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Clustering nominal and numerical data: a new
distance concept for an hybrid genetic algorithm
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LIFL-Université de Lillel, Bat M3-Cité Scientifique,
59655 Villeneuve d’Ascq Cedex FRANCE jourdan@lifl.fr,
WWW home page: http://www.1lifl.fr/jourdan

Abstract. As intrinsic structures, like the number of clusters, is, for
real data, a major issue of the clustering problem, we propose, in this
paper, CHyGA (Clustering Hybrid Genetic Algorithm) an hybrid ge-
netic algorithm for clustering. CHyGA treats the clustering problem as
an optimization problem and searches for an optimal number of clusters
characterized by an optimal distribution of instances into the clusters.
CHyGA introduces a new representation of solutions and uses dedicated
operators, such as one iteration of K-means as a mutation operator. In
order to deal with nominal data, we propose a new definition of the clus-
ter center concept and demonstrate its properties. Experimental results
on classical benchmarks are given.

1 Introduction

Clustering is used to identify classes of objects sharing common characteristics
and its methods can be applied to many human activities and particularly to the
automatic decision making problem. The data clustering or unsupervised classi-
fication, can isolate similarities and differences in a database and make groups
of similar data which are called classes, groups or clusters. It can reveal some
intrinsic structures (e.g. the number of clusters). There exists many clustering
methods like graph-based ones, model-based ones, genetic algorithm-oriented
ones, distance based approaches or their hybridizations. Most of these methods
require as an input the number of clusters to determine. This requirement is a
major problem for real-life problems, where the number of clusters is not known
in advance.

Genetic algorithms have been successfully applied to partitioning problems [12]
and in particular to clustering problems. In [14], the authors couple the fuzzy
K-means algorithm with a GA, where one iteration of the Fuzzy K-means is
used to compute the fitness of the classification. However, all those algorithms
require as input the number of clusters.

In this paper, we present an hybrid genetic algorithm using a specific encoding
with dedicated operators. The hybridization consists in using a move of K-means
as one of these operators. We recall that K-means is devoted to deal with nu-
merical data, and conversely we aim at dealing with nominal data. Therefore,



in order to realize the proposed hybridization, we need to redefine the step of
the K-means algorithm. In addition, we propose a new definition for the cluster
center concept. An associated distance is also presented.

Section 2 presents the K-means algorithm, the definition of the center concept for
nominal data and the proposed associated distance. Section 3 presents CHyGA,
its encoding and the dedicated operators. Section 4 provides experimental results
for several classical numerical and nominal datasets.

2 Clustering and center concept

Clustering aims to group similar objects into clusters which can be described by
theirs centers. Each object is described by a set of attributes. Each attribute A;
has a domain definition {2 and takes a value in this domain.

The K-means algorithm is one of the most famous algorithm for clustering [6].
We firstly present the classical algorithm dedicated to numerical data, then we
introduce a definition of the center concept more adapted to nominal data. We
also introduce the associated distance.

2.1 The K-means algorithm

The K-means algorithm is an iterative procedure where an iteration is given
below:
Input: Partition P of k clusters: Ci, ..., Ck;
Compute Center(C1), ..., Center(Ch);
Remove all objects from all cluster;
for each object O; do
Let C;, (j € [1,k]) be the cluster whose center is the closest to O;
Assign O; to Cj;
end for
Compute the resulting new partition P = Ci, ..., C;(I < k);
Remove all empty clusters.
The major drawback of K-means algorithm is that it often terminates on
a local optimum and works only on numerical values because it minimizes a
cost function calculating the means of clusters. Moreover, it needs to compute
centers. The center of a cluster is easy to define on numerical values because the
mean makes sense, but for nominal data it is not so simple.

2.2 A new definition for the cluster center concept

In some works, authors have proposed some definitions for the center of categor-
ical or nominal data. For example, Huang proposes to compute the center of a
cluster by using the mode of a set [15].

Definition 1. Let X be a set of n nominal objects described by attributes Ay, ..., A,
{2 the set of all possible combinations of values of the attributes.
A mode of X is a vector Q) € 2, Q = [q1G2---@m] that minimizes D(Q,X) =



Zyzl d(X;,Q), where d(X,Y) is a simple matching [18]. Q is not necessarily
an element of X.

