' := {a}; i € Q} is a root basis
of A’. We denote A/, (resp. A’) the set of positive (resp. negative) roots of
A’ with respect to the basis II'. We have A" = A/, U A’ (disjoint union) and
o(Al) =w'(A}) = A”. For o/ € A’, the root space gr o associated to o/, with
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respect to adjoint action of ag, is finite dimensional. Let gr o be the centralizer of
ar in gr and )y = @ gr o, then we have
o’ €Al
gr =n__ @ gro®n

Note that gro = ar @ (EN gro) and o(n’_) = n/,. It follows that . C tdn/,.
Hence one can deduce the Twasawa decomposition

(3.0.3) gr =D ap ®nl

3.1. The relative Weyl group. The new aspect to note here is that, as in
Borcherd’s work [11], a relative simple root o of the basis II' may be imaginary
(in the sense that no reflection corresponds to this root) and that is the case iff
the subset X (i) := X U {ay, a,;} of II is not of finite type; then all positive integer
multiples of o} are still roots. In the case where X (i) is of finite type, the rela-
tive root o is said a real relative simple root. If o is real, then the (commutative)
product of the longest elements, of the Weyl groups corresponding to the connected
components of X (i) meeting the 7—orbit of 4, commutes to ¢’ and ¢ and induces
on ag a reflection R] such that
Ri(a) = a— {a},a)a’; (a € ag)

for some o' € ag named the coroot of o and verifying («}, /7 ) = 2. Actually o’;
is the only element of a (defined by the equations 2.2.2) satisfying (af,a’;) = 2
and which is a linear combination of the aj, where j runs over the union of the
connected components of X (i) meeting the 7—orbit of 4.
The relative Weyl group W' is generated by the reflections R} such that «} is a
real simple relative root. It is isomorphic to N'/H', where N’ (resp. H') is the
normalizer (resp. the centralizer) of ag in Gg, and it is simply transitive on the set
of minimal parabolic subalgebras of gg of sign € and containing ag.

If o} is a real simple relative root, then A, NZ*a} C {],20}} and 2¢ is a root
iff 7(i) # i are contained in the same connected component of X (i), or 7(:) = ¢ and
Ax i) has a root with coefficient 2 on «;.

Remark 3.1.1. If X = 0 and 7 # 1, then gg is quasi-split and tg := b =
> ic1 R(pi + prsi) is a maximal split toral subalgebra. In order to avoid any confu-
sion, one notes with Y (instead of Y’) the objects relating to the quasi-split form
similar to those introduced above, in the general case, for almost split real forms.
In particular, the relative root system A is A(g, h7) and the corresponding relative
Weyl group W is generated by R; such that the 7—orbit 7 of i is of finite type. If
J C I is of finite type and T—stable , we denote J := J/(7) and W the subgroup
of W generated by Rj, j€J. Foricl,set a:= Zja aj € tg; then &y is real iff
(q, &) = {ay, @) is positive (=1 or 2). O
1
2
simple relative root such that 2o} ¢ A’ (resp. 2a) € A’) and o = Z w(@;) if
wEW g
o is an imaginary simple relative root. Clearly o} € ag in the two cases.
If o is a real simple relative root then o/; = p; — R(p;), where p; € R(p;+pri) C ogr
such that (a},p;) = 1 and R} is the reflection corresponding to «f. Thus the
expression of o results easily from that of o/ in this case.
A relative simple root «} is imaginary if and only if («}, ") < 0. Here now some

Return now to the general case and put o} = o' (resp. 3a/7) if o} is a real
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indications to calculate " when o is an imaginary simple relative root and the
relative rank r > 2 (we don'’t calculate o when r = 1). We will assume that o is
imaginary of affine type (i.e. X (4) is of affine type) and so (a}, ") = 0. Note that
this assumption is always checked for the hyperbolic Kac-Moody Lie algebras.

If the diagram automorphism 7 (defining the *— action of ¢’) is non trivial, then
by considering the subset X (i) in II (which is also of affine type) one can reduce
the problem to the case 7 = 1.

Assume now that 7 = 1 and let Kx ;) be the canonical central element of the
affine Lie algebra gx(;), generated by {ea, fo, o € X (i)} (see [17]; Chap. 6).
Then one can write Kx ;) = Z aq07, with positive integers a, (o € X(4)). In

aeX (1)
particular we have :

. 1 5
a; = —(Kx@) — Z aa Q)

Qo acX

One can see easily that Z w(a’) =0 for @ € X, and since the canonical central
weWx

element K x ;) is fixed by W (viewed as a subgroup of the affine Weyl group W ;)

we get :

. W
i= | X|KX(’L)
Qo
O
3.2. The relative Kac-Moody matrix. In [[2], §3], Nicole Bardy associated to
the relative root system A’ a relative Kac-Moody matriz B' := ({}, ")) = (b; ;)
which satisfies :
b ; € Z,
b <2,

b%j € Z_. f01/r 1% 7,
v ; = 0iff b, = 0.
Theorem 3.2.1 ([2 ; Théoreme 3.10]). The relative root system is the only subset
A of ® 7o, where I' = (I'\ Ix)/(T) =~ Q, such that :
iel’

(1) A= AN UA" where —A"” =N, = AN'N(& ZTa})

el
{af} if b, =2
(2) Ztoi N A, = ¢ {aj,2a;} if b, =1
N*a/ if bgﬂ- <0

3) For all o/ € A'_ \1U, there exists i € I' such that o/ — o/, € A/, .
+ P +
(4) For alli € I' and o/ € A, \ Ny, the root subset A" N (o' + Zay) is equal to :

(i) the string {o/ — pal,...,a’ + qal} with p,q € N such that p — q = (b?’_)(a’,a;»

if b, >0,
(i) {a'} if b} ; <0 and supp(a’) and {a;} are not linked (with respect to B'),
(ii1) a set containing o + Nevj if b ; <0 and supp(a’) and {a}} are linked.

