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Departamento de Ing. Eléctrica. Sección de Mecatrónica.

Col. San Pedro Zacatenco. A.P. 14740,
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Abstract

In this article, we use a variant of a recently introduced algebraic state estimation method obtained from a

fast output signal time derivatives computation process. The fast time derivatives calculations are entirely based

on the consequences of using the “algebraic approach” in linear systems description (basically; module theory and

non-commutative algebra). Here, we demonstrate, through computer simulations, the effectiveness of the proposed

algebraic approach in the accurate and fast (i.e. non asymptotic) estimation of the chaotic states in some of the most

popular chaotic systems. The proposed state estimation method can then be used in a coding-decoding process of

a secret message transmission using the message-modulated chaotic system states and the reliable transmission of

the chaotic system observable output. Simulation examples, using Chen’s chaotic system and the Rossler system,

demonstrate the important features of the proposed fast state estimation method in the accurate extraction of a

chaotically encrypted messages. In our simulation results, the proposed approach is shown to be quite robust with

respect to (computer generated) transmission noise perturbations. We also propose a way to evade computational

singularities associated with the local lack of observability of certain chaotic system outputs and still carry out the

encrypting and decoding of secret messages in a reliable manner.

I. Introduction

The field of chaotic systems has undergone considerable development with a fairly good un-

derstanding of the phenomenon and its many implications in applied mathematics, physics, en-

gineering and other scientific research areas. The many interesting developments are due to

mathematicians, physicists, computer scientists, control engineers and biologists. The state of the

art has been summarized in several special issues of known journals which have been devoted to

the problem of chaos, in general, and to chaotic systems synchronization and control in particular

(See for instance: Special Issues [1993, 1997a, 1997b, 1998, 2000, 2001]). The reader may look

into the enormous collection of references about chaotic systems, and related fields, gathered by

Professor G. Chen [1997]. A number of books already exist on the subject (see, for instance,

[Holden, 1986], [Mira, 1987], [Afraimovitch et al., 1994], [Ott et al., 1994], [Fradkov & Pogromsky,

1998], [Chen, 1999], and many others). The interest in the topic of synchronization and chaotic

system state estimation arises from the possibilities of encoding, or masking, messages using as

an analog “carrier” a signal representing a state, or an output, of a given chaotic system. The

effectively random nature of the carrier signal additively, or multiplicatively, modulated by the

masked message signal, makes it “difficult” to attempt the decoding of the message from an inter-

cepted transmission (see [Cuomo et al., 1993]). The problem is then one of effectively recovering

the hidden, or encrypted message at the receiving end by means of an estimator system, or an
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algorithm, which uses one or several of the transmitted signals.

The chaotic system synchronization problem is, therefore, intimately related to the design of

a nonlinear state observer for the chaotic encoding system (see [Nijmeijer & Mareels, 1997]). In

fact, a possible decoding process is based on the remote generation of the state estimates of

the coding system, from a transmitted chaotic output signal, and a suitable comparison of such

generated state estimates with the transmitted signals containing the message modulated states.

However, in contradistinction to observer design, important limitations and freedoms must be

taken into account in the decoding system design problem. Traditionally, asymptotic tracking

of the actual transmitter’s state is demanded by exciting the designed receiving system with a

message-free output. The receiving end system should asymptotically track (synchronize) the

states of the transmitting system. This approach however entitles the need to robustly sustain

the “unmodelled” addition of a masked signal input after synchronization has taken place (See

[Pecora & Carroll, 1991]). This insensitivity, or robustness, property is questionable and difficult to

achieve in practise. Several research articles deal with some of these important robustness issues.

For a passivity based adaptive approach to synchronization the reader is referred to the interesting

articles by Fradkov and Markov [1997] and that by Pogromsky [1998]. On the other hand, a purely

state estimation based approach entitles the transmission of the chaotic system output for the

purpose of remotely generating the unperturbed states of the transmitting system via a properly

designed asymptotic observer. The secret messages are then coded in the chaotic states and

these are transmitted for comparison with the unperturbed estimated states. The message signal

recovery is then immediate. The Hamiltonian structure of a collection of well known examples of

chaotic continuous-time systems is exploited in Sira-Ramı́rez and Cruz-Herández [2001], to obtain

asymptotic state observers requiring the message-free output signal. One important feature is that

this observer design merely requires linear-based output injection techniques. A similar approach

for signal encryption strategies, dealing with the exact state estimation of discrete time nonlinear

chaotic systems, was presented in Sira-Ramı́rez et al. [2002].

In this article, we take an algebraic viewpoint for the state estimation problem associated with

the chaotic encryption-decoding problem. The article emphasizes the use of the “algebraic deriva-

tive method” for the efficient and fast computation of accurate approximations to the successive

time derivatives of the transmitted observable output signal received at the decoding end. The
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observability of the system output allows one to establish a map constituted by a differential

function of the output (i.e. a function of the output and a finite number of its time derivatives)

from which the state can be immediately computed in a static manner (see [Diop & Fliess, 1991]).