This definition has two drawbacks: first, Q is not always unique; second, if we
consider an attribute having the following values Y,?,Y, N, Y, N, ? the mode will
choose the value Y which has a frequency of 3, but is it really significant ?

We decide not to use such a center election. We propose here to consider a
center election based on a majority vote (frequency < 1/2). When there is no
satisfiable candidate none is chosen and we use a partially defined center. We will
use the notation * to denote values of attributes for which there is no satisfiable
candidate.

Definition 2. ) Let X be a set of n nominal objects described by attributes
Al A

The center of X is the vector Q) = [q1q2-.-q¢m] with g; € 2U {x} which minimizes
D(Q,X) = E?:l dy(X;,Q) where a possible d, is a distance measure defined in
paragraph 2.3. @Q is not necessarily an element of X and is unique.

The defined center will be called a partial center and represents an hyperplane
whereas for commonly used definition, a center is reduced to a single point of
the space R™ (like for mode). The dimension of the hyperplane in R™ is the
number of attributes - number of determined attributes of the center.

2.3 A proposed associated distance measure

In order to realize a clustering with K-means, we have to define a distance
between objects and the defined center. The proposed distance is based on the
Hamming distance, but has to be adapted in order to deal with the partial center
concept.

Let d,(0,C) be the distance between an object O and a center C. We define
dy =31, dy(0;, C;) as the following:

0 if x=y
Vz and y, d,(z,y) =< 1/2if x or y equals to * (x#£y) (1)
lifx#y

2.4 Properties of the center

In this section, we must verify that the center () defined in Section 2.2 respects
the fundamental properties of a center regarding the distance described in Sec-
tion 2.3.

Theorem 1. The function D(X, Q) = 3=, dy(X;, Q) is minimized by the center
Q defined as in definition 2.

Proof. Let n be the number of objects in the cluster X, let m be the num-
ber of attributes of an object. Let d, be the previous defined distance (d, =
>:ds(0;,C;)). Let @ be a center of the cluster: 37 dy(X;,Q) = 35, 3%, do(Xji, ¢4)-



As Vi€ [1,m] d,(X};,q:) > 0, if each element of the sum is minimal D(X, Q) is
minimal.

Let ny, be the frequency of the value g; of the attribute ¢ chosen to be the rep-
resentative center. Recall that the distance between * and an attribute is always
1/2. As ny, is the appearance frequency of ¢; : n —ng, > 0.

For each d,(Xj;,q;) two cases are possible :

1. Let the ith attribute of the center be determined. By definition of the center,
the attribute has a frequency greater than the half of the voices (n,, > 7). As
dy(Xj;,q) = n—ng, then n—ngy, < 2. Thus d, (X}, ,¢;) obtained by the majority
vote is minimal.

2. Let the ith attribute of the center be undetermined. There exists no value rep-
resenting the majority for this attribute. So Vg;, n — ng, > n/2 then d(Xj;, g;)
obtained with the * is minimal.

Hence, the proposed definition of center minimizes the presented intra-cluster
distance.

3 CHyGA

The clustering problem is NP-hard [19], and may be treated as an optimization
problem. The literature shows that GAs are well adapted to explore the very
large search space of this problem [16]. Figure 1, shows the different stages of
CHyGA, the genetic algorithm we propose. We present here the main charac-
teristics of this algorithm.

3.1 Encoding

The encoding is used to describe potential solutions and must be carefully chosen.
For clustering or grouping problems, there exist different representations [3,12,
17,20]. For example the group number representation which indicates for each
object the group it belongs to [17]. All those representations have advantages
and drawbacks.

In CHyGA, we choose to use a double hybrid representation (see Figure 2)
which merges the group number representation and a description of clusters. This
representation allows to find very quickly information on object’s affectations and
cluster’s composition. In the group number structure, for each object is indicated
the cluster it belongs to. In the complex structure, for each cluster a double linked
list gives its composition. Moreover, an array allows to point directly on each
object (to move it from one cluster to another in constant time).

