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Multi-Sensor Data Fusion Using Bayesian

Programming : an Automotive Application

C. Coué, Th. Fraichard, P. Bessiére and E. Mazer
Inria Rhone-Alpes & Grovir-CNRS
http://www.inrialpes.fr/sharp

Abstract— A prerequisite to the design of future Advanced
Driver Assistance Systems for cars is a sensing system pro-
viding all the information required for high-level driving as-
sistance tasks. Carsense is a European project whose pur-
pose is to develop such a new sensing system. It will combine
different sensors (laser, radar and video) and will rely on the
fusion of the information coming from these sensors in or-
der to achieve better accuracy, robustness and an increase
of the information content. This paper demonstrates the in-
terest of using probabilistic reasoning techniques to address
this challenging multi-sensor data fusion problem. The ap-
proach used is called Bayesian Programming. It is a general
approach based on an implementation of the Bayesian the-
ory. It was introduced first to design robot control programs
but its scope of application is much broader and it can be
used whenever one has to deal with problems involving un-
certain or incomplete knowledge.

I. INTRODUCTION

Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the
speed of the car while ensuring collision avoidance with
the vehicle in front. ACC systems were introduced on the
automotive market in 1999. Since then, surveys and ex-
perimental assessments have demonstrated the interest for
this kind of systems. They are the first step towards the de-
sign of future Advanced Driver Assistance Systems (ADAS)
that should help the driver in increasingly complex driving
tasks. Today’s commercially available ACC systems are
based on a single range sensor (either a radar or a laser
sensor), and their use is pretty much limited to motorways
or urban expressways without crossings. The traffic situa-
tions encountered are rather simple and attention can be
focused on a few, well defined detected objects (cars and
trucks). Nonetheless, even in these relatively simple situa-
tions, these systems show a number of limitations: they are
not very good at handling fixed obstacles and may gener-
ate false alarms. Also, in some ’cut-in’ situations, i.e. when
the insertion of an other vehicle in the detection beam is
too close to the vehicle, they may be taken by surprise.

For these systems to be more widely used, it is necessary
to extend their range of operation to more complex situa-
tions in dense traffic environments around or inside urban
areas. There, traffic is characterised by lower speeds, tight
curves, trafic signs, crossings and “fragile” traffic partic-
ipants such as motorbikes, bicycles or pedestrians. Traf-
fic situations become very complex and it is more difficult
to reliably operate an ADAS. This is mostly due to the
fact that currently available sensor systems for monitoring
the driving environment provide only a small part of the

information required for higher level driving tasks. The
way to solve this problem is to improve existing sensors
like radar, laser and image processing as well as to fuse
the information of these different sensor systems with ap-
propriate scene models in order to achieve better accuracy,
redundancy, robustness, and an increase of the information
content.

Carsense is a European project! whose purpose is to de-
velop a new sensing system for ADAS. It will combine sev-
eral types of sensors (video, laser and radar). The focus of
Carsense is on: (a) the improvement of the existing sensors,
(b) the design of an on-board multi-sensor architecture, and
(c) the fusion of the sensors’ output.

The Sharp group at Inria Rhone-Alpes contributes to
Carsense on the fusion aspects. Our goal is to demon-
strate the interest of using Bayesian techniques, i.e. based
on probabilistic reasoning, to address multi-sensor data fu-
sion problems such as the Carsense one. In recent years,
the probabilistic framework has become a key paradigm
in Robotics. Probabilistic approaches have been used to
address a wide array of robotic problems, such as CAD
modelling, map building, localisation, planning [1], [2], [3],
[4]. The approach we intend to use is a general one, it
is based on an implementation of the Bayesian theory [5].
This novel approach called Bayesian Programming was in-
troduced first to design robot control programs [3], but its
scope of application is much broader and it can be used
whenever one has to deal with problems involving uncer-
tain or incomplete knowledge.

The paper is organised as follows: §II overviews multi-
sensor data fusion while §ITI presents Bayesian Program-
ming (BP) in general. The next two sections focus on the
Carsense context: first, §IV describes how to model the
sensors in the Bayesian framework. Then §V presents the
application of BP to different Carsense related problems.

II. MULTI-SENSOR DATA FUSION

In principle, fusion of multi-sensor data provides signif-
icant advantages over single source data. In addition to
the statistical advantage gained by combining same-source
data (obtaining an improved estimate of a physical phe-
nomena via redundant observations), the use of multiple
types of sensors may increase the accuracy with which a
phenomenon can be observed and characterised. Applica-
tions for multi-sensor data fusion are widespread, both in

!Project IST-1999-12224 “Sensing of Car Environment at Low
Speed Driving” <http://wuw.carsense.org>.




military and civilian areas. Ref. [6] provides an overview of
multi-sensor data fusion technology and its applications.