Remark 3.2.2. Actually when «; is an imaginary relative simple root (i.e. b;; <0)
the relative root system A’ does'nt depend on the (o}, ;") = b} ; (j € I') but only
on the fact they are zero or not. (I
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3.3. The relative Dynkin diagram. The normalized relative Kac-Moody matrix

associated to B’ is the matrix A" = (aj ;) such that aj ; = (b,—)b;J = (af,a’) if
)

b, >0 and aj ; = b ; otherwise (see [3]; §2).
To the relative Kac-Moody matrix is associated a graph S(B’), with |I’| vertices,
called the relative Dynkin diagram as follows :
We associate to each i a vertex equipped with a cross if b;l = 1, with a sign — if
b, < 0 and with 0 if b, ; = 0. Two vertices i and j are linked iff b; ; < 0 ; more
precisely, if b}, and b ; are positive and a; ;a’;; = n; ; < 4, the vertices i and j
are joined by m; ; [:= max(|a; ;| |a};|)] line(s) with an arrow pointing towards the
vertex i if |aj ;[ > 1. If n;; > 5 or one of the two coefficients b; ; or b} ; is non
positive, the vertices ¢ and j are joined by a thick line on which we write |a§,j\
(beside the vertex i) and [a’ ;| (beside the vertex j).

Concerning the nomenclature, the name Z_ stands for e_. The relative Kac-
a —S a,b
—1 b (st
s =2s (resp. t' =2t)if a =1 (resp. b=1) and s’ = s (resp. t’ = t) otherwise.
Actually, for the numbers a,b, the number 2 is omitted, 1 is replaced by * and
(for the Dynkin diagram) a strictly negative number is replaced by —. Some other
names are given directly on the tables, they are inspired by the notations in table
2 and tables 3a, 3b and 3c below.

Moody matrix ( ,with a > band s < tif a = b, is named H ) where

4. CLASSIFICATION

Since the list of hyperbolic Kac-Moody Lie algebras seems to be very long (at
least 136) we shall here restrict ourselves to the subclass of the strictly hyperbolic
Kac-Moody Lie algebras and the (canonical) hyperbolic Lorentzian extensions of
affine Lie algebras (see definition below) to classify their almost split real forms.
The classification in the affine case was done in [2].

In the table 2 below we give, with their names, the list of all strictly hyperbolic
symmetrizable Dynkin diagrams. The nomenclature is inspired from the book of
Kac ([17], Exer. 4.3). It is noticed that the strictly hyperbolic Dynkin diagram
G'G3 is missed in [31].

Table 2

List of strictly hyperbolic symmetrizable Dynkin diagrams

¢ s<tent

Hg §_g {set¢"
BG3 e—c<e—>2 CG e—e—<
1 2 3 1 2 3

!
BG3 ?i% CG3 ?j?
GG3 === GGy e—=w=—
1 2 3 1 2 3
G/GS 1 2 3
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Table 2 (ended)

2 3 1 2 3

AGGs Q AG'Gy @

3 1 2 3

AcV

4 3

4.1. Hyperbolic Lorentzian extensions of affine Lie algebras.

Consider the Dynkin diagram of an affine Lie algebra of type X,(Lk) with the vertices
o0, A1, ..., Oy, . One extends the Dynkin diagram of X,Sk) by adding a root a_;
which is linked only to the root ag (i.e. {(a_1,aq) and {ag, a_1) are negative inte-
gers, and (a_1,;) =0 Vi =1,2,....,n). Let A be the generalized Cartan matrix
corresponding to this extended Dynkin diagram, A the Cartan matrix correspond-
ing to the finite type Dynkin diagram with the vertices a1, ao, ..., au,, . We denote
by m the positive integer (a_1, ag) X (g, @1), then we have :

Proposition 4.1.1. The generalized Cartan matriz A is symmetrizable, non sin-
gular and Lorentzian (i.e. the signature of the corresponding symmetrized matric

is (+4....+—)) and det(A) = —m x det(A) < 0.

