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Formal Islands

Emilie Balland, Claude Kirchner, and Pierre-Etienne Moreau
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BP 101, 54602 Villers-lès-Nancy Cedex France

{Emilie.Balland,Claude.Kirchner,Pierre-Etienne.Moreau}@loria.fr

Abstract. Motivated by the proliferation and usefulness of Domain Specific Lan-
guages as well as the demand in enriching well established languages by high level
capabilities like pattern matching or strategic rewriting, we introduce the Formal
Islands framework.
The main idea consists to integrate, in existing programs, formally defined parts
called Islands, on which proofs and tests can be meaningfully developed. Then,
Formal Islands could be safely dissolved into their hosting language to be trans-
parently integrated in the existing user environment.
The paper presents this generic framework and shows that the properties valid on
the formal islands are also valid on the corresponding dissolved host codes. Formal
Islands can be used as a general methodology to develop new DSL and we show
that language extensions like SQLJ—embedding SQL capabilities in Java—, or
Tom—a Java language extension allowing for pattern matching and rewriting—are
indeed Islands and they can therefore be used for formal software developments.

1 Introduction

At all the levels of our social and scientific organizations, the development of formal proofs
of program properties is recognized as a priority of fundamental interest. But this faces at
least two important difficulties. First is the lack of formal environments for existing widely
used programming languages like Java, C or ML. Second is the scalability to allow for the
proof of properties of large programs. Third is the fact that on the enormous corpus
of active softwares, maintenance and adaptation should be conducted without having
to rewrite or deeply transform the existing running codes. Therefore we are in need of
having language extensions, formally defined, capable of adaptation to existing largely
used programming languages and that do not induce dependence on a new language.

To contribute to solve these problems given the above constraints, we propose the
concept of Formal Islands and show how it could be implemented and used. Indeed, taking
the geography metaphor as well as a terminology already used for island grammars [8], we
call Ocean the language of interest, typically C or Java, and Island the language extension
that we would like to define.

As shown in Fig. 1, the Island cycle of life is composed of 4 phases:

– anchor which relates the grammars and the semantics of the two languages,
– construction which inserts some Island code in an Ocean program,
– proofs or program transformations on islands,
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In pictures
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Fig. 1. Formal Islands in picture

– dissolution of the islands in the Ocean language.

The anchoring step consists in defining the grammar and semantics of the Island lan-
guage and in relating it to the existing Ocean one. This step should in particular take care
of the data representation correspondence between the Island and Ocean constructions.
For instance, we will define a new abstract data type on the Island which correspondence
in the Ocean should be made explicit. For example, a list structure on the Island could
be implemented as an array in the Ocean. This is typically reminiscent of observational
specifications and is quite flexible.

The construction phase consists in writing a program in the combined Island and
Ocean languages. For example, we could consider, as it is already possible in Tom1, to
define functions using matching constructs (of the form %match pattern -> JavaCode)
or using term rewrite rules (of the form %rule term -> term). What is quite appeal-
ing at this level is the possibility to mix both language constructions to ease either the
expressivity or the references to the existing Ocean structures or functionalities.

Then comes the proof phase. It is not necessary used, but defining formally such
a framework enables developers of language extensions to formally check their well-
formedness and properties. For example, defining in Tom a set of rewrite rules on top
of Java, one could check at that step the termination of the rewrite system, therefore
ensuring a better confidence in the program behavior.

Last, the Island should be dissolved. This means that the framework should provide a
compilation of Island built programs (that may embed Ocean subparts) into pure Ocean
ones. For example again, in Tom, a set of rewrite rules will be compiled into a Java program
implementing the normalization process for these rules. Of course the framework setting
should ensure that the properties proved at the Island level are still valid after dissolution
for the concerned Ocean code.

To achieve these goals, after setting the basic notations in Section 2, we present in
Section 3 the anchoring mechanism, in Section 4 the dissolution one and in Section 5
the Island framework, making precise the properties that the Island should fulfill to be
Formal and to preserve proofs. From these definitions and result, we illustrate in Section 6
how domain specific languages [12] can be implemented in this formal islands framework.
Finally, we present a main application in the context of the Tom project.

1 http://tom.loria.fr
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2 Preliminaries

When considering the problem of combining two different languages, we have to under-
stand the relationship that exists between the grammars of these languages, the programs
that can be written in these grammars, their semantics, and the objects that are manip-
ulated by these programs.

We assume the reader to be familiar with the basic definitions of languages con-
structions and first-order term rewriting as given for example in [1]. We briefly recall or
introduce notations for the main concepts that will be used along this paper.