Instead of attempting the construction of an asymptotic nonlinear observer for the transmitter

or coding system, a set of model independent formulae is developed for the required approximate

computation of the time derivatives of an observable transmitted output signal. From these locally

valid output time derivatives, the related transmitter system state vector can be easily computed

using the static differential parametrization of the states in terms of the observable chaotic output.

The time derivatives of the output signal are computed on the basis of a sufficiently accurate

truncated Taylor series approximation in combination with the “algebraic derivative method”,

recently introduced by the authors in Fliess and Sira-Ramı́rez [2004] for state estimation of linear

controlled systems. The key issue here is to initially view the transmitted chaotic system output as

a time signal, with no other systems oriented view of its possible functional dependance upon the

system state. As a result, a non-asymptotic, fast, state estimation scheme is obtained. The result

of our algebraic estimation approach is a set of accurate piecewise continuous approximations to the

actual chaotic system state vector components. The calculation method also provides an on-line

updating mechanism that allows for the automatic resetting of the involved computations when

the validity of the adopted truncated Taylor series approximation ceases to be valid. Incidentally,

our formulae for the on line generation of the output signal time derivatives consist, solely, of

terms involving integrations and time convolutions of the original observable output signal. The

problem of efficiently calculating time derivatives of a given output signal is not entirely new, and

some rather interesting approaches have been also proposed in the past (see Diop et al [1994],

Pelestan and Grizzle [1999] and Diop et al. [2000]).

Section 2 summarizes, in a tutorial fashion, the core of the state estimation process to be

proposed by revisiting the problem of efficiently computing time derivatives of signals using the

algebraic approach. In that section, we provide several state estimation examples dealing with

the well known Lorenz system, Chen’s system, Chua’s chaotic circuit, Rossler’s system and the

hysteretic chaotic system. Due to a local observability property found in the first two examples, the

output time derivative based state estimation leads to a singularity problem in the reconstruction

of one of the state variables. This singularity would invalidate the use of that particular state as
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a coding signal. Section 3 explains the coding-decoding process based on the algebraic approach

to state estimation and provides some simulation examples of a secret message signal extraction

which includes dealing with computer generated additive transmission noise. In section 3, the

singularity problem encountered for the Lorenz and the Chen’s systems is circumvented by using

as a coding signal a nonlinear function of the chaotic observable output and the involved singular

state. A simulation example is also furnished depicting the proposed singularity free coding-

decoding scheme.

II. Signal time derivation through the “algebraic derivative method”.

Consider an arbitrary smooth signal, y(t), defined on the non-negative real axis. Suppose it

is desired to obtain, on the basis of the continuously measured value of y(t), time signals which

closely approximate, during a finite time interval of the real line, a certain number of successive

time derivatives of the signal y(t).

Below, we propose a method for obtaining close, local, approximations to the time derivatives

of y(t) over intervals of time whose length may be arbitrarily fixed to be “small” at the outset, or

it may be automatically determined on the basis of the value of an integral squared error criterion.

Such a criterion assesses the accuracy of the computed time derivatives of the signal in terms of

the reconstruction error of the transmitted signal itself. The proposed calculations, which yield

fast (i.e., non asymptotic) estimations of the derivatives of the given signal, are accurately valid

over these fixed, or otherwise automatically generated, time intervals and they require to be reset

when the error criterion reaches a pre-specified threshold value.

For any arbitrary tinitial ≥ 0, the value of the signal at time t > tinitial is approximated by the

classical truncated Taylor series expansion,

ỹ(t)1(t − tinitial) =
K∑

j=1

1

(j − 1)!
y(j−1)(tinitial)(t − tinitial)

(j−1), t ≥ tinitial (1)

where y(k)(tinitial) represents the k-th time derivative of y(t) evaluated at time tinitial and K is

a strictly positive integer whose magnitude is directly related to the approximating properties of

ỹ(t). The function 1(t − tinitial) is the Dirac unit step, at time tinitial.

Note that the truncated Taylor series may be represented by the response of an homogeneous

linear time invariant system with a set of initial conditions represented by the initial value of the
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signal y(t) at time tinitial and those of the (unknown) first K − 1 derivatives of such signal at the

same instant t = tinitial.

ỹ(K)(t)1(t − tinitial) = 0, t ≥ tinitial

ỹ(j)(tinitial) = y(j)(tinitial), j = 0, . . . , K − 1

In operational calculus notation, the approximating system is represented by

sK ỹ(s)e−s tinitial −
K∑

j=1

sK−jy(j−1)(tinitial)e
−s tinitial = 0 (2)

Clearly, after simplifying out the common factor e−s tinitial it follows that:

dK

dsK

(
sK ỹ(s)

)
= 0 (3)

is independent of all the unknown initial conditions. The crucial observation of the “algebraic

derivative” method for computing time derivatives of arbitrary smooth signals is that the set of

expressions:

s−j dK

dsK

(
sK ỹ(s)

)
= 0, j = K − 1, K − 2, . . . , 1, (4)

yield a triangular system of linear equations from which the time derivatives of the approximating

signal ỹ can be computed, solely in terms of time convolutions of y(t). The idea is then to adopt

these obtained signals as local approximations to the actual time derivatives of the original signal

y(t). Naturally, one reverts to the time domain the calculations made in the frequency domain in

order to obtain explicit formulae for approximating the different time derivatives of y(t).

