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On-line identification of systems with delayed inputs

Lotfi Belkoura, Jean-Pierre Richard, and Michel Fliess

Abstract— This communication deals with on-line identifi-
cation of systems with delayed inputs. It is based on new non-
asymptotic algebraic estimation techniques. A concrete case-
study and an application to transmission delays are discussed.
Several successful numerical simulations are provided even
with noisy data.

I. INTRODUCTION

The delay phenomenon constitutes one of the major
complexity components of networked control, since ac-
tuators, sensors, computers, field networks and wireless
communications that are involved in feedback loops un-
avoidably introduce dead-times, which might even be time-
dependent. Despite numerous advances in this field, delay
remains a theoretical and practical challenge (see, e.g.,
the survey [12]) for systems controlled over networks.
Among the numerous open problems, the on-line delay
identification is most crucial. On the one hand, various
powerful control techniques (predictors, flatness-based pre-
dictive control, finite spectrum assignments, observers,
...) may be applied if the dead-time is known. On the
other hand, the existing identification techniques for time-
delay systems (see, e.g., [11] for a modified least squares
technique, and a survey in [2]) generally suffer from
poor speed performance. This communication is a first
step towards a delay-adaptation of the fast identification
techniques that were recently proposed [9] for linear, finite-
dimensional models. Let us recall that those techniques are
not asymptotic, and do not need any statistical knowledge
of the noises corrupting the data. (See, e.g., [10] for
applications to nonlinear state estimation, [5], [6] for linear
and nonlinear diagnosis, and [8] for signal processing.
Several successful laboratory experiments have already
been performed; see, e.g., [3].) A concrete case-study
and a transmission delay are illustrating our results and
demonstrating their robustness with respect to noisy data.
See [14] for another most interesting application.

We adopt in this paper a distributional formulation
(compare with [9]) from which the parameters as well as
the input delays may be easily estimated. The identification
procedure employs elementary input signals, i.e., piecewise
constant or polynomial time functions.
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II. MATHEMATICAL FRAMEWORK

A. Notations

We recall here some standard definitions and results
from distribution theory [13] and fix the notations we
shall use in the sequel. LetΩ be an open subset ofR.
The space ofC∞-functions having compact support inΩ
is denoted byD(Ω), D ′(Ω) is the space of distributions
on Ω, i.e., the space of continuous linear functionals on
D(Ω). The complement of the largest open subset ofΩ
in which a distributionT vanishes is called the support
of T and is written suppT. Write D ′

+ (resp. E ′) the
space of distributions with support contained in[0,∞)
(resp. compact support). It is an algebra with respect
to convolution with identity δ , the Dirac distribution.
When concentrated at a point{τ}, the latter distribution
δ (t − τ) is written δτ . A distribution is said to be of
order r if it acts continuously onCr -functions but not
on Cr−1-functions. Measures and functions are of order
0. Functions are considered through the distributions they
define and are therefore indefinitely differentiable. Ify is a
continuous function except at a pointa with a finite jump
σa, its derivativedy/dt is dy/dt = ẏ+ σa δa, where ˙y is
the distribution stemming from the usual derivative ofy.
Derivation, integration and translation can be formed from
the convolution products ˙y= δ (1) ∗y,

∫

y= H ∗y, y(t−
τ) = δτ ∗ y, where δ (1) is the derivative of the Dirac
distribution, andH is the familiar Heaviside function. With
a slight abuse of notations, we shall writeHky the kth-
order iterated integration ofy and, more generally,Tk the
iterated convolution product of orderk. For S,T ∈ D ′

+,
suppS∗T ⊂ suppS+ suppT, where the sum in the right
hand side is defined by{x+ y; x ∈ suppS, y ∈ suppT}.
Finally, with no danger of confusion, we shall sometimes
denoteT(s), s∈ C, the Laplace transform ofT.

B. Background

Multiplication of two distributions (sayα and T) is
not always defined. This operation makes however sense
if one of the two terms is a smooth function. Several
properties can be derived from such products. The most
important ones here are given bellow. In particular, the
next Theorem is the key result from which most of the
parameters (including the delays) can be estimated.

Theorem 1:If T has a compact supportK and is of
finite orderm, α T = 0 wheneverα and all its derivatives
of order≤ m vanish onK [13].
The following examples illustrate this statement whenα is
a polynomial function, andT a singular distribution. Note



that, in forming the productα T, the delayτ involved in
the argumentT(t − τ) now appears also as a coefficient.

t δ = 0,

(t − τ)δτ = 0,

t2(t − τ)(aδ (1) +bδτ) = 0

The usual Leibniz rule(α T)′ = α ′T +α T ′ remains valid.
Thanks to Theorem 1 the statement for the productt δ can
be extended tot l δ (n) = 0 for l > n, and

t l δ (n) = (−1)l n!
(n− l)!