A grammar is a tuple G = (A,N, T,R) where A denotes the axiom, N and T , disjoint
finite sets of respectively, non-terminal and terminal symbols, and R a finite set of pro-
duction rules of the form N → (N ∪ T )∗. left(R) is the set left-handsides of R. We note
L(G) the language recognized by the grammar G. When a grammar G is not ambiguous,
to each valid program we can associate abstract syntax tree representations. Assuming
given such a representation, we note AST(G) the set of all abstract syntax trees, and their
subtrees.

In the following, we only consider unambiguous grammars. Therefore, we make no
distinction between the notions of grammars and valid programs p, and the notions of sig-
nature and abstract syntax trees. We note past the abstract syntax tree that represents p.
Given a term t = past, t ∈ AST(G), we note getSort(t) its sort, which corresponds to the
non-terminal generating p.

In addition to the definition of grammars, we use a big-step reduction relation à la
Kahn, written 7→bs, to characterize the semantics of the Ocean and the Islands languages.
Given a setO of objects manipulated by a program, corresponding to all possible instances
of the data-model, an environment is a function from X to O, where X is a set of variables.
Env denotes the set of all environments. The reduction relation 7→bs is defined using a set
of inference rules of the form:

〈ǫ, i〉 7→bs ǫ′ with i ∈ AST(G), and ǫ, ǫ′ ∈ Env

In the following, we consider two languages il and ol, the Island and the Ocean lan-
guages, to which corresponds respectively a grammar Gil (resp. Gol), a set of variables Xil

(resp. Xol), a semantics bsil (resp. bsol) based on a set of objects Oil (resp. Ool), and a set
of inference rules Ril (resp. Rol).

3 Anchor

Given two languages il and ol, we introduce the notions of syntactic anchor and rep-
resentation mapping, which make a connection between il and ol in a syntactically and
semantically ways.

3.1 Syntax

The syntactic anchor consists in associating ol non-terminals to il non-terminals, to obtain
ol programs with il parts. In Definition 1, we introduce two types of anchors corresponding
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to two types of islands. One called simple island, corresponding to pure il constructs and
the other called islands with lakes, corresponding to islands which can recursively contain
ol constructs.

Definition 1. Given two grammars Gol = (Aol, Nol, Tol, Rol) and Gil = (Ail, Nil, Til, Ril),
we define two kinds of syntactic anchors:

– A simple syntactic anchor is a relation anch(Gol,Gil) ⊂ Nol × Nil where we assume
that (Tol ∩ Til) = ∅ ∧ (Nol ∩Nil) = ∅,

– A syntactic anchor with lakes is a relation anch(Gol,Gil) ⊂ Nol×Nil where we assume
that (Tol ∩ Til) = ∅ ∧ (Nol ∩ left(Ril)) = ∅.

From this definition, the grammar Goil, resulting from the combination of ol and il, is
specified as follows:

Goil = (Aol, Nol ∪Nil, Tol ∪ Til, Rol ∪Ril ∪ anch(Gol,Gil))

Therefore, the syntax of the language oil, combination of ol and il is function of the
grammars Gol and Gil, and of the syntactic anchor noted anch.

Example 1. As a first example, let us consider the two grammars, Gol =
({A}, {A}, {a}, {(A ::= a), (A ::= AA)}) and Gil = ({B}, {B}, {b}, {(B ::= b)}). The
language L(Gol) is the set of sequences a, aa, aaa, . . . The language L(Gil) contains only
b. By considering the simple syntactic anchor anch(Gol,Gil) = {(A ::= B)} we define the
language L(Goil) which consists of words like a, b, aa, bb, ab, and more generally of any
sequence of a or b.

For simple syntactic anchors, the condition Tol ∩ Til = ∅ ∧Nol ∩Nil = ∅ ensures that
there is no conflict between the two grammars. But in some cases, it is interesting to allow
the embedding of Ocean constructs inside Island code. We call lakes such constructs that
are not modified by the dissolution phase. In term of syntactic anchor, this means that
the il grammar can use non-terminals from Gol. For this notion of syntactic anchor with
lakes, the non conflict condition becomes Tol ∩ Til = ∅ ∧Nol ∩ left(Ril) = ∅.

Example 2. To illustrate the notion of anchor with lakes, we now consider an Ocean
language ol which allows to manipulate arrays of integers. The considered Island language
il allows to manipulate lists of integers, where the notion of integers comes from the Ocean
language: this is why it is considered as a lake. The grammars of both languages are given
in figure 2.

In ol, an array can be allocated and filled with 0 using the construction array(n).
Given an array t and an integer n, t[n] allows to read the contents of t. Similarly, t[n] = i,
with i ∈ N, allows to modify the contents of t.