3.2 Fitness Function

The fitness function is used to evaluate the suitability of a solution to the prob-
lem. This function is used for the selection phase.
In the literature, several cluster validity indicators have been used [1,4,9,10].
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Fig. 1. Stages of CHyGA. Fig. 2. The encoding.

To measure the quality of the proposed clustering, we use as fitness function the
criterion of Calinski and Harabasz (C'H) that measures the good distribution of
the objects [7].

Given k clusters, n features, let x; be the j*¢ cluster with j=1...k.

Let m be the mean vector m = (m1 mo --- mn) and m; the vector of means for
the j% cluster m; = (m;, mj, --- mj, ). X; is an element of the cluster x; and
(X; —m;)t is the transposed vector. Then the Calinski and Harabasz criterion
is:

(n = k) x trace(3_5_, nj(m; —m)(m; —m)")

(k—1) x trace(5_y Yx,. (Xi —m;)(X; —m;)t)

CH = 2)

i€x;

3.3 Operators

Crossover

In CHyGA, we use the GPX crossover (Greedy Partition Crossover) [13] which
is a partition crossover. Our representation is well adapted to this operator, as
elements of a same cluster are grouped.

Mutations

Our GA uses 5 different mutation operators. For clustering problems mutation
operators must able to introduce new groups and to remove existing groups. In
[11], Falkenauer shows that the mutation of a single affectation (object/group)
is not enough because it doesn’t increase significantly the fitness and the new
candidate solution will be quickly lost from the population. Qur GA uses two
standard mutations for grouping problems : split and move [8], two specifically
designed mutation operators adapted to clustering and a single iteration of K-
means.

The split operator selects some objects in a particular cluster and moves these
objects to a new cluster. We also define two other operators that are more spe-
cific for the clustering. The first operator, called “increase”, is able to increase
the number of clusters. This mutation operator chooses the cluster that has the



maximum internal variance and splits it into two clusters. The objects are real-
located between the two new clusters. Our second specifically designed mutation
operator, “decrease”, aims at merging two clusters into one. This operator de-
tects the two closest centers and groups the corresponding clusters into one.
We also use one iteration of the K-means [16] algorithm as a mutation operator
to make a local search and improve the quality of a solution. It takes as input
the distribution given by the chromosome, calculates centers of clusters and re-
assigns objects to clusters whose center are the closest.

At the end of the genetic search, we try to improve the quality of all the solutions
found with a local search. The local search consists in applying an iteration of
the K-means algorithm.

4 Experimental results

We have experimented CHyGA on some common datasets available at the UCI
repository [5], or in the articles of Bandyopadhyay [2] and Ruspini [21]. The
specificities of each dataset used to evaluate the performances of the proposed
algorithm are summed up in Table 1. It indicates the name of the dataset its
number of instances (n), the number of attributes (m), the original number of
classes (k), the percentage of missing data (1). Therefore a dataset is summed up
by Name (n, m, k, 1). Table 1 also indicates the CH value obtained with the
initial repartition of the instances in their classes as all the datasets are basically
intended to the classification data mining task.

Table 1 also indicates for each dataset some descriptive statistics of the re-
sults obtained by CHyGA. We indicate for the Calinski and Harabasz criteria
(CH) the mean of the best results obtained over ten runs, the maximum, the
standard deviation (o) and the median. Information is given about the number
of discovered clusters.

We can observe that CHyGA is able to discover a number of clusters equal to the
original number of classes. Only on one dataset, Iris, it sometimes obtains, for
the best solution of an execution, a number of clusters of four instead of three.
However, in this case, the best solution ever obtained for CH has been found for
a number of clusters equal to three (559.258(3)).

Concerning the robustness of the method, we can observe that the method is
very robust on some of the numerical datasets where the standard deviation of
the best results obtained by CHyGA over the runs is equal to zero.

In addition, we compare our method to some classical methods: K-means, Kme-
diods, Single link and Complete link. To make a fair comparison, we give as input,
for all the classical methods, the number of clusters found by CHyGA. For non
deterministic methods (K-means, Kmediods), we ran ten times the algorithms.
Table 2 indicates for each method, the best solution found, the standard devia-
tion (o) of the solution given by the algorithms for CH. As often in clustering,
interesting objectives are to minimize the intra cluster distance and to maximize
the inter cluster distance, Table 2 also indicates their value.