Proof. The generalized Cartan matrix A is clearly symmetrizable. Let g be the
corresponding symmetrizable Kac-Moody Lie algebra over the real field R, h :=
Ra1 ® Rag @ .... @ Ray,, the standard Cartan subalgebra and (., .) the invariant
bilinear form on g (see 1.4). We have to show that the symmetric bilinear form
(., .) has signature (+ + .... + —) on h. Let K be the canonical central element of
the affine Lie algebra of type X,,(Lk)
can see easily that

above (viewed as a subalgebra of g). Then one

1
h=(Ra1dRK)® (Rai @ .... ® Rayy,)

where the orthogonal direct sum is taken relatively to the symmetric bilinear form
(., .) on h. As the Dynkin diagram corresponding to the vertices a1, ag, ..., an,
is of finite type, the symmetric bilinear form (., .) is positive-definite on (Raj @
we. ® Rayyy, ). Since (K, K) = 0 and (a1, K) = (e 1,09) < 0, the matrix of the
bilinear form (., .) on (Ra_; ® RK), with respect to the basis (a7, K), takes the

form _ab 0 where a and b are two positive real numbers. In particular the

bilinear form (., .) has signature (+—) on (Ra_7 & RK). Hence the symmetric
bilinear form (., .) is nondegenerate on h and has signature (+ + .... + —). The
last formula for the determinant holds by describing the matrix A using A. O

Definition 4.1.2. The Kac-Moody Lie algebra g associated to the extended Dynkin
Diagram above is called a Lorentzian extension of the affine Lie algebra X,gk).
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The positive integer m (= (a—1, ag) X {ag,a"1)) is called the link multiplicity
of the Lorentzian extension of X,(Lk).
4.1.1. Remarks and notations.
1. Note that if the Kac-Moody algebra g (Lorentzian extension of the affine Lie
algebra Xr(Lk)) is hyperbolic, then the link multiplicity m € {1,2,3,4} since the
Dynkin diagram corresponding to the vertices a—; and «g (which will be noted
D_1 ) should be of finite or affine type.
2. The Lorentzian extensions of affine Lie algebras for which the two vertices a4
and g are simply linked (i.e. m = 1) are considered by M. Henneaux and B.

Julia in [16] (see also [17]; §5.11) where they denoted by X" such a Lorentzian

extension of an affine algebra of type Xr(Lk) and they called it the (standard or
twisted) overextension of X,, (depending on whether k¥ = 1 or k = 2,3). Here we
shall choose the notation H X,(Lk) for the Lorentzian extension X,(lk)/\ when this one
is hyperbolic (and m = 1) and it will be called the canonical hyperbolic Lorentzian
extension of X,gk).

3. In the case m = 2 or 3 (i.e. the rank—2 Dynkin diagram D_; ¢ is of type Cy or
G2) we will denote by HmX,(lk) (resp. Hm*X,(Lk)) the Lorentzian extension of X,(Lk)
if this one is hyperbolic and the root a._; is shorter (resp. longer) than ay.

4. In the case m = 4, the rank—2 Dynkin diagram D_; g is of affine type and there
are two possibilities :

i) The Dynkin diagram D_; g is of type Agl) : the two roots a_; and ag have
the same length and we denote by H MW X *) the Lorentzian extension of X*) if this
one is hyperbolic.

ii) The Dynkin diagram D_; ¢ is of type AéQ) : we denote by H(Q)Xy(,k) (resp.
H (2)*X7(Lk)) the Lorentzian extension of X,(Lk) if this one is hyperbolic and the root
a1 is shorter (resp. longer) than «q.

5. Note that for the twisted Dynkin diagram A(Qi) there exist two conventions for
the root ay; so we consider the two corresponding canonical hyperbolic Lorentzian
extensions H Agi) and H’ Aéi), each one is the dual of the other. We adopt the

same notations for the other hyperbolic Lorentzian extensions (with m = 2, 3, 4)
: H””Aéi) and H’ZAgi), x = 2,2%,3,3x%,(1),(2), (2)*.

4.1.2. Canonical hyperbolic Lorentzian extensions of affine Lie algebras.

It was stated in [16] that all Lorentzian extensions (with m = 1) of exceptional
affine Lie algebras are hyperbolic (including HAgl), HA;Q), H'Ag) and HDSLB));
whereas there are some restrictions for those of classical affine Lie algebras.

In the Table 3a below we give, with their names, the list of all canonical hyper-
bolic Lorentzian extensions of classical affine Lie algebras other than H Agl), H Ag),
H’ Ag) and H Df’) which we had regarded as exceptional . In particular, the four
rank—10 hyperbolic Kac-Moody algebras which are often denoted F1o, BFE1g, CE1g
and DFE;( are Lorentzian extensions of affine algebras and they are denoted here
respectively HEE(;D7 HBél)7 HA%) and HDél). Note that table 3a contains all the
hyperbolic Dynkin diagrams of rank from 7 to 10 (see [17]; Exer. 4.3 or [31]).
Finally, let us announce that the two rank—5 hyperbolic Dynkin diagrams H C’:,(,l)
and HDf) are missed in [31].
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Table 3a
—1 1 2
HA(l) j HA(Z) 0 1 n
n 5y 2<n<7; *—o— - 2n 2<n<4, —e > —0—e>»
n o n-1 —1
1 02 3 2 02 3
HBY, 3<n<8; e—e—9 6o a8 HAén)_p 3<n<8; e—e-9 8 —o 68
—1 —1
W ) @) )
0 1 1 0o 1
HCn y 2<n<4, o—c:>:-—o—c:¢2 HDner 2<n<4, o—c:é-—o—c:iz
—1 —1
1
1 —1 2 0 1
HD& )7 4<n<8, .—O—I—Q— n—1 H/Aén)a 2<n<4, Q—Q:CQ—Q—.:COR
0 2 3 —1
n

4.1.3. Hyperbolic Lorentzian extensions of affine Lie algebras with m = 2,3, 4.
The hyperbolic Lorentzian extensions of affine Lie algebras with m = 2,3 are the
following :

