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Abstract

A prerequisite to the design of future Advanced Driver Assistance Systems for cars is
a sensing system providing all the information required for high-level driving assistance
tasks. Carsense is a European project whose purpose is to develop such a new sensing
system. It will combine different sensors (laser, radar and video) and will rely on the fusion
of the information coming from these sensors in order to achieve better accuracy, robustness
and an increase of the information content. This paper demonstrates the interest of using
probabilistic reasoning techniques to address this challenging multi-sensor data fusion
problem. The approach used is called Bayesian Programming. It is a general approach
based on an implementation of the Bayesian theory. It was introduced first to design robot
control programs but its scope of application is much broader and it can be used whenever
one has to deal with problems involving uncertain or incomplete knowledge.
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Abstract— A prerequisite to the design of future Advanced
Driver Assistance Systems for cars is a sensing system
providing all the information required for high-level driving
assistance tasks. Carsense is a European project whose pur-
pose is to develop such a new sensing system. It will combine
different sensors (laser, radar and video) and will rely on the
fusion of the information coming from these sensors in order
to achieve better accuracy, robustness and an increase of the
information content. This paper demonstrates the interest
of using probabilistic reasoning techniques to address this
challenging multi-sensor data fusion problem. The approach
used is called Bayesian Programming. It is a general approach
based on an implementation of the Bayesian theory. It was
introduced first to design robot confrol programs but its
scope of application is much broader and it can be used
whenever one has to deal with problems involving uncertain
or incomplete knowledge.

I. INTRODUCTION

Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate
the speed of the car while ensuring collision avoidance
with the vehicle in front. ACC systems were introduced
on the automotive market in 1999. Since then, surveys and
experimental assessments have demonstrated the interest
for this kind of systems. They are the first step towards
the design of future Advanced Driver Assistance Systems
(ADAS) that should help the driver in increasingly com-
plex driving tasks. Today’s commercially available ACC
systems are based on a single range sensor (either a radar
or a laser sensor), and their use is pretty much limited
to motorways or urban expressways without crossings.
The traffic situations encountered are rather simple and
attention can be focused on a few, well defined detected
objects (cars and trucks). Nonetheless, even in these
relatively simple situations, these systems show a number
of limitations: they are not very good at handling fixed
obstacles and may generate false alarms. Also, in some
’cut-in’ situations, ie when the insertion of an other vehicle
in the detection beam is too close to the vehicle, they may
be taken by surprise.

For these systems to be more widely used, it is
necessary to extend their range of operation to more
complex situations in dense traffic environments around
or inside urban areas. There, traffic is characterized by
lower speeds, tight curves, traffic signs, crossings and

“fragile” traffic participants such as motorbikes, bicycles
or pedestrians. Traffic situations become very complex and
it is more difficult to reliably operate an ADAS. This
is mostly due to the fact that currently available sensor
systems for monitoring the driving environment provide
only a small part of the information required for higher
level driving tasks. The way to solve this problem is
to improve existing sensors like radar, laser and image
processing as well as to fuse the information of these
different sensor systems with appropriate scene models in
order to achieve better accuracy, redundancy, robustness,
and an increase of the information content.

Carsense is a European project (<http://www.
carsense.org>) whose purpose is to develop a new
sensing system for ADAS. It will combine several types
of sensors (video, laser and radar). The focus of Carsense
is on: (a) the improvement of the existing sensors, (b) the
design of an on-board multi-sensor architecture, and (c)
the fusion of the sensors’ output.

The Sharp group at Inria Rhone-Alpes contributes to
Carsense on the fusion aspects. Our goal is to demonstrate
the interest of using Bayesian techniques, ie based on
probabilistic reasoning, to address multi-sensor data fusion
problems such as the Carsense one. In recent years,
the probabilistic framework has become a key paradigm
in Robotics. Probabilistic approaches have been used to
address a wide array of robotic problems, such as CAD
modeling, map building, localization, planning [1], [2],
[3], [4]. The approach we intend to use is a general one, it
is based on an implementation of the Bayesian theory [5].
This novel approach called Bayesian Programming was
introduced first to design robot control programs [3], but
its scope of application is much broader and it can be
used whenever one has to deal with problems involving
uncertain or incomplete knowledge.