For numerical datasets, we can observe that our method finds for all the datasets



Table 1. Descriptive statistics of the results obtained by CHyGA on different numerical

and nominal datasets.

Numerical Datasets

Numerical Datasets

Nominal Datasets

AD_5_2 Iris Lung
(250, 2, 5, 0) (150, 4, 3, 0) (32, 57, 2, 4.13)
CH = 387.75 CH = 486.32 CH =9.609
Criteria # cluster Criteria # cluster Criteria # cluster
Mean 386.20 5 Mean 526.42 3 Mean 23.38 2
Max. 387.75 5 Max. 559.25 (3) 4 Max. 23.68 2
o 0.18 0 o 11.78 0.82 o 0.14 0
Med. 386.44 5 Med. 527.83 3 Med. 23.34 2
AD 4.3 Cancer Vote
(400, 3, 4, 0) (683, 9, 2, 0) (435, 16, 2, 0.22)
CH = 3207.41 CH = 912.20 CH =455.865
Criteria # cluster Criteria # cluster Criteria # cluster
Mean 3207.41 4 Mean 1025.81 2 Mean 508.79 2
Max. 3207.41 4 Max. 1025.81 2 Max. 522.34 2
o 0 0 o 0 0 o 9.76 0
Med. 3207.41 4 Med. 1025.81 2 Med. 507.52 2
Ruspini Diabetes Breast Cancer
(75, 2, 4, 0) (768, 8, 3, 0) (286,9, 2, 0.34)
CH = 425.32 CH = 24.29 CH =212.251
Criteria # cluster Criteria # cluster Criteria # cluster
Mean 425.32 4 Mean 1136.18 3 Mean 243.63 2
Max. 425.32 4 Max. 1142.49 3 Max. 247.49 2
o 0 0 o 6.98 0 o 2.99 0
Med. 425.32 4 Med. 1139.2 3 Med. 243.91 2




Table 2. Best results obtained with different method on classical dataset from UCI.

Data Criteria CHyGA  K-means Kmed. Single Compl.
Link Link

AD52 Intra 5.06 5.17 6.08 93.90 5.62
Inter 218.85 218.80 218.02 218.89 218.88

Calinski  388.12 386.58 163.92 11.74 6.25

o 0 28.84 24.68 - -

AD 43 Intra 6.54 6.63 8.75 6.55 19.67
Inter 410.88 410.88 411.10 410.83 410.99

Calinski  3207.41 3206.68 1720.86 3190.08 0.57

o 0 385.02 313.31 - -

Ruspini Intra 38.75 38.75 54.18 40.57 162.15
Inter 19782.42 19782.42 19787.28 19783.07 19782.52

Calinski  425.32 425.32 263.92 422.40 2.63

o 0 161.56 74.2 - -

Iris Intra 2.36 2.36 2.86 2.69 2.50
Inter 46.6264 46.6264 46.93 46.62 46.62

Calinski  559.26 559.26 322.92 343.85 42.35

o 11.78 1.98 108.55 - -

Cancer Intra 14.14 17.08 13.42 28.16 20.03
Inter 235.31 235.31 237.68 235.17 235.34

Calinski 1026.06 1008.74 1201.66 298.09 12.06

o 0 0 385.02 - -

Diabetes Intra 246.56 247.44 276.17 454.01 264.00
Inter 105763.16  105763.25  105736.98  105763.90 105760.35
Calinski 1135.07 133.97 276.17 20.19 0.95

o 6.98 17.56 47.51 - -




the best solution of CH also found sometimes by the K-means algorithm. For
intra cluster distance which measures the compactness of the cluster, we can
observe that CHyGA finds for each dataset the smaller value which is for two
datasets, Ruspini and Iris, also obtained by K-means. For inter cluster criteria
which measures the separation of the obtained clusters, we remark that even if
CHyGA doesn’t find the best value of the criteria, the value obtained is really
closed to the best found. Indeed, when we look at the error made by CHyGA in
comparison with the best found, this error is less than 0.02% for Ruspini dataset,
0.66% for Iris dataset and 0.0006% for Diabetes dataset.