Table 3b
1 .
a2AWY e 2 A [N
1 e
HA =y | HYAY s
2 . (@2
H2A = H> AP e
H’QAgZ) P H/Q*A§2) N
2 . (@
H3Aé ) %ﬁ H3 Aé ) - . ,
H’3A§2) BIE:E? HIS*AéQ) . .o
o 1
H2 A5, n=2,3 @2 H> A, n=2, 3 7 .
3 4(1) o s (1) .
H3 AL H% A —f
2 2
I{QBT(})7 n=3, 4 ;lig_i_.:,gl HQ*BT(LI)’ =3, 4 —-1_o0 2 n
! 1
HQAéi),l; n=3, 4 H-_'—i—‘iz ‘[—‘[2*14(233717 n=3. 4 -1 9 2 n
1 1
H2C§1) - H2*02(1)
-t0 B 2 ~1" o0 1 2
HQAEf) - H2*A1(12)
-1 0 L 2 ~1" o0 1 2
HQDS) ~1 9 5 HQ*DELI) 1o R
N 4
3 3
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Table 3b (ended)

HQGS) H2*G(21)

-1 0o 1 : -1 0o 1 2
H?’Gél) H3*Ggl)

-1 0o 1 —1 0o 1 2
HQDEIJ) H2*D4(13)

-1 0o 1 -1 0o 1 2
HSDES) H3*D4(13)

-1 0o 1 2 -1 0o 1 2

The other missed hyperbolic Lorentzian extensions are, if one changes the la-
beling, canonical or already enumerated with different names on the list above. In
particular we have :

1 1
m2E) = uBL"

13 4 5 6 7 8 0 _—1

2

13 4 5 6 7 8 0 —1

v (1 2
H>»E{) = HAY

H2FY = HDYY)
H>FY = gAY
H2E{ = HAY
H>EY = HOY
H2D§2) _ H2A4(12)

HQ*D§2) — HQCS)

HQA;Z) — H2*B4(11) -1 o 2 3 4

H3D513) — HS*GS)

O
The hyperbolic Lorentzian extensions of affine Lie algebras, with m = 4, are the
following :

Table 3c
HOAY  eece
—1 0 1
H(l)AgQ) —1 0] 1 H/(l)Agz) -1 0 1
H(Q)A(Q) ——s—>» H(2)*A(2) ——u
2 —1 0 1 2 —1 0 1
H@*AP) e
2 -1 0 1
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4.2. Tables. In the case of the strictly hyperbolic algebras and the canonical
Lorentzian extensions of exceptional affine algebras (including H Agl),H Ag), H' AéQ)

and H Df)) we indicate successively, in tables 4 and 5, the name of the almost split
real form, its Satake-Tits diagram (represented in accordance with 2.2.6), the condi-
tions on the parameters and the relative root system (with its name and its Dynkin
diagram). The name of the real form arises in this case in the form “Z}", where
Z, is the name of the hyperbolic algebra, r = |I’| is the relative rank, a = 1,2 is
the order of the diagram automorphism 7 defining the *—action of ¢’ (omitted if it
equals 1) and m (omitted if it equals 0, i.e. in the quasi-split case) is the dimension
of the Levi subalgebra I' = gx (cf. 2.2.5).

In the case of the canonical hyperbolic Lorentzian extensions of classical affine
algebras we indicate successively, in table 6, the name of the almost split real form,
its Satake-Tits diagram (represented in accordance with 2.2.6), the conditions on
the parameters and the relative root system (with its name and its Dynkin diagram).
The name of the real form arises in this case in the form {7, , where Z,, is the
name of the hyperbolic algebra, a and r are given according to same conventions
as above, and 4 (optional) is a parameter : it is often the cardinal of the smallest
connected component of X.

The determination of all admissible indices is made using 2.6.3. Actually, when
the relative rank is at least 2, this can also be deduced from Proposition 2.11 in [2]
and the known lists of admissible indices for simple or affine Lie algebras (see [35] or
[33] and [2]). The calculation of the relative Dynkin diagram is easy using the rules
explained in §3 to compute ' or ';; the results already known for semi-simple or
affine Lie algebras may also be used. We don’t calculate a; ; in rank 1 (i.e. when
b, <0).

Finally, let us notice (as it will be shown in the tables below) that for the
strictly hyperbolic almost split real forms, of rank > 2, the corresponding relative
Dynkin diagrams are also strictly hyperbolic; whereas, for the hyperbolic canonical
Lorentzian extensions of affine algebras, the relative Dynkin diagrams, associated
to their almost split real forms of rank > 3, are hyperbolic but they are not always
Lorentzian extensions of affine diagrams. [

Table 4

List of almost split real forms of strictly hyperbolic symmetrizable
Kac-Moody algebras

Name Satake-Tits index Relative diagram Name
H(S’t)’Q ?—é ;—é H(s,t)
3 2 7
H(2s,t),1 ?S_; g — Z_
S S
*Hs1 1 2 o Z-
1 7 1
BG373 1 2 3 1 2 3 BGS
By omcemm  —— Ha
BG3) =<to—>» ® - Z-
’ 1 2 3 3
BGY,  e—<o=o ®- Z-
’ 1 2 3 1
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Table 4 (continued)