The fusion problem addressed in Carsense is basically a
Target Tracking problem. The objective is to collect ob-
servations, t.e. data from multiple sensors, on one or more
potential targets of interest and then to partition the ob-
servations into tracks, i.e. sets of observations produced by
the same target. Once this association is done, estimation
can take place: target characteristics such as position, ve-
locity, etc. are computed for each track. Because of the
presence of several targets of interest in the environment,
the Carsense problem falls into the Multiple- Target Track-
ing category [7].

Our primary concern within Carsense is to estimate the
targets’ position and velocity. It is a classical statistical
estimation problem. Modern techniques involve the use
of sequential estimation techniques such as the Kalman
Filter or its variants. Numerous mathematical methods
exist to perform coordinate transformation, observation-
to-observation or observation-to-track association [8], [9],
[10]). A complete and state-of-the-art review of the track-
ing methods with one or more sensors can be found in [7].
Challenges in this area involve situations with a large num-
ber of rapidly manoeuvring targets, which is precisely the
case in the traffic scenarios considered in Carsense.

III. BAYESIAN PROGRAMMING

Any model of a real phenomenon is inherently incom-
plete. There are always some hidden variables, not taken
into account in the model that influence the phenomenon.
The effect of these hidden variables is that the model and
the phenomenon never behave exactly the same way. Fur-
thermore, perception and control are inherently uncertain.
Uncertainty arises from sensor limitation or noise. Ratio-
nal reasoning with incomplete and uncertain information
is quite a challenge. Bayesian Programming addresses this
challenge relying upon a well established formal theory: the
probability theory [5].

The usual notion of logical proposition (either true or
false) is the first key concept of probabilistic reasoning.
Logical operators can be used to derive new propositions
(conjunction, disjunction, negation). Discrete variable is
the second concept that is needed: it is a set of logical
proposition that are exhaustive and mutually exclusive (at
least one is true, only one is true). Discrete variables can
be combined too (conjunction). To deal with uncertainty,
probabilities are attached to propositions, and to manipu-
late probabilities, usual inference rules are used:

« Conjunction rule:
P(XY)=P(X)P(Y | X) = P(Y)P(X | Y)
» Normalisation rule:
Z P(X)=1
X

whit X and Y discrete variables and P a probability.

In this framework, a Bayesian Program is made up of
two parts: a description and a gquestion.

The description can be viewed as a knowledge base con-
taining the a priori information available on the problem

at hand. It is essentially a joint probability distribution.
The description is made up of three components:

o A set of relevant variables on which the joint distribu-
tion is defined. Typically, variables are motor, sensory or
internal.

o A decomposition of the joint distribution as a product of
simpler terms. It is obtained by applying Bayesian rules
and taking advantages of the conditional independencies
that may exists between variables.

e The parametric forms assigned to each of the terms ap-
pearing in the decomposition (they are required to compute
the joint distribution).

Given a distribution, it is possible to ask questions.
Questions are obtained first by partitioning the set of vari-
ables into three sets: (1) Searched: the searched variables,
(2) Known: the known variables, and (3) Free: the free
variables. A question is then defined as the distribution:

P(Searched | Known) »

Given the description, it is always possible to answer
a question, i.e. to compute the probability distribution
P(Searched | Known). To do so, the following general
inference is used:

P(Searched | Known)

= Z P(Searched Free | Known)
Free

EFne P(Searched Free Known)
P{Known)

1
= ZX Z P(Searched Free Known)

Free

where Z is a normalisation term.

As such, the inference is computationally expensive
(Bayesian inference in general has been shown to be NP-
Hard [11]). A symbolic simplification phase can reduce
drastically the number of sums necessary to compute a
given distribution. However the decomposition of the pre-
liminary knowledge, which express the conditional inde-
pendencies of variables, still plays a crucial role in keeping
the computation tractable.

We are currently developing an API2, which is very close
to mathematical language, in order to express Bayesian
programs. An inference engine has been implemented to
automate Bayesian inference [3]. It operates in two stages:
a) a symbolic simplification stage that permits to reduce
the complexity of the probability distribution to be com-
puted, and b) a numeric stage that actually computes the
distribution.