In il, data structures are lists, which are classically defined by two constructors nil
and cons. This language defines Islands with lakes since the non-terminal 〈int〉 comes
from Gol. To interconnect the two languages, we define the anchor anch = {(〈instr〉 ::=
〈instruction〉), (〈array〉 ::= 〈list〉), (〈int〉 ::= 〈expr〉)}.

Using the grammar defined in Fig. 2, the following program is valid in the
Ocean language: t=array(5); t[0]=3; t[1]=7. This program can be extended by
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The Ocean language

〈instr〉 ::= 〈instr〉; 〈instr〉
| 〈vararray〉 = 〈array〉
| 〈varint〉 = 〈int〉
| 〈array〉[〈int〉] = 〈int〉

〈array〉 ::= array(〈int〉)
| 〈vararray〉

〈vararray〉 ::= x ∈ X
〈varint〉 ::= x ∈ X
〈int〉 ::= i ∈ N

| 〈varint〉
| size(〈vararray〉)
| 〈array〉[〈int〉]

The Island language

〈instruction〉 ::= 〈varlist〉 ← 〈list〉
〈list〉 ::= nil

| cons(〈expr〉, 〈list〉)
| tail(〈list〉)
| 〈varlist〉

〈varlist〉 ::= x ∈ X
〈expr〉 ::= 〈int〉

| head(〈list〉)

The syntactic anchor relation

〈instr〉 ::= 〈instruction〉
〈array〉 ::= 〈list〉
〈int〉 ::= 〈expr〉

Fig. 2. Syntax of the combination of the tool languages

l←cons(t[1],cons(t[2],nil)); x=l[1]; y=head(l). This shows that a list of the
Island language can be considered as an array by the Ocean language (l[1]). The integer
t[1] and t[2] are lakes in the Island l←cons(t[1],cons(t[2],nil)).

3.2 Semantics

As for the syntax, we assume given a semantics definition for each language. In the most
general case, the objects manipulated by these two languages are not of the same nature.
For example, the Ocean language can manipulate tuples and the Island language, algebraic
terms. Before giving a semantics to the extended language, we have to make precise the
data-structure representations of Island objects in Ocean (the representation mapping)
and how the data-structure properties in il are mapped to data-structure properties in ol

(the predicate mapping).

Definition 2. Given a set of Island objects Oil and a set of Ocean objects Ool, a repre-
sentation mapping ⌈ ⌉ is an injective mapping from Oil to Ool.

Example 3 (from example 2). Every list from the Island language can be represented by an
array in the Ocean language which contains exactly the same integers in the same order.
The second kind of objects manipulated by the Ocean language is the integers whose
representation is the same in the two languages. We note this representation mapping
map1

In Definition 2, the notion of representation mapping has been introduced to establish
a correspondence between data structures in the Island and their representation in the
Ocean language. However, we did not put any constraint on the representation of objects.
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In particular, the function ⌈ ⌉ does not necessarily preserve structural properties of Island
objects. In practice, we need to consider mappings such that properties are preserved.
Therefore, for each language we consider a set of predicates noted Pol and Pil corresponding
to structural properties, and we introduce the notion of predicate mapping.

Definition 3. Given a set of Island predicates Pil and a set of Ocean predicates Pol, a
predicate mapping φ is an injective mapping from Pil to Pol such that ∀p ∈ Pil, arity(p) =
arity(φ(p)). This mapping is extended by morphism on first-order formulae, using the
representation mapping:

∀p ∈ Pil,∀t1, . . . , tn, φ(p(t1, . . . , tn)) = φ(p)(t′
1
, . . . , t′

n
)

where t′
i
= ⌈ti⌉ if ti ∈ Oil and ti otherwise (i.e. ti is a variable),

φ(∀x P ) = ∀x φ(P ), φ(∃x P ) = ∃x φ(P ),
φ(P1 ∨ P2) = φ(P1) ∨ φ(P2), φ(P1 ∧ P2) = φ(P1) ∧ φ(P2),
φ(¬P ) = ¬φ(P ), φ(P1 → P2) = φ(P1)→ φ(P2).

Definition 4. Given a predicate mapping φ, a representation mapping ⌈ ⌉ is said φ-
formal if ∀p ∈ Pil,∀o1, . . . , on ∈ Oil with n = arity(p)

p(o1, . . . , on)⇔ φ(p)(⌈o1⌉, . . . , ⌈on⌉)

Example 4 (from example 2). Consider the relations of equality =il and =ol as an example
of predicates respectively defined on lists and arrays, and the predicate mapping φ1 =
{(=il,=ol)}. The representation mapping map1, introduced in example 3, is φ1-formal
because two lists are equal with =il (composed by the same integers) if and only if their
representations are equal with =ol.

As a counterexample we consider the representation mapping map2 that associates a
list to an array, but whose elements are in reverse order.