Clearly, the higher the value of K, the closer the approximating features of the obtained formulae

to the first few time derivatives of y(t). As a rule of thumb, we may set K to be twice the value

of the required highest order derivative of y(t).

Example 1: Consider, for instance, the system: ỹ(4)(t) = 0, which is proposed for obtaining

a (local) polynomial approximation to the first two derivatives ẏ and ÿ, of a given sufficiently

smooth signal y(t) where, for simplicity, we let tinitial = 0. We then have that: d4

ds4 (s4ỹ(s)) = 0.

We obtain, after letting ỹ to be substituted by the actual measured signal y,

d4

ds4

(
s4ỹ(s)

)
= 24y(s) + 96s

dy(s)

ds
+ 72s2d2y(s)

ds
+ 16s3d3y(s)

ds3
+ s4d4y(s)

ds4
= 0

February 22, 2005



7

The expressions for s−3 d4

ds4 (s4ỹ(s)) = 0 and s−2 d4

ds4 (s4ỹ(s)) = 0, yield

s−3 d4

ds4

(
s4ỹ(s)

)
=

(
24

s3

)
y(s) +

(
96

s2

)
dy(s)

ds
+

(
72

s

)
d2y(s)

ds2
+ 16

d3y(s)

ds3
+ s

(
d4y(s)

ds4

)
= 0

s−2 d4

ds4

(
s4ỹ(s)

)
=

(
24

s2

)
y(s) +

(
96

s

)
dy(s)

ds
+ 72

d2y(s)

ds2
+ 16s

d3y(s)

ds3
+ s2d4y(s)

ds4
= 0

Writing these equalities in the time domain we obtain:

24(

∫ (3)

y) − 96(

∫ (2)

ty) + 72(

∫
t2y) − 16t3y +

d

dt

(
t4y(t)

)
= 0

24(

∫ (2)

y) − 96(

∫
ty) + 72t2y(t) − 16

d

dt

(
t3y(t)

)
+

d2

dt2
(
t4y(t)

)
= 0

Here we have used, for simplicity, the following notation:

(

∫ (j)

tky) =

∫ t

0

∫ σ1

0

· · ·
∫ σj−1

0

σk
j y(σj)dσj . . . dσ1 (5)

The above expressions yield, after some algebraic manipulations, the approximations (or estimates)

to the first and second order time derivative of y(t). We obtain
(

dy

dt

)

e

=
1

t4

[
12t3y − 72(

∫
t2y) + 96(

∫ (2)

ty) − 24(

∫ (3)

y)

]

(
d2y

dt2

)

e

=
1

t4

[
8t3 (ẏ(t))e − 36t2y(t) + 96(

∫
ty) − 24(

∫ (2)

y)

]

where, evidently, the second order time derivative expression requires the outcome of the evaluation

of the first time derivative expression according to the announced triangular system structure of

the equations. Note that, at time t = 0, the above formulae yield an indetermination of the form

0/0. In fact, due to the finite precision of the numerical processors, the computation will not be

accurately defined over a small interval of time of the form: [0, ǫ). Thus, the formulae for (dy/dt)e

and (d2y/dt2)e are valid for t ≥ ǫ. During the interval of time [0, ǫ), we may replace the value of

(ẏ)e and (ÿ)e by arbitrary constant values or by appropriate polynomial spline approximations.

It is clear that for any t ≥ ǫ > 0 the expressions found yield suitable approximations for the

first and second order time derivatives of y(t) during an open time interval of the form [ǫ, t). We

now examine the issue of how and when to update, or re-initialize, the computations.

A. Calculations resettings

The validity of the formulae found for the estimates of ẏ and ÿ in the open time interval [ǫ, t)

becomes questionable as t grows, due to the approximate nature of the adopted truncated Taylor
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series expansion. The calculations need to be reset, or updated, at some finite time tr. It is not

difficult to see that for any resetting time, tr, we also have the following approximation formulae

valid:
(

dy

dt

)

e

=
1

(t − tr)4

[
12(t − tr)

3y(t) − 72(

∫

tr

(t − tr)
2y) + 96(

∫ (2)

tr

(t − tr)y) − 24(

∫ (3)

tr

y)

]

(
d2y

dt2

)

e

=
1

(t − tr)4

[
8(t − tr)

3 (ẏ(t))e − 36(t − tr)
2y(t) + 96(

∫

tr

(t − tr)y) − 24(

∫ (2)

tr

y)

]

where we have now used the notation:

(

∫ (j)

tr

(t − tr)
ky) =

∫ t

tr

∫ σ1

tr

· · ·
∫ σj−1

tr

(σj − tr)
ky(σj)dσj . . . dσ1 (6)