Name Satake-Tits index Relative diagram Name
CG%,?) — == = Cay
CG'3 e o Z_
CG'3,  o—w—<o . Z_
BCh; e—ce—ce P — BG
BG’%2 < e—=2 o—oi S H6)
BG'y)  oco—s °_ Z-
BG'3,  e—co—o o Z-
ole P a— S G,
CG3y  e—=o==o o Z-
CGS1  o—se—so °_ Z
GG33 e—=a>—e o« <o GGs
GG e—o=—0 °_ Z_
GGgl e °_ Z_
2GG;, <= e H )
26G3,  e=o=—s 23 _ 1 Z_
G'G33 —s —s G'Gs
G'GYY —so>—> o Z_
G'GS, === .o Z_
G'G3Y  o=so=— .o Z-
eleim QE—— efel
G'G'y)  e=sc=— . Z_
GG, o—swe— o Z-
GG, === §_§ Hs 3
GGy, === . Z_
ety 1 [ ae
; 172 s
acly L] R Hig

19
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Table 4 (continued)

Name Satake-Tits index Relative diagram Name
I .
1 2 3
1
2ACS) Q —_— H.a
1 2 3
w1 .
1 2 3
wo [ s .
1 2 3
S
ADE el el AD{Y
1 2 3 1 2 3
ZAD(Q) 1 8 Jags
3,2  E— (1,8)
1 2 3
v 2
1 2 3 !
' 1 2 3 2
S
P .
AGG3,2 e : : e H(l,l?)
s 2 1
1 2 3
1 2 3

3 1 2 3
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Table 4 (ended)

Name Satake-Tits index Relative diagram Name
AG'G'5 « : < °_ Z_
AGG 3.2 1 2 3 ;_?X H(3’4)
AR
2AG'G' Q .o Z_
1 2 3 1
2AG'G'S @ o_ Z_
’ 1 2 3 2
A
1 2 1 2
Acy) Ac)
’ 4 3 4 3
c ’
1)21
ACZEJ) i o o Z_
1 2
QAC?(,B ! ! o — HE
— ' ’
1 2
sac® 11 . 7
4 3
1 2
24c()® |1 ) .o Z_
’ 2
4 3
Table 5

List of almost split real forms for the canonical hyperbolic Lorentzian
extensions of exceptional affine Kac-Moody algebras

Name Satake-Tits index Relative diagram Name
HA?% e ] HAgl)
9 —-1 0 1 —1 0 1
(13 . 2 0
HAT2  s—5=% 0 Ao
@) (M
HG2’4 2 0 —1 1 2 0 —1 HG2
(1)14 1 12
HGy™ =3 — P 12)
CEHE * e

01 2 3 4

21



22

HECHMI BEN MESSAOUD

Table 5 (continued)

Name Satake-Tits index Relative diagram Name
1)21 — 2)X
HF( ) ee o0 =" HQ*A( )
43 A 2
01 2 34
4
(1)36 1 1 2°(4!) 0
Mz eeogmoe S Ay
7 a2
(152 1 . 2'.3 0
I—]’_le’2 ' Smmm—— H<1,27.32)
012 34
(1) -10 2 4 3 1 10 2 4 3 1 (1)
HEY HE
5 5
6 6
1
(1)28 -10 2 4 3 1 2% 4 (1)
HE!] , H™ Ay
g 6
6
31
2 1) 1 *-e -1 (1)
HES) 8411 HF),
’ oo 02 4 31
5 6
3 1
9 (D15 1 o—e 1 x (2)x
HEg; " o eadall ¢ e HAS
o 2 1
o—e
5 6
3 1
2B ag s (0 e Jor
6,2 oo o0-¢sl 1 ey 0 (1,24.41)
o—e
5 6
3 1
2 p™ g 2 77 01—207'32 HY
6,2 oo ¢sl | ey p 0 (1,27.32)
0—0
5 6
HE;lg) -10 1345 67 -10 13 45 6 7 HE;l)
2 2
HE;IG)Q —10 13 45 6 —1 HF4(1)
oo o >0 o
’ ) 013 4 6
HE;15)28 -10 134567 —1 Hcgl)
, —e >0 e ‘
0o 1 6 7
2
5
(1)69 —10 13 45 6 1 2°(6!) 0
HEg; om— HE o5 1
2
10 o4 =
(1)133 —19 1 3 45 6 L 2°.37.5.7 0
HE7, om—0 H(1,210.34.5.7)
2
HE;11)248 -10 13 45 67 °_ 7
) 7
2
HEégll)O 13456780 13456780 HEél)
2 2
HEéngS 13456780 o —l HF4(1)
, [
08 7 6 1
2
6
(1)120 1 3 45678 0 1 2°(8!) 0
]{E’&2 -1 31—?0 H(1,26.8!)
2
14 o5 2
(1)248 134567 8 0 L 2°.3%.5%.7 0
HEg, 1o ommm—0 H(1,214.35.52.7)

2
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Table 5 (ended)

Name Satake-Tits index Relative diagram Name
HA;%% «—e—=» (== HAéQ)
9 —1 0 1 -1 0 1
2)3 1 2
HAE) == Sy—0 H )
H/AgQ;) - o [—— H/Ag)
) —1 0 1 —1 0 1
I‘I’A(;i6 o—e==D °_ Z_
’ -1 0 1 0
HEG(S g oo o o< e oo o oo o HE((;Q)
’ 0 1 2 3 4 0 1 2 3 4
HEé2:.221 o x HA§2)X
’ 01 2 3 4 -1 0 1
. 1 27.32
HEé’2)52 1_:0 H(01’27_32)
0 1 2 3 4 -
HDQ ] ] HDf)
El —1 0 1 2 -1 0 1 2
(3)14 1 12
HD472 —1 0 1 2 —1 0] 0 H(01712)
Table 6