The paper is organized as follows: §II overviews multi-
sensor data fusion while §III presents Bayesian Pro-
gramming (BP) in general. The section §IV introduces
the Bayes filters, a classical approach to perform target
tracking, using BP. Then the section §V presents the
application of Bayes filters and BP to Carsense related
problems.




II. MULTI-SENSOR DATA FUSION

In principle, fusion of multi-sensor data provides sig-
nificant advantages over single source data. In addition
to the statistical advantage gained by combining same-
source data (obtaining an improved estimate of a phys-
ical phenomena via redundant observations), the use of
multiple types of sensors may increase the accuracy with
which a phenomenon can be observed and characterized.
Applications for multi-sensor data fusion are widespread,
both in military and civilian areas. Ref. [6] provides an
overview of multi-sensor data fusion technology and its
applications.

The fusion problem addressed in Carsense is basically
a Target Tracking problem. The objective is to collect
observations, ie data from multiple sensors, on one or
more potential fargets of interest and then to estimate
target characteristics such as position, velocity, etc. Be-
cause of the presence of several targets of interest in the
environment, the Carsense problem falls into the Multiple-
Target Tracking category [7].

Our primary concern within Carsense is to estimate the
targets’ position and velocity. It is a classical statistical
estimation problem. Modern techniques involve the use
of sequential estimation techniques such as the Kalman
Filter or its variants. Numerous mathematical methods
exist to perform coordinate transformation, observation-
to-observation or observation-to-track association [8], [9],
[10]. A complete and state-of-the-art review of the track-
ing methods with one or more sensors can be found in [7].
Challenges in this area involve situations with a large
number of rapidly maneuvering targets, which is precisely
the case in the traffic scenarios considered in Carsense.

III. BAYESIAN PROGRAMMING

Any model of a real phenomenon is inherently in-
complete. There are always some hidden variables, not
taken into account in the model that influence the phe-
nomenon. The effect of these hidden variables is that the
model and the phenomenon never behave exactly the same
way. Furthermore, perception and control are inherently
uncertain. Uncertainty arises from sensor limitation or
noise. Rational reasoning with incomplete and uncertain
information is quite a challenge. Bayesian Programming
addresses this challenge relying upon a well established
formal theory: the probability theory [5].

The usual notion of logical proposition (either true or
false) is the first key concept of probabilistic reasoning.
Logical operators can be used to derive new propositions
(conjunction, disjunction, negation). Discrete variable is
the second concept that is needed: it is a set of logical
proposition that are exhaustive and mutually exclusive (at
least one is true, only one is true). Discrete variables can
be combined too (conjunction). To deal with uncertainty,

probabilities are attached to propositions, and to manipu-
Jate probabilities, usual inference rules are used:

o Conjunction rule: P(X V) = P(X)P(Y | X)

« Normalization rule: y, P(X) =1
with X and Y discrete variables and P a probability.

In this framework, a Bayesian Program is made up of
two parts: a description and a question.

The description can be viewed as a knowledge base con-
taining the a priori information available on the problem
at hand. It is essentially a joint probability distribution.
The description is made up of three components: 1) A
set of relevant variables on which the joint distribution is
defined. Typically, variables are motor, sensory or internal.
2) A decomposition of the joint distribution as a product
of simpler terms. It is obtained by applying Bayesian rules
and taking advantages of the conditional independencies
that may exists between variables. 3) The parametric
forms assigned to each of the terms appearing in the
decomposition (they are required to compute the joint
distribution).

Given a distribution, it is possible to ask questions.
Questions are obtained first by partitioning the set of
variables into three sets: (1) S: the searched variables,
(2) K: the known variables, and (3) F: the free variables.
A question is then defined as the distribution:

P(S | K) o))

Given the description, it is always possible to answer
a question, ie to compute the probability distribution
P(S | K). To do so, the following general inference is
used:
YrP(S FK)
P(K)

1
7 ZF P(S F K) 2

P(S|K) =

where Z is a normalization term.