– eqhead(l, l
′) ≡ (head(l) = head(l′)),

– eqelt(t, t
′) ≡ (t[0] = t′[0])

When considering the predicate mapping φ2 = {(eqhead, eqelt)}. The representation
mapping map2 is not φ2-formal because we can construct two lists l1 = (1, 2), l2 = (1, 3)
such that eqhead(l1, l2) is true but eqelt(φ(l1), φ(l2)) = eqelt([2, 1], [3, 1]) is false.

Given a representation mapping ⌈ ⌉, we can simulate the behavior of il programs in
the ol environment. Suppose we have a big-step semantics for each language (with their
respective reduction relation bsol and bsil in their respective set of environments Envol and
Envil).

To define the evaluation of il programs in an ol environment ǫol ∈ Envol, we need
to translate ǫol in an il environment ǫil ∈ Envil. Therefore, we extend the representation
mapping to environments.

Definition 5. The extension of the representation mapping to environments also noted
⌈ ⌉ ∈ Envil → Envol is such that:

∀ǫil ∈ Envil,∀x ∈ Xil,∀v ∈ Oil, 〈x, v〉 ∈ ǫil ⇔ 〈x, ⌈v⌉〉 ∈ ⌈ǫil⌉
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Even if ⌈ ⌉ is total and injective, defining the inverse function ⌈ ⌉−1 ∈ Envol → Envil

is not immediate because ⌈ ⌉−1 may not be total. To obtain a total function, we extend
the inverse with the empty environment for ol environments that are not in the domain
of the inverse.

Definition 6. Given a representation mapping ⌈ ⌉ ∈ Envil → Envol, ⌈ ⌉
−1 ∈ Envol →

Envil is such that ∀ǫol ∈ Envol:

– if ǫol ∈ range(⌈ ⌉), ⌈ǫol⌉
−1 = ǫil such that ⌈ǫil⌉ = ǫol,

– if ǫol /∈ range(⌈ ⌉), ⌈ǫol⌉
−1 = {} where {} is the empty relation.

We simulate the reduction of il programs in an ol environment with the reduction
relation of il by translating the ol environment with ⌈ ⌉−1. The semantics rules of ol,
extended with mapped il rules, give a semantics to the extended language.

Definition 7. Given two semantics bsil and bsol respectively defined by sets of inference
rules Ril and Rol, we define the semantics of oil as:

– the reduction relation bsoil = bsol,
– the set of inference rules Roil = Rol ∪R

′

il
∪ {r1, r2} where

• R′

il
=Ril where 〈ǫ, i〉 7→bsil

ǫ′ is replaced by 〈ǫ, δ, i〉 7→bsil
〈ǫ′, δ〉 (δ ∈ Envol and

ǫ, ǫ′ ∈ Envil),
• the inference rules r1 and r2:

〈⌈ǫ⌉−1, γ(ǫ), i〉 7→bsil
〈ǫ′, δ〉

〈ǫ, i〉 7→bsol
⌈ǫ′⌉ ∪ δ

r1

〈⌈ǫ⌉ ∪ δ, i〉 7→bsol
ǫ′

〈ǫ, δ, i〉 7→bsil
〈⌈ǫ′⌉−1, γ(ǫ′)〉

r2

where γ(x) = x− ⌈⌈x⌉−1⌉ denotes the elements of x which cannot be represented
in Ool.

The introduction of δ in the rules of the il semantics is required for the reduction
of lakes. Indeed, we need to keep track of ol environment when we evaluate an island.
Otherwise the lakes would be kept separated from Ocean constructs, and no reference to
ocean variables would be possible. The inference rule r1 and r2 link the two semantics:
r1 is the bridge from ol to il semantics for island evaluation and r2 is the bridge from
il to ol semantics for the lakes evaluation.

We notice that in r1, ⌈ǫ
′⌉ ∪ δ is a function only if dom(⌈ǫ′⌉) ∩ dom(δ) = ∅. This con-

dition means that a variable cannot represent both an Island and Ocean objects in the
same environment. The rule r2 introduces a similar condition. From now on, we consider
semantics that verify these two conditions. In practice, it means that islands and lakes
have to introduce fresh variables with respect to both ol and il environments.

Figure 3 presents how the Ocean and Island semantics are linked by the representation
mapping. This shows how il instructions can be evaluated inside the evaluation of ol

programs. The function ⌈ ⌉−1 gives the corresponding il environment restricted to ol

objects which are Island object’s representations, then the il construction is evaluated in
il semantics, we obtain a new environment that can be mapped by ⌈ ⌉ to give the target
environment in ol semantics.
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The objects in ǫ that cannot be represented in the Island (ǫ′ − ⌈⌈ǫ′⌉−1⌉) are given in
parameter to Island evaluation in case of lakes. That’s why ǫ′ corresponds to the union
of part of ǫ not represented in the Island but that can be modified by lakes (which
corresponds to δ) and the representation in the Ocean of the evaluation of il instructions
(which corresponds to ⌈ǫ′⌉).