List of almost split real forms for the canonical hyperbolic Lorentzian
extensions of classical affine Kac-Moody algebras

Name Satake-Tits index Parameters Relative diagram  Name

HAD |, ..Fj 2<n<7 .—Fj HAY

n=3 o 7
-1 0 1 2
....“.
1 3 3
nop-1
5<n<7 AD'S—)Q
b =
k=2 eSe<—>e a2 AW
-1 o0 2
2k—1
1 O O . .
1HAék)_1,k+1 . k k=3, 4 74 H? Ai_)l
1 2 2
7 6 5
8HA’(71% o 0 o 2_ 7
:

P ) i z
-1
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Table 6 (Continued)
Name Satake-Tits index Parameters Relative diagram Name
2k—1
1 ﬁ 1
QHAék)kaJrZ * o I 1T 1 }k 2§k§4 _ol_??_kﬁ HCIE)
—
1<r<k .4?:54;? HAgi)X
2k—1
2(k—7')—21HA$€)_1,7-+2 7’—<1 o I 1 1 }}k 2§k§4
e e AR
- -1 0 1
1 2k (k1)
r=0 7 %0 H?sz.k:!)
k=4 . 2 iD*
= [ e e e )
—1 2 3 4 2
2k—1
’ .. X
%HA;?AJC 70—<€1 o 111 }k k=3 e—E=== H’Q*A?)X
o—e .
2 8 0
k=2 % ;0 H(278)
o _ X X HQ*A(].)XX
=hh=d e 1
2 (1) 7o - 1 2k (k—2)1) o
2(k—r)—1HA2k—1,r ﬂ o I 1 1 }k r=2<k<q  Sm—— H(172,€+1_(k72)!)
2]:712 :
%HAgﬁ)fl,k72 7O—<€1 o 11 I:}k ez ®_ Z_
1 2 3 a
1 28 .32
k=4 % =30 H?1,28.32)
:
PH AL oo 11 1) z.
5
oo A1) 24(41) 2% (41) 0.0
X (2)x
1<r<k o—:ﬁrﬁo HAQ,.
2k
1 O X 2
o BHAR e . T HAP"
1 ™ k
1 2% (k!)
r=0  Omm—.0 H(Ol.zk.k!)
2k
2 (1) O O 1 o1 .
s
1 O . (1

-
N
w
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Table 6 (continued)

Name Satake-Tits index = Parameters Relative diagram Name
6 5 4
1 O O 3
-1 O O
1 2 3
I e HBY
- -1
1
1
r=2 —eo =<9 HC’é )
—1 0 2 1
HB(l) 02 3 r n HQ*A(U
n—r n,r+2 . —@—0—C0=0 3<n<8; r=1 —eo<—>» 1
—1 —1 0 1
1
1 2" (nl)
r=0 71_:0 H(01,27l.n!)
1)’ ) N 2 27 (nl)
nHB,(l% - 333 oasb  3<n<8 Sm— ) H(Omn_n,)
1
HB(l) 0 2 3 n 1 A
n+1 n,1 -0—3s0 3<n<8 o _ —
-1
1
1 25 (41
n=4 Omm——" H(01.,23.4!)
1) 1
4HB1(1,2172 7m?0+10 oo —eeee n=5  e—ex<xe HAg )
1
2
6<n<8 o0 ..- 00 HDSL_)g
—1 4 5 n
1 272 (41).(n—4)! 0
r=4<n<8 _1_:0 H(1,2"*2.4I.(n74)!)
1 . I 1
n—rHBfl’i,Q 710 33 e .+ —0-0-C=0 r=5<n<8 !1_:@2 HAE )
1
gp®
6<r<n 7.1—::<?74>: r—1