As before, the above formulae for the estimates of ẏ and ÿ are valid after a small time interval, of

duration ǫ, has elapsed from the instant t = tr, i.e. during the interval [tr + ǫ, t). A new resetting

is to be carried out when the validity of the approximation becomes questionable. We remark

that during the time interval, [tr, tr + ǫ], we may adopt as temporary values for the time derivative

estimates (ẏ(t))e and (ÿ(t))e, either constant values of the form ẏ(t−r ) and ÿ(t−r ) i.e. the last

computed values of the time derivatives of the interval [tr−1 + ǫ, tr], or, alternatively, polynomial

splines whose parameters are determined on the basis of the last values of the previously computed

time derivatives at time tr. For instance, we may opt for straight line approximations for the first

time derivative and a constant approximation for the second time derivative:

ẏ(t) = ẏ(t−r ) + (t − tr)ÿ(t−r ), ∀t ∈ [tr, tr + ǫ]

ÿ(t) = ÿ(t−r ) ∀t ∈ [tr, tr + ǫ]

If a larger number of computed time derivatives are available at time tr, higher order polynomial

spline approximations are possible during the small intervals [tr, tr + ǫ]. We remark that the time

interval of validity of the formulae, which is of the form [tr + ǫ, tr+1), can also be determined to

be fixed at the outset. Of course, this usually entitles choosing a rather small value, say, for the

quantity, tr+1 − tr, and, perhaps, of some additional off-line trial and error runs. This procedure

is, of course, highly dependent upon the encoding system and requires judgment, rather than an

objective criterion evaluation.

In the context of this example, but with the aim of proposing a general calculation updating

procedure, we now provide an objective criterion for determining a reasonable time instant for the
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resettings of the derivative calculations, given that the actual values of such derivatives are not

known beforehand.

Note that, at any time t, we may easily generate an estimate, or a reconstruction, of the actual

signal y(t) on the basis of the computed time derivatives, up to that moment. Any deviation

of this estimated value from the actual (measured) value of the original signal y(t) obeys to the

fact that the computed value of the time derivatives of the original signal are drifting from their

actual values. Hence, we propose to operate a calculation resetting when the value of the absolute

integral squared error surpasses a small constant threshold value δ > 0. i.e. when

∫ t

tr

|e(σ)|2dσ ≥ δ

with e(t) defined as e(t) = y(t)− ŷ(t) and ŷ(t) being a generated estimate of y(t) itself, computed

on the basis of known data as follows:

ŷ(t) = y(tr) + (ẏ(tr))e (t − tr) +
1

2
(ÿ(tr))e (t − tr)

2 (7)

with (ẏ(tr))e and (ÿ(tr))e being the computed first and second time derivatives of y at time tr.

In general, however, in cases where more than two time derivatives of a signal are to be com-

puted, one may propose a more general integral square error criterion by involving higher order

time derivative estimates.

B. Observability of nonlinear systems

Consider a smooth nonlinear system, characterized by a state vector x ∈ Rn, of the form,

ẋ = f(x),

y = h(x) (8)

where y is the output of the system and h(·) is a smooth scalar map taking values on the real line.

The output y = h(x) of the system is said to be locally observable if the following map is locally

full rank n, 


y

ẏ
...

y(n−1)




=




h(x)

Lfh(x)
...

Ln−1
f h(x)




(9)
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where Lk
fh(x) stands, in local coordinates, for

∂Lk−1

f
h(x)

∂x
f(x) with L0

fh(x) = h(x).

A well known result establishes that if the above map is locally full rank n, then the state

vector, x, of the system can be locally expressed as a smooth differential function of y i.e. a

smooth function of y and a finite number (in fact n−1) of its time derivatives (see [Diop & Fliess,

1991] and also [Fliess, 1987]). We also address this type of function as a differential parametrization

of the state x in terms of the observable output y. We have then that x can be uniquely expressed

as

x = Φ(y, ẏ, ÿ, · · · , y(n−1))

for some smooth function Φ.

C. State estimation for a Lorenz system

Consider the model of the popular Lorenz system, (see [Lorenz, 1963]):

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3 (10)

where y = x1 is the measured output variable. The parameters σ, r and b are assumed to be

known parameters. The system is observable from the output y in all of R3 except on the line

y = x1 = 0.