〈ǫ, i〉 ⌈ǫ′⌉ ∪ δ

〈⌈ǫ⌉−1, ǫ− ⌈⌈ǫ⌉−1⌉, i〉 〈ǫ′, δ〉

bsoil

bsil

⌈ ⌉−1 ⌈ ⌉

Fig. 3. Reduction of il construction in ol semantics

Finally, the semantics of the language oil, combination of ol and il, is function of
big-step semantics bsol and bsil, the representation mapping ⌈ ⌉.

We can now use the Island formalism to extend the ol language by new constructs. In
the following, we will see how to implement this idea in practice: for this new language,
instead of building a new compiler from scratch, we consider a dissolution phase which
replaces Islands constructs by Ocean constructs. With such an approach, an existing
Ocean compiler could be reused. This induces in particular that the use of the Island
formalism does not induce a dependence of the user on the island language and tools:
after dissolution, the user is again in its original ocean language and can take the benefit
of the generated code without depending on run-time libraries or Island language update
and maintenance.

4 Dissolution

At the syntax level, the dissolution step consists of replacing all the il constructs that
appear in the ol AST by ol constructs, in order to obtain a complete ol AST.

Definition 8. Given two grammars Gil and Gol, we call dissolution a function diss :
AST(Gil)→ AST(Gol).

Such a function is said lake preserving when ∀i ∈ AST(Gil),∀l ∈ lakes(i), we have
l ∈ lakes(diss(i)), where lakes is a function that gives the set of lakes contained in an
AST (i.e an il construct).

In practice, the condition of lake-preserving is verified by constructing with the same
strategy (for example top-down) a list of lakes in the source and target program and
the condition consists simply to test the equality of the two lists. Finding lakes in a
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dissolved program can be realized by marking generated code during dissolution in order
to distinguish lakes from generated code in the target program. With this definition, we
preserve the order of lakes. In comparing lists modulo a theory, we can obtain softer
conditions. For example, with AC (Associative-Commutative) theory, we authorize lakes
to be swapped in the Island. With idempotency, lakes can be duplicated.

Example 5. Considering again the previously introduced program:
t=array(5); t[0]=3; t[1]=7;

l←cons(t[1],cons(t[2],nil)); x=l[1]; y=head(l),
we can distinguish three ol islands:
l←cons(t[1],cons(t[2],nil)), l (from l[1]), and head(l).
The dissolution of these islands could (depending on the implementation) result in the
following program:
t=array(5); t[0]=3; t[1]=7; x=t[0];

l=array(2); l[0]=t[1]; l[1]=t[2]; x=l[1]; y=l[0];.

In term of semantics, the ol constructs that are generated must have the same evalu-
ation as the il constructs that they replace.

Definition 9. Given a representation mapping ⌈ ⌉, a dissolution function diss is well-
formed if:

– for every i ∈ AST(Gil), for every environment ǫ ∈ Envil, we have: 〈ǫ, i〉 7→bsoil
ǫ′ ⇔

〈⌈ǫ⌉, diss(i)〉 7→bsol
ǫ′,

– the ol program resulting from dissolution is syntactically correct. More formally, ∀i ∈
AST(Gil), getSort(i) ∈ anch(getSort(diss(i))),

– the dissolution function is lake preserving.

Figure 4 shows the link between the evaluation of an il instruction with il semantics
(as in Fig. 3) and the execution of the corresponding ol instruction (by dissolution). The
states after evaluation are the same.

To summarize, an Island language should fulfill the following requirements:

Definition 10. Given two languages ol and il described by a grammar, a big-step seman-
tics, a set of objects, and a set of predicates in these objects, il is an Island language for
ol if there exist:

– a syntactic anchor anch, either simple or with lakes (Definition 1),
– a representation mapping ⌈ ⌉ for objects (Definition 2),
– a dissolution function diss (Definition 8).

5 Formal Islands

Definition 11. Given two languages ol and il, il is a Formal Island over ol if:

1. il is an Island for ol (Definition 10),
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〈ǫ, i〉 ⌈ǫ′⌉ ∪ δ

〈⌈ǫ⌉−1, ǫ− ⌈⌈ǫ⌉−1⌉, i〉 〈ǫ′, δ〉

〈ǫ, diss(i)〉 ⌈ǫ′⌉ ∪ δ

bsoil

bsil

bsol

⌈ ⌉−1 ⌈ ⌉

diss =

Fig. 4. Reduction of a il dissolution in ol semantics

2. there exists a predicate mapping φ for objects (Definition 3) such that the representa-
tion mapping ⌈ ⌉ is φ-formal (Definition 4),

3. the dissolution function diss is well-formed (Definition 9).