For the three stochastic methods, we indicate the standard deviation of the so-
lutions obtained over the ten executions of the algorithms (o). We can observe
that CHyGA has the smaller standard deviation except for the Iris dataset.
Concerning the computational time, it is obvious that our method is longer
than a simple K-means algorithm because we use a single iteration of it as a
local search in our hybridization. Methods such as Single or Complete link are
faster than our method on small datasets but longer on larger datasets (Diabetes
for example).

Hence, those results show that CHyGA has best or at least comparable perfor-
mances than the best clustering methods. Nevertheless, it is important to recall
that CHyGA does not require as input the number of clusters to look for and
can deal with nominal or numerical data.

5 Conclusion

This paper has proposed a specific hybrid Genetic Algorithm for the clustering
problem: CHyGA. This algorithm is very interesting because it makes clustering
with no indication on the number of clusters by using the Calinski and Harabasz
criteria. We have used a specific encoding and an one iteration K-means to
hybridize the algorithm. To deal with nominal data we proposed a new center
conception and an associated distance. Results obtained are very encouraging.
We obtained on both numerical and nominal data the same number of clusters
than the number of given classes.

This algorithm works for an unknown number of clusters and the final population
is compound of different solutions with different number of clusters. Here, only
the best solution has been used for the evaluation, but it could be interesting to
look at several good solutions obtained thanks to CHyGA.

A multi-criteria approach would be interesting to look for the best compromise
between different quality criteria that may be used.

Appendix

We demonstrate the properties of d,, and show that it is a distance.

Proof. Positivity
By construction, d,, is always positive or equal to zero then
dy(0,C0) = 32,d,(0;,C;) > 0.



Proof. Symmetry

dy(0,C) =3, ds;(0;,C;) then if d, is symmetrical, d, is symmetrical.
Let us consider the different cases:

If d(,(O,’,C,') =0= 0; =C(C; < C; = O; then dU(CZ’,Oi) =0.

It d, (0;,C;) = % = (; = * (O; always defined) then d, (C;,0;) = %
If d,,(O,-,C’,-) =1= 0; # C; then Cj 75 O; then dg(Ci,Oz') =1.

d, is symmetrical then d, is symmetrical.

Proof. Triangular inequality
Let O1, O2, O3 be three objects that can be centers.
We want to show that d,(01,03) < d,(01,03) + dy(03,02).
We must show that >, d,(01,,02,) <3, ds(01,,03;) + >, ds(03,,02;).
Let A= Ez d,(OL.,Ozi) et Az = da'(01”02,-)-
Let B = Zi dO’(Oli ’ 03i)+2i d0(03i ) 02i) and B; = d(T(Oli ) 03i)+d0'(03i ) OQi)'
We compute attribute by attribute. For attribute i, three cases may appear:
1. If 011. = 021. then Az =0:
- If 04, = O3, then Oy, = O3, then B; =0
-If 04, # O3, then B;+ = % or 1 and then Os; # Oy, then B;+ = % orl
— B; = 0,1 or 2. In this case A; < B;.
2. If Oy, # Oy, and # * then A4; = 1:
- If Oli = 031. then Bz—f— = 0 bllt 031. 75 021. then B,—F =1.
-If Oy, # Os, then if O, = * then B; = 3 + ; else B; =1+ (0 or 1)
= B; =1 or 2. In this case, A; < B;.
3. If Oy, # O,, and one of them equals to *. As the distance is symmetrical, let
01, = * then 4; = %:
- If Oy, = O3, then B;+ = 0 but O3, # Os, then B;+ = 1.
-If 011. # 031. then B; = % + (0 or ].)
-If 031. = % then Bi = %
= B; > % In this case A; < B;.

To conclude, for all objects O1, Oz, Os:
Zi dlf (Oli J 021) S Zz dtf (Olz ) 031) + Zz dd (031 ’ 021)
dy(01,02) < dy(01,03) +dy(03,02)

Thus d, is positive, symmetrical and transitive so, we can conclude that d, is a
distance.
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