A local differential parametrization of the system states in terms of the measured output y is

given by

x1 = y

x2 =
1

σ
ẏ + y

x3 = −1

y

[
1

σ
ÿ +

(
σ − 1

σ

)
ẏ − (r + 1)y

]
(11)

For the generation of the time derivatives of the measured output y(t) = x1(t) we may propose

a 7th order truncated Taylor series expansion, around the re-initialization time tr, of the form

y(t) =
7∑

i=1

y(i−1)(tr)

(i − 1)!
(t − tr)

(i−1)
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which leads, modulo a fixed time translation, to the identity

d7

ds7

[
s7y(s)

]
= 0

Based on this, we use the specific formulae:

n1(t) = 42(t − tr)
6y(t) − 882(

∫

tr

(t − tr)
5y) + 7350(

∫ (2)

tr

(t − tr)
4y) − 29400(

∫ (3)

tr

(t − tr)
3y)

+52920(

∫ (4)

tr

(t − tr)
2y) − 35280(

∫ (5)

tr

(t − tr)y) + 5040(

∫ (6)

tr

y)

d(t) = (t − tr)
7

(ẏ(t))e =





(ẏ(t−r ))e + (t − tr)(ÿ(t−r ))e for t ∈ [tr, tr + ǫ)

n1(t)

d(t)
for t ≥ tr + ǫ

n2(t) = 630(t − tr)
5y(t) + 35(t − tr)

6 (ẏ(t))e + 7350(

∫

tr

(t − tr)
4y) − 29400(

∫ (2)

tr

(t − tr)
3y)

+52920(

∫ (3)

tr

(t − tr)
2y) − 35280(

∫ (4)

tr

(t − tr)y) + 5040(

∫ (5)

tr

y)

d(t) = (t − tr)
7

(ÿ(t))e =





ÿ(t−r ) for t ∈ [tr, tr + ǫ)

n2(t)

d(t)
for t ≥ tr + ǫ

where the notation used is the same defined in equation (6)1. Note that, instead of constant values,

we may also use spline polynomial approximations, for the estimates of the time derivatives of the

signal y(t), during the small intervals [tr, tr + ǫ), occurring right after the instants tr at which the

resettings of the calculations is carried out.

The differential parametrization (11) allows one to propose the following state estimates for the

unmeasured states x2 and x3,

x2e =
1

σ
(ẏ)e + y

x3e = −1

y

[
1

σ
(ÿ)e +

(
σ − 1

σ

)
(ẏ)e − (r + 1)y

]

(12)

1Naturally at time t = 0, for the initial calculation convergence interval: [0, ǫ), the unavailability of previously calculated

time derivatives forces one to chose arbitrary constant values, preferably zero, of the estimated derivatives during this small

time interval.
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Note, however, that as clarified before, the estimate of the state variable x3 undergoes a singu-

larity every time the signal, y = x1, goes through the value of 0. We will propose a singularity-free

coding decoding process which allows us to also use x3 as part of a chaotic coding signal.

C.1 Simulations

For the computer simulations we have taken the following parameter values:

σ = 10, r = 28, b =
8

3

Figure 1 shows the computer simulation of the Lorenz system actual state trajectories along

with the estimated values of the states x2 and x3. The computation of the first and second time

derivatives of the measured output allows, of course, to estimate the state variable x2 and x3

using the static state estimation formula (12). The calculation intervals were chosen to be fixed

of value 0.15 [sec], while the small interval of time, right after the calculation resettings, was set

to be defined by ǫ = 0.01 [s]. Note that the calculation resetting interval was taken to be rather

“large”. Nevertheless, the accuracy of the estimations and the performance of the algorithm are

quite remarkable.

-20
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20
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Fig. 1. State estimates of a Lorenz system

From the figure, it is evident that when y(t) = x1(t) goes through zero, a singularity centers

around this time instant for the estimation of x3 (modulo the effects of the finite step integration
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algorithm). Naturally, this fact makes the state x3 a questionable candidate for coding message

signals that need to be secretly transmitted.

In order to give an idea of the speed of the, fast, non-asymptotic convergence as well as the

accuracy of the state calculations around the resetting times, we show, in Figure 2, an inset of the

previous simulations around the initial time, t = 0. The calculation intervals of 0.15 seconds and

the calculation accuracy holding time of 0.01 seconds are clearly depicted in this figure.

Fig. 2. An inset for the Lorenz state estimation

D. State estimation for Chen’s system

Consider now Chen’s system (see [Chen, 1993]):

ẋ1 = a(x2 − x1)

ẋ2 = (c − a)x1 + cx2 − x1x3

ẋ3 = x1x2 − bx3 (13)

where y = x1 is the output variable. The parameters a, b and c are assumed to be known. The

system is observable from the output y except at the line y = x1 = 0.

A local differential parametrization of the system states, in terms of the measured output y, is

given by

x1 = y

x2 =
1

a
ẏ + y

x3 = −1

y

[
1

a
ÿ +

(
1 − c

a

)
ẏ + (a − 2c)y

]
(14)
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For the generation of the time derivatives of the output y(t) = x1(t), we again propose the

same 7th order truncated Taylor series expansion, around the re-initialization time tr, used in the

previous example. Therefore, we used the same derivative calculation formulae presented in the

Lorenz system example.