Condition 1 is purely syntactic and simple to verify. Condition 3 is similar to the cor-
rectness of a compilation process and condition 2 is more specific to the Island formalism
and we are not aware of any example for which it has been already formally verified. This
definition of formal islands allows us to ensure the preservation of properties.

First, the environment is extended by morphism on first-order formulae:

∀p ∈ Pil,∀t1, . . . , tn, ǫ(p(t1, . . . , tn)) = ǫ(p)(t′
1
, . . . , t′

n
)

where t′
i
= ǫ(ti) if ti ∈ Xil and ti otherwise (i.e. ti is an object),

ǫ(∀x P ) = ∀x ǫ(P ), ǫ(∃x P ) = ∃x ǫ(P ),
ǫ(P1 ∨ P2) = ǫ(P1) ∨ ǫ(P2), ǫ(P1 ∧ P2) = ǫ(P1) ∧ ǫ(P2),
ǫ(¬P ) = ¬ǫ(P ), ǫ(P1 → P2) = ǫ(P1)→ ǫ(P2).

From this definition, we note ǫ |= pre⇔ ǫ(pre).

Proposition 1. Given a formal island il over ol and pre, post two first-order formulae
build over Pil predicates, ∀i ∈ dom(diss), ǫ ∈ Envil, we have:

ǫ |= {pre}i{post} ⇔ ⌈ǫ⌉ |= {φ(pre)}diss(i){φ(post)}

Proof. By induction on the structure of the formulae pre and post. We prove that for all
environment ǫ:

ǫ |= pre⇒ ǫ′ |= post where 〈ǫ, i〉 7→bsil
ǫ′

⇔
⌈ǫ⌉ |= φ(pre)⇒ ǫ′′ |= φ(post) where 〈⌈ǫ⌉, i〉 7→bsol

ǫ′′
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Given an environment ǫ, in a first step, we prove that ǫ |= pre ⇔ ⌈ǫ⌉ |= φ(pre) by
induction on the structure of pre. The base case for this induction is pre = p(t1, . . . , tn).
⌈ǫ⌉ |= φ(pre) ⇔ φ(p)(t′

1
, .., t′

n
) where t′

i
= ⌈ǫ⌉(ti) when ti ∈ X , and t′

i
= ⌈ti⌉ otherwise.

Note that every t′
i
∈ Oil, and since the representation mapping is φ-formal, we have

φ(p)(t′
1
, .., t′

n
) ⇔ p(t′′

1
, . . . , t′′

n
) with t′

i
= ⌈t′′

i
⌉. We can deduce that t′′

i
= ǫ(ti) when ti ∈

X, and t′′
i

= ti otherwise. We deduce that p(t′′
1
, . . . , t′′

n
) ⇔ ǫ(pre). By transition of the

equivalence, we conclude that ǫ |= pre⇔ ⌈ǫ⌉ |= φ(pre) for pre = p(t1, . . . , tn).

We continue by induction on the pre structure. We just give the case pre = P1∨P2, the
others being quite similar. By induction hypothesis, we know that it is true for pre = P1

and pre = P2 and we want to prove it for post = P1 ∨ P2. By definition of the extension
of the environment to first order formulae, if pre = (P1 ∨ P2) is valid, then either P1 or
P2 is and therefore by induction hypothesis, φ(P1) or φ(P2) are true and therefore so is
φ(P1 ∨ P2). So ǫ |= pre⇔ ⌈ǫ⌉ |= φ(pre) (1).

Similarly, we prove that ǫ′ |= post ⇔ ǫ′′ |= φ(post) by induction on the structure
of post. The proof of the base case is similar to the proof for pre with one difference:
ǫ′′ 6= ⌈ǫ′⌉. But as the dissolution function is well-formed, we know that ǫ′′ = ⌈ǫ′⌉ ∪ δ.
When ti ∈ dom(ǫ′), we have ti ∈ dom(⌈ǫ′⌉). Since ǫ′′ is a function, we deduce that ǫ′′(ti) =
⌈ǫ′⌉(ti). Due to this property, we can prove the base case as for pre. The step case of
the induction on post structure is similar to the induction for pre. We finally obtain
ǫ′ |= post⇔ ǫ′′ |= φ(post) (2).

From the equivalences (1) and (2), we directly deduce the proposition.