δ (n−l), l ≤ n (1)

We shall make use of another property involving both
multiplication by tn and the convolution product, in case
one of the two distributions (Sor T) is of compact support:

tn (S∗T) =
n

∑
k=0

Ck
n (tk S)∗ (tn−k T) (2)

The Ck
n are the familiar binomial coefficients. Combining

rules (1) and (2) withS= δ (p) and T = y allows us to
transform terms of the formtny(p) into linear derivatives
sums of productstk y. Settingzi = t i y yields

t3y(2) = t3 (δ (2) ∗y) = −6z1 +6z(1)
2 −z(2)

3 (3)

Note that integrating twice this expression by considering
H2t3y(2) results in integration by parts formulae.

III. APPLICATION

A. Identification

Consider a first order system with a delayed input1:

ẏ+ay= y(0)δ + γ0H +bu(t − τ) (4)

whereγ0 is a constant perturbation,a, b, andτ are constant
parameters. The coefficienta is assumed to be known for
the moment. Consider also a step inputu = u0H. A first
order derivation yields

ÿ+aẏ = ϕ0 + γ0 δ +bu0 δτ (5)

where ϕ0 = (ẏ(0) + ay(0))δ + y(0)δ (1), of order 1 and
support{0}, contains the contributions of the initial con-
ditions. By Theorem 1, multiplication by a functionα
such thatα(0) = α ′(0) = 0, α(τ) = 0 yields interesting
simplifications. Setα(t) = t3− τ t2:

t3 [ÿ+aẏ] = τ t2 [ÿ+aẏ] (6)

bu0 t3δτ = bu0 τ t2δτ (7)

The delay τ becomes available afterk ≥ 1 successive
integrations. More precisely, since suppHkδτ ⊂ (τ,∞),
equation (7) shows that all the obtained functions will van-
ish on(0,τ) and the delay is consequently not identifiable
on this interval. Conversely, those functions being nonzero

1Such systems, where the delays only appear in the control variables,
are most common in practice. See [7] for their theoretical background,
and their control.

for all t > τ, the delay is everywhere identifiable on(τ,∞).
We therefore obtain from (6):

τ =
Hk(w0 +aw3)

Hk(w1 +aw2)
, t > τ (8)

where, by virtue of equation (2) and recalling the notation
zi = t i y of the previous Section, we set:

w0 = t3y(2) = −6z1 +6z(1)
2 −z(2)

3

w1 = t2y(2) = −2z0 +4z(1)
1 −z(2)

2

w2 = t2y(1) = 2z1−z(1)
2

w3 = t3y(1) = 3z2−z(1)
3

These coefficients show thatk≥ 2 integrations are avoiding
any derivation in the delay identification. Figure 1 is
showing a partial realization scheme of the terms involved
in (8). See Figure 2 for a numerical simulation withk = 2
integrations, and wherey(0) = 0.3, a = 2, τ = 0.6, γ0 =
2, b = 1, u0 = 1.
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Fig. 1. Realization scheme ofHkw0

Due to the non identifiability on(0,τ), the delayτ is set to
zero until the numerator or denominator in the right hand
side of (8) reaches a significant nonzero value.
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Fig. 2. Delay identification from (8)

The algorithm given in (8) only requires the values of
a and of the outputy. If a is also unknown, the same
approach may be utilized for a simultaneous identification.
The following relation is easily derived from (6):

τ(Hkw1)+aτ(Hkw2)−a(Hkw3) = Hkw0 (9)

A linear system with unknown parameters(τ,aτ,a) is
obtained by using different integration orders
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The resulting numerical simulations are shown in Figure 3.
For the previous identifiability reason, the obtained linear
system may be not consistent fort < τ. Moreover, and
unlike the single delay case, a local loss of identifiability
(see [1]) may occur fort > τ as suggested in Figure 3 for
t ≈ 1.5s.
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Fig. 3. Simultaneous identification from (9)

Multiplying (5) by otherC∞-functions permit the esti-
mation of other parameter combinations. By setting, for
instance,α(t) = t(t − τ) and by using the same previous
techniques we obtain

Hkt(ÿ+aẏ)τ +Hk τy(0) = Hkt2(ÿ+aẏ)

from which both delay and initial condition may be identi-
fied. The only coefficient for which the explicit value ofτ
is required is its associated parameterb. Finally, due to the
fast convergence of the algorithms, we may also consider a
separate procedure in which the undelayed terms are firstly
identified and used again for the delay identification.

Remark 1: In case of step inputs with a time-varying
delayτ(t), the algorithm (8) may still converge to a fixed
value. Note that in this case, the contribution of the input
in (4) may be writtenbu0H ◦ϕ, ϕ(t) = t − τ(t), where◦
denotes the composition of functions. Ifϕ(t0) = 0, ϕ ′(t0) 6=
0, and provided some smoothness assumptions onτ(t), we
obtain

(H ◦ϕ)′ = ϕ ′H ′ ◦ϕ = ϕ ′ δ ◦ϕ = (ϕ ′/ϕ ′(t0))δt0 = δt0

The algorithm is converging tot0. Although step inputs
are clearly inadequate for the identification of time-varying
delays, constant delays are, in some sense, particular cases
of the present approach.