D.1 Simulations

For the computer simulations, we have taken the following parameter values:

a = 35, b = 3, c = 28

Figure 3 shows the computer simulation of Chen’s system actual state trajectories and the

estimated trajectories of the states x2 and x3. This time, the calculation interval was chosen to

be defined by tr = 0.1 [sec], while the small interval of time, after the calculation resetting, was

set to be defined by ǫ = 0.01 [s].
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Fig. 3. State estimates of Chen’s system
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Fig. 4. Chua’s circuit

E. State estimation for Chua’s circuit

Consider Chua’s circuit, ( see [Wu & Chua, 1993]) shown in Fig. 4. This circuit is described by

the following set of nonlinear differential equations:

C1ẋ1 = G (x2 − x1) − F (x1)

C2ẋ2 = G (x1 − x2) + x3

Lẋ3 = −x2 (15)

where F (x1) is a voltage -dependent nonlinear function of the form:

F (x1) = ax1 +
1

2
(b − a) (|1 + x1| − |1 − x1|) , a, b < 0

clearly playing the role of a negative resistor.

In order to facilitate the exposition, we adopt a normalized form of the above circuit (See

[Huijberts et al., 1998]):

ż1 = β(−z1 + z2 − φ(z1))

ż2 = z1 − z2 + z3

ż3 = −γz2 (16)

with,

φ(z1) = az1 +
1

2
(b − a) {| 1 + z1 | − | 1 − z1 |}

The system is clearly non differentiable due to the presence of the term φ(z1). This makes the

output y = z1 not suitable for our state estimation technique since the corresponding differential

parametrization of z3 requires the time derivative of the function φ(z1). Nevertheless, the output
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y = x3 is globally observable and the state of the normalized system enjoys a singularity free

(linear) differential parametrization. Indeed

z1 = −1

γ
ÿ +

1

γ
ẏ − y

z2 = −1

γ
ẏ

z3 = y (17)

The time derivatives of the measured output y(t) = z3(t) may be generated exactly in the same

form as before.

E.1 Simulations

For the computer simulations we have taken the following parameter values:

a = −5

7
, b = −8

7
, β = 15.6, γ = 27

Figure 5 shows the computer simulation of the normalized Chua’s circuit actual state trajectories

and the estimated values of the normalized states z2 and z3. This time, the calculation interval

was chosen to be defined by tr = 0.3 [sec], while the small interval of time, after the calculation

resetting, was set to be defined by ǫ = 0.02 [s].
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Fig. 5. State estimates of normalized Chua’s chaotic circuit
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F. State estimation for Rossler’s system

Consider now Rossler’s system described by Pecora and Carroll [1991]:

ẋ1 = −(x2 + x3)

ẋ2 = x1 + ax2

ẋ3 = b + x1x3 − cx3 (18)

where y = x2 is the output variable. The parameters a, b and c are known quantities. The system

is globally observable from the output y = x2.

A (linear) differential parametrization of the system states, in terms of the measured output y,

is given by

x1 = ẏ − ay

x2 = y

x3 = −ÿ − aẏ − y (19)

As in the previous examples, we used a 7th order Taylor series expansion, around the re-

initialization time tr, for the output signal y(t) = x2(t). The derivative calculation formulae,

presented in the first example, are still the same in this example as those in the Lorenz example.

Note that Rossler’s system also exhibits a lack of global observability when the system output

is chosen to be y = x3. Indeed, in such a case we have the following differential parametrization

of the system states

x1 =
ẏ + cy − b

y

x2 = −(ÿ + cẏ)y − (ẏ + cy − b)ẏ

y2
− y

x3 = y (20)

F.1 Simulations

For the computer simulations we have taken the following parameter values for Rossler’s chaotic

system:

a = b = 0.2, c = 5
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Figure 6 shows the computer simulation of Rossler’s system actual state trajectories and the

estimated values of the states x1 and x3. This time, the calculation interval was chosen to be of

0.1 [sec], while the small interval of time, after the calculation resetting, was set to be defined by

ǫ = 0.01 [s].
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Fig. 6. State estimates for Rossler’s system

G. State estimation for the hysteretic circuit

Consider now the following chaotic circuit treated by Carroll and Pecora [1991]:

ẋ1 = x2 + γx1 + cx3

ẋ2 = −ωx1 − δx2

ǫẋ3 = (1 − x2
3)(sx1 + x3) − βx3 (21)

where y = x2 is the output variable. The parameters γ, c, ω, β and ǫ are all perfectly known

quantities. The system is globally observable from the output y = x2.

A differential parametrization of the system states, in terms of the measured output y, is given
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by

x1 = − 1

ω
[ẏ + δy]

x2 = y

x3 =
1

c

[
− 1

ω
(ÿ + δẏ) − y +

γ

ω
(ẏ + δy)

]
(22)

G.1 Simulations

For the computer simulations we have taken the following parameter values:

γ = 0.2, c = 2, ω = 10, δ = 0.001, s = 1.667,

β = 0.001, ǫ = 0.3

Figure 7 shows the computer simulation of the hysteretic circuit actual state trajectories x1(t),

x3(t) along with the estimated trajectories of those states x1e(t) and x3e(t). This time, the calcu-

lation interval was chosen to be of 0.25 [sec], while the small interval of time, after the calculation

resetting, was set to be defined by ǫ = 0.04 [s].
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Fig. 7. State estimates for the hysteretic circuit