IV. SENSOR MODELLING

A. Sensor Models

Be it for association or estimation purposes, it is fun-
damental to have a model of the sensor’s performance, of
the reliability and precision of the observations obtained.
To address this modelling issue, we have defined stochastic

2 Application Programming Interface
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Sensors’ precision w.r.t. the target’s position in the field of

sensor models that are general enough to represent most
existing sensors.

We present now the general model we have designed for a
range sensor measuring the heading and direction of a tar-
get. It takes into account the target detection probability,
the sensor noise that corrupt the range measurement, and
the variation of range precision w.r.{. the target’s position.

The uncertainty in the measurement of the distance p
and the heading 6 of a detected target whose actual dis-
tance and heading is (z, e}, is modelled by the probability
distribution P(p 6|det(z,a)) where det(z, ) is a boolean
variable indicating if a detection of a target occurred at
position (z,c). To simplify the model, we consider that
the measures in distance and heading are independent® so
that the probability distribution can be written as:

P(p 0|det(z, o)) = P(p|det(z, a})P(0]det(z, a))

with:
Ploldet(z,0) =
P(8|det(z,a)) =

Gp(2,05(2,0))
Go(a, 0g(2,a)),

G, (resp. Gy) is a Gaussian distribution on the variable p
(resp. 6) whose mean value is z (resp. &) and whose stan-
dard deviation is 0,(z, @) (resp. 0g{2,)). Note that both
o, and gy are functions of z and «: they model the varia-
tion of the observation’s precision (in distance and heading)
w.r.t. the target’s position.

To model the sensor reliability, i.e. its ability to detect a
target, we introduce a target detection probability Py(z, )
which is a function of the target’s position. Now we have:

P(det(z,a)|z a) = Py(z,a)

and the missed detection probability is of course given by:

P(~det(z,a)|z a) = 1—Py(z,a)

Finally, the response of the sensor to a given target is given
by:
P(p8lza) = P(p b|det(z,a))Py(z, @)
+ P(p f|~det(z, a))(1 — Py(z, ) 0}

This class of stochastic sensor models can be applied to a
large variety of sensors including radars and lasers. The pa-
rameters required to model an actual sensor, i.e. Py(z,a),

3This assumption is not true in general, it could be lifted easily.

0,(%,0) and oy(z,a), should be determined either thanks
to the sensor manufacturer’s specifications or through cal-
ibration.

B. Experimental Sensors

We have used the model defined earlier to define three
different types of sensors that will be used later in our
experiments on association and estimation.

i
o

Fig. 2. Layout of the three sensors’ field of views.

Fig. 1 depicts the field of views of the different sensors
and the variation of the.observation’s precision (in distance
and heading) w.r.t. the target’s position in each field of
view. “+-+” means that the sensor is really accurate in this
area, “+” means that it is less accurate and “-” means that
it is even less accurate. Outside its field of view, the sensor
does not perceive anything. It is the setting of Py(z,a),
0,(z, ) and og(z, ) that determines the field of view of a
sensor and the different areas within.

Fig. 2 depicts the layout of the different sensors’ field of
views. Note that parts of the environment are observed by
zero, one, two or three sensors.

V. APPLICATION TO CARSENSE

We contribute to Carsense on the fusion aspects. Given a
set of sensors providing information on the driving environ-
ment and more precisely on a set of potential targets, our
primary concern is to determine the actual set of targets
of interest and to estimate some of their characteristics,
mainly position and velocity. As mentioned earlier, such a
multiple-target tracking problem involves two steps:

« Association: regrouping of the sensors’ observations into
tracks associated with the same source target.

o Estimation: actual computation of the target character-
istics.

To demonstrate the generality and the power of BP, we
first show how it can handle these two problems separately
(§V-A and §V-B). Then we show how it can solve them
both simultaneously (§V-C).

A. Estimation

We consider here that the association step is done. The
observations have been sorted out and associated to a po-
tential target. We start with a simple example involving
one target and three different sensors providing information
on the target’s position (heading and distance). To solve
the estimation problem at hand using Bayesian Program-
ming, we have first to specify the different components of




the Bayesian program, i.e. the variables, the decomposition
and the parametric forms.

A.1 Program Specification

The variables relevant here are:
¢ Actual distance z and heading o of the target.
« Distance p; and heading 8; measured by the sensor S;,7 =
1...3.
Altogether eight variables that determine the joint distri-
bution:
P(z a p1 61 p2 92 p3 63) 3)

It will be assumed that the sensors’ observations are con-
ditionally independent w.r.t. the target’s position meaning
that:

P(p; 05|z e p; 8;) = P(p; 8;]z a)

In other words, knowing (z, ), the knowledge of (p;,6;)
does not bring extra information to (p;,8;). Note that this
is very different to saying that P(p; 6;|p; 8;) = P(p; 0;),
i.e. that the sensors are independent. This is clearly false,
when two sensors are measuring the same target, their ob-
servations are obviously dependent.