6 Domain Specific Languages implemented by Formal Island

A Domain Specific Language (DSL) is a programming language designed for a very specific
task or domain, contrary to general programming languages like Java. A few papers give an
overview on the Domain Specific Languages implementation methodology [11, 6, 4, 12, 10].
Summarizing the main ideas, this can be achieved by language specialization (removing
features of an existing language), language extension (adding new features to an existing
language), language invention (designed from scratch with no commonality with existing
languages) or piggyback (using partially an existing language). Some works on modular
and extensible semantics [3, 13] are well-tailored for DSL specifications.

In [11], Spinellis proposes eight recurring patterns to classify DSL design and imple-
mentation. One of this pattern is the piggyback pattern which corresponds informally to
the design of Island languages. The piggyback structural pattern uses the capabilities of
an existing language to be a hosting base for a new DSL. Thus, the DSL shares common
elements with an existing language and is compiled in the host language.

In the classification of [6], the patterns correspond to different phases of DSL devel-
opment: decision, analysis, design and implementation. Formal Island gets involved in
two related phases of DSL development: the design and implementation phases. Formal
Islands correspond in terms of design patterns to the Language exploitation (i.e. based
on an existing language) and in terms of implementation pattern to the Embedding and
Preprocessor patterns.
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To illustrate the link between DSL and Formal Islands, we will detail the language
SQLJ [2, 7], an example of DSL implemented using the piggyback pattern. SQLJ is an
interface to the JDBC domain-specific-library: it hides the complexity of the API.

To avoid grammar conflicts and make identification of constructs easier, each SQLJ

constructs starts with #sql token (which is not a legal Java identifier). The simplest SQLJ

executable clauses consist of the token #sql followed by a SQL statement enclosed in curly
braces. For example, the following SQLJ clause may appear instead of a Java instruction.

public void honors(float limit) {

#sql{

SELECT STUDENT AS "name", SCORE AS "grade"

FROM GRADE_REPORTS

WHERE SCORE >= :limit

}

}

The SQL statements can contain variable names that correspond to Java variables (the
variable limit for example). These variables are prefixed by a colon and they correspond
to the notion of lake introduced previously.

Syntactic anchor. Assuming that we have a grammar of Java where 〈Statement〉 and
〈Instruction〉 are Java non-terminals, we can define the following simple syntactic anchor
anch = {(〈Statement〉 ::= 〈Declaration〉), (〈Instruction〉 ::= 〈ExecutableStatement〉)}.
The non-terminal 〈Declaration〉 corresponds to SQLJ declarations used to initialize a
JDBC connection. As illustrated above, 〈ExecutableStatement〉 corresponds to embedded
SQL queries.

Data-structure anchor. In SQLJ, the representation mapping between SQL objects and
Java objects is given by conversions from SQL types to Java types. For example, the SQL

CHAR type is converted into a Java String. Therefore, the results of a SQL query have to
be translated into Java objects before being store in Java variables.

Dissolution. In the SQLJ formalism, the SQL language is not really the embedded language
because this is not the SQL requests which are dissolved in Java, but rather the SQLJ

instructions which contain SQL requests. The SQLJ pre-processor provides type-checking
and schema-object-checking to detect syntax errors and missing or misspelled object errors
in SQL statements at translation time rather than at runtime (like in JDBC). Programs
written in SQLJ are, therefore, more robust than JDBC programs. We just give the
intuition of the translation step by giving the dissolution in Java of the program given
previously:

public void honors(float limit) {

java.sql.PreparedStatement ps = recs.prepareStatement(

"SELECT STUDENT, SCORE "

+ "FROM GRADE_REPORTS "

+ "WHERE SCORE >= ? ");

ps.setFloat(1, limit);

ps.executeQuery();

}
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The object recs is a JDBC connection of type java.sql.Connection. The SQLJ

translator verifies that in the SQLJ statement, limit is of type float in order to be
compared with SCORE, whose SQL type is REAL.

In the case of SQLJ, there is no formal property given for the mapping between types
or for the compilation of the SQLJ instructions. We cannot ensure that the Java compiled
code is consistent. Our framework is a base to formalize DSL implemented using the
piggyback pattern. It gives conditions to ensure that properties established at the DSL
are preserved by compilation.

7 Tom: a Formal Island for Pattern-Matching

An other example of Island language is Tom, which adds pattern-matching facilities to
imperative languages such as C and Java. Indeed, it is in this context that we identified
the need to have a notion of formal Island framework. This helps up to understand how
properties of Tom can be preserved by compilation.

As presented in [9], a Tom program is a program written in a host language and ex-
tended by several new constructs. Due to lack of space, we cannot present the language in
detail. In the following, it is sufficient to consider that Tom provides three main constructs:

– %op allows to define an algebraic signature (i.e. names of constructors with their
profile),

– %match corresponds to an extension of switch/case, well known in functionnal pro-
gramming languages,

– ‘ allows to build an algebraic term from the host language.