As such, the inference is computationally expensive
(Bayesian inference in general has been shown to be NP-
Hard [11]). A symbolic simplification phase can reduce
drastically the number of sums necessary to compute
a given distribution. However the decomposition of the
preliminary knowledge, which express the conditional
independencies of variables, still plays a crucial role in
keeping the computation tractable.

We are currently developing an Application Program-
ming Interface, which is very close to mathematical lan-
guage, in order to express Bayesian programs. An infer-
ence engine has been implemented to automate Bayesian
inference [3]. It operates in two stages: a) a symbolic
simplification stage that permits to reduce the complexity
of the probability distribution to be computed, and b) a
numeric stage that actually computes the distribution.




IV. BAYES FILTER

Bayes filters {12] address the general problem of esti-
mating the state sequence 2, k € IN of a target given
by:

T = fo(Tr—1,Up—1,Wk), 3)

where fi, is a a possibly nonlinear transition function,
Ug—1 1S a “control” variable (eg speed or acceleration)
for the sensor which allows to estimate its ego-movement
between time k — 1 and time k, and w; is the process
noise. This equation describes a Markov process of order
one. The objective of tracking is to recursively estimate
xy from the sensor measurements:

2, = hg (g, vr). “)

where hy, is a possibly nonlinear function and vy is the
measurement noise. This function models the uncertainty
of the measurement 2 of the state z of a detected target.

The goal of the tracking is to recursively estimate
the probability distribution P(Xy | Zi), known as the
posterior distribution. In general, this estimation is done
in two stages: prediction and estimation. The goal of
prediction is to compute an a priori estimate of the
target’s state known as the prior distribution. The goal of
estimation is to compute the posterior distribution, using
this a priori and the measurement of the sensor.

Exact solutions to this recursive propagation of the
posterior density do exist in a restrictive set of cases.
In particular, the Kalman filter [13], [14] is an optimal
solution when the functions fj and hy are linear and the
noises wy, and v are Gaussian. But in general, solutions
cannot be determined analytically.

In the following, the two stages, prediction and estima-
tion, of Bayes filters will be presented using the formalism
introduced in §III.

A. Prediction stage.

The goal of this stage is to estimate an a priori on
the target’s state distribution using the latest estimation of
this state, and the Markov model (3). The variables that
are relevant here are:

e Xj: the state of the target at time k;

o X 1: the state of the target at time k& — 1;

o Uj_1: the “control” input of the sensor at time k — 1.
For example, it could be a measurement of the instan-
taneous velocity at time k& — 1.

The following decomposition of the joint distribution
determined by these three variables can be obtained:

P(Xp X 1Up—1) =P (Xp—1)P(Up—1)P(Xp| X-1Us-1)-

(5)
Parametric forms must be assigned to each of the terms
appearing in the decomposition:

o P(Xj_1) represents the information on the target’s
state at time k — 1. When available, the posterior
distribution at time k — 1 is used to specify P(Xg_1).

e P(U_1) represents the information on the control of -
the sensor.

o P(Xy|Xr—1 Uk—1) is specified by (3).

Now the description is complete and question can be
asked. Since we want an estimate of the target’s state, we
ask the inference engine to answer the question:

P(Xs | Up1)- ®)

Following the general inference scheme given by (2),
the result of the inference is:

P(Xp|Up-1) = > P(Xg Xi—1 Up—1)
Xp—1

=P(Ui1) > P(Xp-1)P(Xe|Xi-1 Ug—1)-
X1

Due to the summation on the variable X_1, the uncer-
tainties on the target’s state at time k — 1 are propagated
to the prior distribution.

B. Estimation Stage

The goal of this stage is to estimate the posterior
distribution on the target’s state, using the current sensor
observation. The variables relevant here are:

e X,: the target’s state at time k.
» Z;: the sensor observation at time k.