8HB$711)/ O—O—E—O—O—O—G;z. o Z_

1 7
lHBé’l) - 0 2 3 4 5 6 7_ 8 °_ 27
1
HB(l)N 002 345 6 7.8 26(l8_l) 27(8!) 0.0
8 8,2 —1 0—1 8 0 (26.81,27.8!)
1
HB(l)m 02 3 45 6 7_8 .2_214'.35‘5 7 HO
k) 8 R 1 . 5' .
8 8,2 -1 70 (2,214.35.52.7)
1
1 T
Hcr(z,th O—gilknm 2<n<4 ._Flk..m HCSL )
—1 n 1 n
n=2 °_ Z_
1 1 8
3HCr(L,21*1 O—CO>=0—0— . .69 Ne3 g < H(?s)
—1 0 1 2 n 3 2 )
X 2
ned4 E==<® HQ*Ag )%
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Table 6 (continued)
Name Satake-Tits index Parameters Relative diagram Name
n=3 o_ Z_
(1) 28.32 1 0
4HCn,n72 0—0=0—0—e=® n=4  (fm—- H(1728_32)
-1 0 1 2 n
1
n=2 e—e=—=e H2 A~
-1 (0] 2
(1) X 24 4(2)X
1HC, 3 o0 e 0=0 n=3,4 €= H=* A,
’ -1 0 1 2 n 17 o0 2
1)’ X 2
1HC£32 >0 o< —a—e H’(2)*Ag)><
’ -1 0 1 2 3 4 -1 2 4
1 1
1HC£42 e >0 o Oox<e H2*C§ )
’ -1 0 1 2 3 4 - 0o 2 4
(1) 1 2" (n!) 0
nHCy, 5 e e>0 o ox<o 2<n<4 ®0 H(1 9 1)
-1 0 1 2 n — N n:
1 27
P 0
n=3 -1 2 0 H(1724)
6
(1) 1 2 o
n—2HC, 5 e o0 e 0=<<0 n=4 ommm— ];I(1 26
) -1 0 1 2 n -1 2 5
2 23
0
n=2 R3O Hz29)
1)"” 24.(4) 24.(4!) 0.0
HC( >0 0—C=<%e = H/
" 2 -1 0 1 2 n n=4 0 40 (24.41,24.41)
1 1
1 -1 -1 1
HDSL,2L+2 O—FI—k n—1 4<n<8 .—Q—I—.— S HDg,, )
02 3 02 3
- N @
1
r=2, n even — oo <o HCQ
—1 0 2 1
1
(1) -1
71—7'H n,r+2 "J—O—i—on—l 4<n<8
0 2 3 T
n
3<r<n-—-2 02 3 (1)
n—r even ’1—.—I+@5; H By
1
1
(1) -1 I 2% 4 (1)
n—lHDn,g ~~0—i—0n71 n=5,7 &= H *Al
0 2 3 -1 0 1
1
n—1
(1) -1 i 1 271 (n!) 0
nHDn 2 .- n—1 n=4, 6, 8 omm— H(l an—1 pl)
’ 0 2 3 -1 0 , n!
n
1
.
(1)/ . 2 2" .(n!) 0
nHDn,z ML@ '@—I—Onfl n=4,6,8 Ommm—m—m—m" H(2 2n—1 pl)
0 2 3 - )
1
11 o4
(1) 4 . 1 211 3%5.7 o
1HDg 5 Jr—0 H(1,211.34.5.7)
0O 2 3 4 5 7
s
1
1) 1 i 3 0,0
8HD§% S o ommmm— ()
’ 0 2 3 4 5 7 -1 8 ’
1=27.8!

®©




ALMOST

Table 6 (continued)

SPLIT REAL FORMS FOR HYPERBOLIC KAC-MOODY LIE ALGEBRAS 27

Name Satake-Tits index Parameters Relative diagram  Name
1
1" _ ] ]
SHDE(;% . g ( omm— ) 0,0
’ 0 2 3 4 5 7 7 8 (4,9)
S j=215.35.52.7
1
(1) -1 1
nt1HD;, q "{)—E—On—l n=57 ®— Z_
: 0o 2 3
n
1
1)’ _1 Z n
n+1HD,, 1 --oﬁwnfl n=6,7 ®_ Z_
0 2 3
i) 1
N A7 A
4 5
1
(1) —1 5 6 1~(1)
4HD7L,TL—2 o—o—o—e --T‘,l_l n=6 .@-qé.:é. H 02
[ )
n —1
1 (1)
n=7,8 n—1 H Bn74
—1 4 5
_ 1 2% (41)
n=6 0
r=4 =0 H o an)
1
(1) 1 n=7 (1)
n—rHDn,r—Z 0,1 r=>5 —.1—2@3 HAl
0 2 3 4
n
_ 1 25.(41)2
n=8 0
r=4 S—0 H(1,25.(4!)2)
n=8 -1 (2)
r=6 e —e=<s—=>® HD,
4 5 6
1
(1) -1 =2k (1)
1HD2k,k+2 n—1 Z=3, 4 &—e=0—0 <9 HCk
0 2 3 4 —1 0 2 4 2k
€3]
r=2,nodd e —e—=e=<e HCQ
-1 0 2 1
1
2 (1) —1
nfrHDn,r+2 ! 4<n<8
[
3<r<n 0 2 3 ” (1)
n—r odd rkfoaj- HBr
1
1
2 (1) -1 2% 4 (1)
n=1H Dy, I n=4,68 —>e<>e H*A;
0 2 3 —1 0 1
n
1
2 1) —1 1
n+1H‘Dn71 I n=4,6,8 . _ Z_
0o 2 3
n
5 1
2 1) 1 1 2" 7 (n—1)! 0
’I’LHDn,2 ! n=>5,7 71_: 0 H(172n—1_(n_1)!)
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Table 6 (continued)
Name Satake-Tits index Parameters Relative diagram  Name
1
2 @’ -1 2 271 (n—1)! 0
2HD,) 00 1 =57 ommm—— , Hon1.(no1y)
1 n
2 (1) -1 n=2k+1 X (2)x
1HD2k+1,k+2 ! k=2,3 o—e 00— >° HAQk.
0 2 3 4 —1 0 2 4 2k
’ 1 25.(4!)
n=5 :0 H(01,23.4I)
1
1 _ 1
?lHsz,ZL*E') . n==6 .14‘@'4 s HAE )
0o 2 3 - ©
2
n=7,8 e _e<e o> HD,(I)4
—1 4 5 n—1
1 5
2 (1) 1 1 2°.(4!) 0
3HD7L,n—5 1 n=T7 __1 :0 H(1,25.4I)
0 2 3 4
n=g @& —€=>® HAEI)
1 6
6
2Dl E 1 . Z_
’ 0 2 3 4
7
1
7
2D o i o_ Z_
: 0 2 3 4 5
1 PLRED) 0
r=0  Smm——— H vy
2
k’—T’HAék)J-_i_Q — o> o >0 2<k<4
—1 0 1 ™ k
r=1 _0—%1 == HAéz)
2
2<r<k oo o8 HA&)
—1 0 1 2 T
o ®_ Z_
HA(z)/ 2 4 X H><
3 2k, k—1 O0O—O0==0—0—6_>® k=3 Cm— (2,4)
-1 0 1 2 k 3 2 ’
X
et E=—>w H2Ag2)X
VHAL) 0—0==0—e—e>=0 — HE
’ -1 0 1 2 3 4 3 2 (24)
2 2
k72HAgk)11 oO—C==0D—e—C=>0 k=34 ®— Z_
—1 0 1 2 k
k=3 °_ Z_
2/ 2 27,32
4HA;k),k72 o0— 000 e>>e k=4 ~S— ) H(02,27'32)
—1 0 1 2 k
1HA§;2% 00200 &350 . Z_
’ -1 0 1 2 3 4
H'AD) A
2k, k+2 —e="0—0 o9 2<k<4 o909 2%k
—1 0 1 2 k —1 0 1 2 k
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Table 6 (continued)