Therefore, a program can be seen as a list of Tom constructs (the Islands) interleaved
with some sequences of characters (the Ocean). During the compilation process, all Tom

constructs are dissolved and replaced by instructions of the host-language, as it is usually
done by a preprocessor. From this point, we consider that the Ocean language is Java and
we call JTom this specialized version of Tom.

The following example shows how a simple symbolic computation (addition) over
Peano integers can be defined. This supposes the existence of a data-structure and a
mapping (defined using %op) where Peano integers are represented by zero and successor :
the integer 3 is denoted by suc(suc(suc(zero))) for example.

public class PeanoExample {

%op Term zero() { ... }

%op Term suc(Term) { ... }

...

Term plus(Term t1, Term t2) {

%match(t1, t2) {

x,zero -> { return ‘x; }

x,suc(y) -> { return ‘suc(plus(x,y)); }

}

}

void run() {

System.out.println("plus(1,2) = " + plus(‘suc(zero),‘suc(suc(zero))));
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}

}

In this example, given two terms t1 and t2 (that represent Peano integers), the evalu-
ation of plus returns the sum of t1 and t2. This is implemented by pattern matching: t1
is matched by x, t2 is possibly matched by the two patterns zero and suc(y). When zero
matches t2, the result of the addition is x (with x = t1, instantiated by matching). When
suc(y) matches t2, this means that t2 is rooted by a suc symbol: the subterm y is added
to x and the successor of this number is returned, using the ‘ construct. The definition
of plus is given in a functional programming style, but the plus function can be used
in Java to perform computations. This example illustrates how the %match construct can
be used in conjunction with the considered native language. We can notice that JTom

programs contain lakes (the right part of a rule is a Java statement). Note also that lakes
can contains Islands, introduced by ‘ for example.

From the definition of formal islands (Definition 11), we define for JTom the syntactic
anchor, the representation mapping, the predicate mapping, and gives the intuition of the
dissolution function which corresponds to the Tom compiler task.

7.1 Syntactic anchor

In the case of JTom, the syntactic anchor anch is defined as follow:

anch =







(〈Statement〉 ::= 〈OpConstruct〉),
(〈Instruction〉 ::= 〈MatchConstruct〉),

(〈Expression〉 ::= 〈BackQuoteConstruct〉)







7.2 Data-representation anchor

In JTom, the notion of term can be implemented by any data-structure. Once given
such an implementation, the data-representation anchor can be defined. Let us consider
that terms are implemented using a record (sym:integer, sub:array of term), where
the first slot (sym) denotes the top symbol, and the second slot (sub) corresponds to
the subterms. It is easy to check that the following definition of the predicate mapping
provides a formal anchor :

eq(t1, t2)
△

= ⌈t1⌉.sym = ⌈t2⌉.sym ∧ ∀i ∈ [1..ar(⌈t1⌉.sym)],
eq(t1.sub[i], t2.sub[i])

is fsym(t, f)
△

= ⌈t⌉.sym = ⌈f⌉

The first definition says that two terms are equal if the representation of their root
symbol are equal. In addition, the subterms have to be respectively equal. The second
definition says that a term t is rooted by f if the representation of t (which is a record)
has the representation of f as first element.
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7.3 Dissolution

Due to lack of space, we cannot give in detail complete definition of the dissolution
function which corresponds to the compilation phase. Therefore, we just give the intuition
of the translation step by illustrating the dissolution of the PeanoExample program given
previously.

public Term plus(Term t1, Term t2) {

Term tom_x = t1;

if (is_fsym_zero(t2)) {

return tom_x;

} else if (is_fsym_suc(t2)) {

Term tom_y = subterm_suc(t2,1);

return make_suc(plus(tom_x,tom_y));

}

}

With these definitions, Tom is an island for Java. We have proved that the anchor is
formal. The last condition to obtain a formal island is the proof that the dissolution is
well-formed. As shown in [5], a first step in this direction is the development of a certifying
compiler which proves, for each compilation, that the dissolution preserves the semantics
of the pattern-matching.

8 Conclusion and Future works

We have defined the notion of Formal Island to provide a formal framework allowing
language designers to base their languages extensions. For this framework to back-up
properties proofs, e.g. about safety or security, we have shown that under sufficient con-
ditions, properties established at the Island level are preserved once dissolved into the
host language. We have then shown application of this framework to DSL like SQLJ and
to Tom.

Amongst the many applications that we can envision, the safe treatment of XML trans-
formations, via appropriate Java based Islands, is particularly promising and is currently
under development.

Of course such a framework should be closely linked to proving tools adapted to the
properties to be checked: another direction that we are also investigating.
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