We can write the following decomposition of the joint
distribution determined by this two variables:

P(Xy Zi) = P(Xg)P(Zk | Xk)- Q)

Parametric forms must be assigned to each of the terms
appearing in the decomposition:

e P(X}) represents the a priori information on the
target’s state at time k. Thus the prior distribution is
used to specify P(X). If this prior distribution is
not available (for the first estimation for example), a
uniform distribution could be selected.

o P(Z; | Xi) represents the response of the sensor to
a target located at Xy, given by (4).

Now the description is complete and question can be
asked. As we want an estimation of the target’s state, we
ask the inference engine to answer the question:

P(Xy|Zy). ®)

This formulation of Bayes filters is valid for one target
and one sensor. The next section will extend this formu-
lation so as to perform tracking of multiple targets using
multiple sensors.




V. APPLICATION TO CARSENSE

The problem addressed in Carsense is basically a Mul-
tiple Sensor Multiple target Tracking problem: given a
set of sensor information on the driving environment,
our concern is to determine the actual set of targets
of interest and to estimate some of their characteristics,
mainly position and velocity.

In this section, we model the multiple target tracking
problem as a general Bayes filter problem. During the es-
timation stage, an observation-to-observation association
is required. The goal of this association is to partition
the set of observations provided by the different sensors
into set of observations produced by the same source
target. In [15], results on this association were presented.
In particular, it has been shown that this association
could be done simultaneously with the estimation step.
The posterior distribution is then multi-modal, each peak
corresponding to a target in the environment.

In [15], the assumption was made that the differ-
ent sensors were synchronous. This hypothesis can’t be
made in the Carsense frameworks since all sensors works
asynchronously. In highly dynamic environments, such
as urban or suburban roads, this timing error can’t be
neglected.

In this section, we extend our association-estimation
mechanism to the asynchronous case. The time difference
between the sensor measurements and the target’s state
estimation are taken into account directly in the sensor
model.

A. Sensor Modeling

Sensor model such as the one we have introduced in
[15] is valid if the measurement Zy, and the target’s state
X}, correspond to the same instant k. Here we consider a
sensor measurement Z;, and the target’s state X;,, with
to > t1. tg —t1 is noted At. We introduce a new variable
X, , the target’s state a time ¢. The “control” of the sensor
at time %o, U, is also considered.

The following decomposition of the joint distribution
determined by these variables can be obtained:

ID(Zt1 th Xto At Uto) = P(At)P(UtO)P(XtO)
P(Xt1 IXto At Uio)P(Zh IXt1)

Parametric forms must be assigned to each of the terms
appearing in the decomposition:

o P(At), P(U,), P(Xy,) could be chosen as uniform
distributions.

o P(X;, | X3, At Uy,) is set according to a dynamic
model including the target movement and the ego-
movement of the sensor. Note that this model is not
exactly the same as the one defined by (3), because
here tg < t1.

o P(Z; | X:,) is the sensor model defined in [15],
including the probability detection.

Now the description is complete and questions can be |

asked. Since we want to estimate the sensor response, we
ask the inference engine:

P(Z, | Xeo AtUy,) &)

The estimation stage has to be re-written to take into
account this new sensor model.

B. Estimation Stage

We want to estimate the posterior distribution at time %o,
using the available sensors observations. We consider the
case where we have a set of S sensors S;, each returning
O* observations.

The variables relevant here are:

o X,: the state of the target of interest at time #g.

o Z]: the j* observation of the sensor S;. To simplify
the notation, the timestamp is not precised.

o Atl: the difference of time between Z; and to.

e Uy,: the “control” of the sensor at time ¢p.

e M;: it is a matching variable that indicates wich
observation of the sensor S; corresponds to the target
of interest. A special case is added to the OF values
that M; can take, which means that no observation of
the sensor S; correspond to the target of interest.

Before proceeding to the decomposition of the joint dis-
tribution determined by these variables, a few reasonable
assumptions are made:

¢ The sensors’ observations are conditionally indepen-
dent wrt the target’s position and the corresponding
matching variable:

P(Z}|Z}, X4, A8 Uy MsM,,) = P(Z3| X3, At Uy, M3);

e The matching variables 3,4 =1...S are condition-
ally independent wrt the target’s position:

P(M‘i ' Xto Mn) =P(Mi | Xto);

o The observations of a given sensor S; are conditionally
independent wrt the target’s position.