Note that the hysteretic circuit also exhibits a lack of global observability when the system out-

put is chosen to be y = x3. Indeed, in such a case we have the following differential parametrization
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of the system states,

x1 =
1

s

[
ǫẏ + βy

1 − y2
− y

]

x2 =
1

s

[
(ǫÿ + βẏ) (1 − y2) + 2(ǫẏ + βy)yẏ

(1 − y2)2
− ẏ

]

−γ

s

[
ǫẏ + βy

1 − y2
− y

]
− cy

x3 = y (23)

Clearly, there is a lack of observability at the values y = ±1. In fact, the hysteretic circuit state

variable y = x3 exhibits open intervals of time where y is rather close to either 1 or −1 and

it actually achieves these extreme singular values at certain instants of time within those time

intervals. The rather singular behavior of the state estimates x1 and x2, for this case, are shown

in Figure 8.
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Fig. 8. Singular state estimates for the hysteretic cicuit

III. Coding-decoding process

The previous examples point to the fact that in our algebraic state reconstruction approach,

the state variables are accurately reconstructed from the output signal alone. In the particular

case of the Lorenz and Chen’s system, a hidden signal transmission is possible through at least

one of the chaotic states (x2) of these systems. The subsequent message decoding is performed

with the help of the proposed state estimation process at the receiving end as explained below.

Suppose a secret message, m(t), is to be sent over a certain communication channel, possibly

of analog nature. For the encoding process, we add the secret message signal, m(t), say, to
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the masking state signal, x2(t), of the chaotic system. The obtained signal z(t) = x2(t) + m(t)

is sent towards the receiving end along with the output signal y(t). At the receiving end, the

transmitted output signal y(t) is used in the algebraic state estimation scheme for the accurate

reconstruction of the chaotic system state x2(t). This process results in the estimated signal x2e(t).

A reconstruction of the hidden message is immediately obtained by forming the estimated secret

message signal: me(t) = z(t) − x2e(t). The coding-decoding process is depicted in the Figure 9.

Fig. 9. Coding decoding process

In order to ensure that the addition of the message signal, m(t), to the transmitted state does not

become evident, one usually scales down the message amplitude so that its maximum amplitude

represents only a fraction of the maximum chaotic masking signal amplitude. As a rule of thumb

we use message amplitudes which are, roughly, 5 % of the masking state signal amplitude.

A. A simulation example

Using the previously described coding-decoding process, we used Chen’s chaotic system for the

secret signal encoding-transmission and subsequent decoding process through the algebraic state

estimator already discussed at length in the previous section. Figure 10 depicts the transmitted

signals: y = x1(t) and z(t) = x2(t) + m(t), as well as the recovered message me(t) compared with

the actual message signal m(t). The signal used as m(t) was set to be given by

m(t) = cos
[√

215t − 20 sin(202t)
]
sin(25t), t ∈ [1, 2] (24)

In order to assess the behavior of our coding-decoding scheme with respect to transmission

noises, we used a noisy output signal y(t) = x1(t) + ξ(t) and a noisy coding state transmission

z(t) = x2(t) + m(t) + 10ξ(t), with ξ(t) being a computer generated noisy perturbation process

taking values in the interval [−0.0025, 0.0025]. This computer generated noise is synthesized

on the basis of a rectangular (uniform) probability density function for the corresponding digital
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Fig. 10. A simulation example of encrypted message recovery

computer random number generation comprising the piecewise constant values of the perturbation

signal. The simulations are depicted in Figure 11. In this instance, we used as the secret signal

the signal m(t), given in (24), amplified by a factor of 2.
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Fig. 11. Encrypted message recovery from a noisy output and a noisy encoding state transmission
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B. Simultaneous chaotic encoding-decoding with singularity avoidance

The singularities present in the estimation of the state x3, in the Lorenz, the Chen’s examples

make the variable x3 a useless state for coded signal transmission. Similarly, in the Rossler example

and in the hysteretic circuit example, with the output variable taken to be y = x3, both variables

x1 and x2 would be rather inconvenient for encryption and transmission purposes.

A rather direct way to evade these singularities is suggested by the differential parametrization

of the states themselves. For instance, in the Lorenz and Chen’s examples, rather than using

x3 for coding purposes, we used the product signal x3(t)y(t), this masking signal could be used

to transmit and recover messages without any singularities. Indeed, let w(t) = x3(t)y(t) and

transmit the signal ζ(t) = w(t) + n(t), where n(t) is a message to be sent towards the receiving

end. In Chen’s system with y = x1, the estimation of the signal w(t) = x3(t)y(t), denoted by ŵ(t)

is simply obtained from (14) as,

ŵ(t) = −
[
1

a
(ÿ)e +

(
1 − c

a

)
(ẏ)e + (a − 2c)y

]

The message signal estimate, ne(t), is immediately recovered from the simple substraction opera-

tion:

ne(t) = ζ(t) − ŵ(t)

The fading of x3(t)y(t) near a zero crossing of y(t) does not affect the encryption, nor the decoding

processes. Figure 12 depicts the proposed singularity free encryption process.