B. Robustness

As mentioned in Section II-B, iterated convolutions
using Hk result in nothing but integration by part for-
mulae. With noisy data, integration withH(s) = 1/s may
be replaced by any strictly proper transfer function and
particularly by low pass filters such asT(s) = 1/(γs+

1). The following simulations show favorable robustness
properties of the proposed delay identifier with respect to
noise corrupted data. The input and output perturbation
noises powers were taken to be of amplitude 2×10−6 and
4×10−6 respectively, whileγ = 2 was used for the filter.
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Fig. 4. Delay identification with noise in the data

Remark 2:See [4] for a nonstandard analysis of noises
which explains the above robustness results.

Remark 3:Another possible explanation of the conver-
gence may be deduced via the power spectrum of the
additional terms that appear in (8) when the outputy is
replaced by a measurementm= y+ν . The contribution of
the noiseν is made through terms of the formTk((t pν)(q))
for which the power spectrum is given by

|T( jω)|k ( jω)q dpφνν(ω)

dω p .

If the noise spectrumφνν(ω) is assumed to be constant on
a sufficiently large strip−L < ω < L (which is the case
for white noise approximations), and by virtue of the strict
causality obtained withk > q, these quantities, and hence
the noise effects remain negligible.

IV. APPLICATION TO TRANSMISSION DELAYS

The input delay of the previous Section has been es-
timated because it also corresponded to the commutation
instant of the right hand sideγ0H + bu0H(t − τ) of (4).
Based on this observation, our techniques may be extended
to a possible infinite numberK of delays by means of one
of the three following approaches:

1) A multiplication with the C∞-function t2(t −
h1) · · ·(t −hK), if K is finite,

2) a recursive identification,
3) a local identification if one assumes a lower bound

for two successive delays, i.e.,hk+1−hk > ∆.

The first case may however lead to a large size linear
system for which the delays remain unknown untilt > hK ,
while error propagations may result from the second case.
We next consider the next case.



Assume that a discrete reference signal{uk} with fixed
period T is sent from a Master to a continuous process
(Slave) for which each data is hold until the next step. Due
to the transmission line, the actual input of the process will
consist in a piecewise constant signal of the form

ua =
∞

∑
k=0

ukχk

whereχk denotes the characteristic function of the interval
[kT + τk,(k+ 1)T + τk+1]. Based on the output observa-
tions, we propose an on-line identification scheme of the
time-instantskT+τk. By this way, if the periodT is known
and if Master and Slave share the same time origin, then
the transmission delaysτk become available on-line from
the only measurements ofy. For simplicity reasons, the
process under consideration consists in a second order
linear system

ÿ+a1 ẏ+a0y = ϕ0 + γ0H +bua

whereγ0H is a constant perturbation, andϕ0 (of order 1
and support{0}) contains the initial conditions. Following
the previous section, derivation and multiplication byt3(t−
λ ) yields

t3(t −λ )(y(3) +a1y(2) +a0y(1)) = b
∞

∑
k=0

σk(h
4
k −λh3

k)δhk

(10)
where we have denotedhk = kT+ τk andσk the jumps of
ua at hk. Using the assumptionhk+1 − hk > ∆, a ”local”
integration is now considered withT(s) = (1−e−∆s/3)/s
instead ofH(s) = 1/s. Here, suppT ⊂ (0,∆/3) and the
coefficient 3 also represents the number of integrations
required in order to ensure properness of the identification
scheme. This results in

T3t3(t −λ )(y(3) +a1y(2) +a0y(1)) , N−λ D

where, from the right hand side of (10), and by virtue of
the support of a convolution product given in Section II-A,
one has

suppT3δhk ⊂ (hk,hk +∆),

supp(N,D) ⊂ {(hk,hk +∆) | k = 1,2, · · ·}

On each of the latter intervals, the commutation instant
hk, and hence the delayτk are therefore obtained from the
relation

λ = hk = kT + τk = N/D

As in the previous section, terms of the formTkt l y(q)

involved in the expressions ofN and D are implemented
by considering first the development oft l y(q) described in
(2) and (3) and then the integration withTk. A simulation
result is given in Figure 5 with the parametersa0 = 2,
a1 = 1, b = 1, y(0) = 1.3, ẏ(0) = −2.3, T = 2 and the
delays {τk} = {0.3,0.5,0.2,0.3}. Note the same study
could be conducted with unknown parametersa0 and a1

as well.
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Fig. 5. Trajectories and delays identification

V. CONCLUSION

As in [5], [6], [8], [9], [10], the high speed convergence
of our algorithms will permit to treat simultaneously the
on-line identification and control of time-delay systems.
Identifiability issues, joint estimations of delays and coef-
ficients, multivariable systems with partial state measure-
ments as well as the extension to discrete-time processes
are under active investigations.
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