P(Z} | Xy A Uy, Zi Mi) = P(Z0 | Xy AE M;).

Thanks to these assumptions and using the Bayesian
inference rules, we can write the following decomposition
of the joint distribution:

P(Xp, ZY ... 29" My ... MsAt: ... AQ° Uy,) =

S (P(M;|Xy,)
P(30) P(Ur) H(H;?;1 P(At)P(Z]| X1, Usy AY) M,.))

i=1
Finally, parametric forms are assigned to each of the
terms appearing in the decomposition:




o P(X:,) represents the a priori information on the
different targets’ positions. Thus the prior distribution
is used to specify it.

e P(U,) represents the information on the control of
the sensor.

o P(M; | X,,) is uniform since knowing the target’s
state only does not suffice to determine M;.

e The form of P(Z]| X, U, At] M;) depends on the
value of M;:

o If M; = j then Z] is an observation of the tar-
get of interest by the sensor S;, and the form of
P(Z} ;| Xto Usy At} M;) is the sensor model defined
by (9). ,

o If M; # j, Z] is not an observation of the target of
interest. The distribution is uniform.

Now the description is complete and questions can be
asked. To evaluate the posterior distribution, we just have
to ask the inference engine to solve the question

P(Xy, | 22 ... 28° At ... A2 UL, (10)

C. Experimental Results

To test the complete algorithm of tracking, we have used
the platform of simulation of data fusion and perception
that was developed at the LIVIC! [16]. This platform can
simulate a car and its environment. In our experiments,
the car was equipped with two sensors working asyn-
chronously and with different fields of view (thus a target
could be seen by only one sensor).

Fig. 1 shows a short sequence of a complete tracking
involving and four targets. The state of a target is given by
its position (distance p and heading ). The middle column
depicts a top view of the situation. The left column shows
the prior distribution. Finally the right column shows the
posterior distribution, ie the answer to the question:

. T . ; — 1
Plp 616165 A A6 AR TY), L 0 a

We suppose that at time ¢ = 1.6s, no prediction step is
available. Three targets have been detected by the two
sensors: two by the sensor S;, and one by the sensor
S5. Then the posterior distribution at ¢ = 1.6s presents
three modes. These three modes are present in the prior
distribution at £ = 1.7s. At this time, the second sensor
detects a fourth target. So a fourth mode appears in the
posterior distribution. But its probability is smaller than
the one associated to the previously detected targets. At
t = 1.9s, the first sensor have lost one target. Due to
the prediction step, a mode still appears in the posterior
distribution, but its probability has fallen. As this target
is still not detected at ¢ = 2.0, the mode disappear in the
posterior distribution.

Thttp://www.inrets.fr/ur/livic/

This short sequence illustrates how new object’s ap-
pearing and disappearing are treated by the Bayes filter.
Nevertheless, precautions have to be taken, because the
optimization algorithms requested for the computation of '
the distributions could have effects on these distributions.

VI. CONCLUSION

This paper has addressed the problem of multi-sensor
data fusion with a new programming technique based
on Bayesian inference. This method, called Bayesian
Programming, has been illustrated in an automotive appli-
cation. Several examples were given in order to emphasize
the main advantages of the approach, namely: a) a clear
and well-defined mathematical background. b) a generic
and uniform way to formulate problems. c) the importance
of explicitly modeling key problem features (such as the
sensors’ performance in our examples). Future develop-
ments will include: a) experiments with real sensor data:
so far, the experiments have been conducted with simu-
lated sensor data. The sensors mounted on the Carsense
test-bed vehicle will be used (laser, radar and video sen-
sors.) b) higher-level sensor fusion: we would like to take
advantage of the generality and the expressive power of
Bayesian Programming in order to go beyond the ‘simple’
estimation of the targets’ position and velocity, to take
into account additional observations, eg the shape/type of
a target or the lane within which it is moving, so as to
perform target classification in terms of “dangerous or
not”, and if possible, in terms of “cars, trucks, cycles,
pedestrians, etc.”
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