Fig. 12. Simultaneous chaotic encoding decoding with singularity avoidance

Evidently, a similar procedure involving the product signals x1(t)y(t) and x2(t)y
2(t) can be

proposed for evading the singularities in Rossler’s system, when the output is taken to be y = x3

(see (20)). In the hysteretic circuit, when y = x3, one must take the nonlinear signals x1(t)(1 −
y2(t)) and x2(t)(1 − y2(t))2 for coding-decoding purposes (see (23)).
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B.1 Simulations

Using the previously described coding-decoding process with singularity avoidance, we used

Chen’s chaotic system for signal encoding-transmission of two secret messages m(t) and n(t). The

subsequent decoding process for the coding chaotic signal w(t) = x3(t)y(t) was carried out through

the algebraic state estimator as already discussed above. Figure (13) depicts the singularity

free signal w(t) = x3(t)y(t), along with the transmitted signal ζ(t) = x3(t)y(t) + n(t). The

figure also shows the recovered message ne(t) and the actual message n(t). In order to keep

the amplitude of the message, roughly speaking, at a 5 % of the value of the carrier signal

amplitude. The signal to be transmitted was amplified by a factor of 40, evidently, this scaling

has no bearing whatsoever over the recovery of the actual signal once its multiple value is safely

received at the decoding end and the scaling factor is known. In order to send the message signal:

sin
[√

512t + 5 sin(10t)
]
sin(15t), we used in this instance the signal:

n(t) = 40 sin
[√

512t + 5 sin(10t)
]
sin(15t), t ∈ [0.5, 1.5]

-600

-400

-200

0

200

400

600

-50

-30

-10

10

30

50

0 0.5 1 1.5 2 2.5 3

-50

-30

-10

10

30

50

ð(t) = x3(t)y(t) + n(t); w(t) = x3(t)y(t)

n(t)

ne(t)

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

Fig. 13. Chaotic encoding-decoding with singularity avoidance

IV. Conclusions

In this article, we have introduced, in the context of well known chaotic system examples, a fast

non-model based successive time derivative calculations of a measured observable output signal.
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This procedure is readily used as a tool for the state estimation process, to be carried out at

the receiving end, in a chaotic system state-based modulation, and transmission, of encrypted

secret message signals. At the receiving end, the state variables of the unperturbed transmitting

chaotic system are accurately, locally, calculated from formulae using the transmitted observable

output alone and some time convolutions. The process entitles the on-line local computation of

a sufficient number of its time derivatives and the use of a static map, guaranteed by the local

observability of the output variable, relating these output time derivatives to the system states (in

fact, in the examples here presented, only two time derivatives of such outputs are required). The

generation, at the receiving end, of the required coding system state estimates, or reconstructions,

is carried out using the (static) model based differential parametrization of the encrypting system

states in terms of the measured output variable.

An efficient computational method is proposed for the piecewise continuous on-line computation

of the first few time derivatives of the chaotic output signal along with, possibly, an automatic

resetting calculation mechanism based on an on-line evaluated integral quadratic error criterion. In

practise one can also use a fixed calculation interval of sufficiently small length. The successive time

derivative generation method is based on a combination of a truncated (polynomial) approximating

Taylor series expansion of the output signal and the use of the algebraic derivative method on

a time invariant homogeneous linear system of sufficiently high order. The estimation of the

unperturbed carrier states, at the receiving end, is then used in the traditional message decoding

scheme. The masking and recovery of the transmitted message naturally requires the transmission

of the chaotic system output signal and of the chaotic states additively perturbed by the secret

message signal. Several simulation examples were presented which depict the effectiveness of

the proposed approach. The proposed estimation scheme for one of the chaotic states, in the

Lorenz, in Chen’s system, in Rossler’s system and in the hysteretic circuit examples, suffer from

the presence of singularities at each zero crossing of the chosen system output. This is caused by

an instantaneous loss of the required output observability (a common phenomenon in nonlinear

systems where observability is definitely a local concept). A method which evades such singularities

in the calculations and still allows one to use the troublesome state in the encrypting-decoding

process is also proposed. Interestingly enough some chaotic systems were shown to have global

observability properties with linear differential parameterizations of the states.
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The algebraic derivative method for time signal derivative calculations was developed by the

authors in connection with parameter estimation and fast state estimation in linear control sys-

tems. The method, naturally derives from the framework of module theory and the implications of

non-commutative algebra in linear systems theory. We remark that such a method has also been

successfully used in fault detection problems of uncertain systems (see [Fliess et al., 2004]), signal

compression, and the output feedback control of nonlinear systems (See [Fliess & Sira-Ramı́rez,

2004]).

Potential areas of application of the proposed output signal derivative calculation scheme in state

estimation problems are: sliding mode control, nonlinear systems identification, combined non-

linear state estimation and parameter identification and hyper-chaotic signal encoding-decoding

schemes.
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