Name Satake-Tits index Parameters Relative diagram Name
b3 ®_ Z_
) 2y 0
' Mz ogmo—o—e=y k=t ge— Hiy 0.0
8 27.(3!) «.0
X )
k=3 om—20 H(8,22.31)
) 2% (41 23 (41) 0,0
WAy &—o<o—0—o<e k=4 0 ° H 35 405 41)
2 1 8
1H/Aék)~2 O—e==0—e—CO=20 E=2 om— H(ig)
’ -1 0 1 2 k 2 0
2 4
E=3,4 ¥ e * H(éi)
2 0 ’
2 0
1H/Aék),1 O—e=<0—0—C0=Z0 2<k<4 ©®— Z_
—1 0 1 2 k
2)’ 2
ksz’Aék),l o—o=t0—e—a==0 k=3,4 ® Z-
’ —1 0 1 2 k
s H' AT oot o<e o Z_
’ —1 0 1 2
2 X 2)x
1H/Aé,% o0 e==D o Cc==® %I: HQ*Aé )
-1 0 1 2 3 4
(2) ol 2)% £(2)X
Mz segv= = Rt
(2)’ 24 (31 1 0
H'Ass  oomo—e—oxe og=— Mo
2 : 2
HAgk)fl,kFi’Q A 2233 — @ .Zz.k 3<k<8 A v 23 9@ .<.k HAék)71
1 1
X 2) %
—t o= 1Ay
2 S e
1HAgk)—1,r+2 1 0 2 3 4 5 27 ke 3<k<8
1
2)x
2<2r<k .—.j._o_ogx; HAg,.)
—1 0 2 4 2r
1
2r=k Hcﬁ )
—1 0 2 4 k
2 . 1 25 . (k)
kHAgk)ﬂ,z W 3<k<8 - 0 H((]]_’zk'k!)
1
2 27.(4!)
=t 0 H, 92 4
HA(2) 0 2 3 4 k —o—=2 H/A(2)
4 2k—1,k—2 !I—O—E—O—o—ko—m k=5 9% 5 2
1
2
6<k<8 o —e<o o o8 H’Aé(;ﬁ_@
—1 4 5 k
2 - 6
e HAG) | | o S —Ts 8- Z_
-1
1
k
k:67 7 [ ] Z,

(2) 0 2 3 4 k
k+1HA2k71’1 PI—O—i—o—O—O—oi-
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Table 6 (ended)
Name Satake-Tits index Parameters Relative diagram Name
g
2)’ 27(81) 2°(81) 0,0
SHAgs),z 65306365 0% s 0 H(26.81,27.8!)
-1
1
(2) : 5 2t 3t 57 1 0
1HAYS W o Sem—o HY) g1ig15.7)
1
2)"" 21535 527 1
8HA(15),2 o 655500 e ( S—1 H?1,215.35.52.7)
1
1 27 (n)) o
r=0 _.1_30 H(1,2".n!)
(2)
n—rHDn+1,r+2 31—g:¢?—:—0323 2<n<4
r=1 O —€<>® HA(ll)
—1 0 1
2
2<r<n o—e<e o o8 HD£+)1
—1 0 1 2 ~
4 2%.(31) x,0
X ;
n=3 = O3 0 Hiy0 3
2y X 1) 4(2)x
HOnhay  a—go—o-es et g=ysme 04
ey ®_ Z_
(2 282 0
4HDn+1,n—2 Pl—giﬁ?fg—ti: n=4 (9mm——— H(2’27‘32)
(2) 4 27.(31) o
1HD5,2 & 0=<0—0—€=0 x om—20 H(4723_3!)
-1 0 1 2 3 4
(2)// 24(4!) 24(4!) 0,0
1HDg, &—Oo=<0—0—0>>8 ( Sm—0 H(24.41,24.4!)
2 3
1HD§,71) O0—CO=Z0—0—€=>0 o _ Z_
—1 0 1 2 3 4
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