Thanks to this conditional independence assumption and
using the Bayesian inference rules, we can write the follow-
ing decomposition of (3):

P(z a p1 01 p2 62 p3 03) =
P(z a)P(p1 61]z &) P(p2 02|z a)P(ps 03]z ) 4

Finally, parametric forms must be assigned to each of the
terms appearing in the decomposition:
» P(z a) represents the a priori information on the tar-
get’s position. If a priori information is available (from a
previous tracking stage for instance), it could be used to
specify P(z «). Otherwise, a uniform distribution should
be selected.
o P(p; 0;]z a) represents the response of the sensor S; to
a target located at (2, @). The parametric form chosen for
this distribution is the sensor model we have defined in §IV
Now the description is complete and questions can be
asked. To estimate the target’s position given the sensors’
observations, we ask the inference engine to answer the
following question:

P(z a|p1 61 p2 02 p3 83) 8

A.2 Experimental Results

Fig. 3 depicts a situation where the target is in the field
of view of the three sensors and is detected by all of them.
Figs. 3a, 3b and 3c represent the probability distribution of
the target position knowing the different sensor responses.
Note the difference in precision of the different sensors.
Fig. 3d represents the estimation result. In this case, it
is close to the observation returned by S, the most accu-
rate sensor.

Fig. 4 illustrates the robustness of the approach w.r.t.
to sensor failures. In this example, sensor S fails to de-
tect the target. Since our sensor model integrates the de-
tection probability, it can handle this situation easily and

a) P(z alp1 61) b) P(z ap2 62)

soooooas
<2RERFEIIR

Fig. 3. Estimation example #1: the three sensors detect the target.

a) P(z alp1 61) b) P(z alp2 62)

Fig. 4. Estimation example #2: sensor Sy fails to detect the target.

P(z a|ps 62) becomes a uniform distribution. Now esti-
mation takes place exactly as before, the only difference is
that the final result is less accurate.

a) P(z alp1 61)

b) P(z a|p2 62)

Fig. 5. Estimation example #3: importance of explicitly modelling
the sensor’s performance.

Fig. 5 illustrates the importance of explicitly modelling
the sensor’s performance. In this example, there are only
two sensors: the first one is accurate in distance but not




in heading. The second one is accurate in heading but not
in distance. The estimation with these two sensors yields
a result which is accurate both in distance and heading.

TABLE I
STATISTICAL DATA FOR ESTIMATION.
[ [ 5. [ S2 [ S: | Estimation |

[ Avg. Error #1 |[ 3.66 | 1.28 ] 1.65 | 1.03 |
# Detections 591 203 | 430 600
Avg. Error #2 || 3.53 | 1.95 | 2.56 2.34

Besides these examples, we have carried out further ex-
periments in order to gather statistical data. An experi-
mental run would go like this: first, a target’s position is
selected randomly. Given this position, the different sen-
sor models are used to simulate the sensor’s observations.
Then the estimation question (5) is solved. Finally, to es-
timate the position of the target from the answer to ques-
tion (5), we use an optimisation algorithm to determine the
maximum value of this probability distribution. This opti-
misation is based on a genetic algorithm [12]. The results
obtained are summarised in Table 1.

First, we made 150 runs with targets selected randomly
inside the common field of view of the three sensors. Line
“Avg. Error #1” gives the average error between the actual
position of the target and the position of the target given by
the different sensors and the estimation. It illustrates the
interest of using several sensors with different precisions:
the estimation precision is better.

Second, we made 1000 runs with targets selected ran-
domly: they can fall inside or outside the field of view of
the different sensors. Line “# Detections” indicates how
many times the target has been detected by the different
sensors. 600 times out of 1000, the target was detected by
at least one sensor and estimation could take place. Once
again, it illustrates the interest of using several sensors:
the target is detected more often with three sensors than
with one only (whichever one). Line “Avg. Error #2” gives
the average error in this case. It may appear that the esti-
mation yields results that are less accurate than the results
obtained with the sensor S; only. However, do keep in mind
that, among the 600 estimations made, Sy contributed to
only 203 of them.

B. Association

Association is about partitioning a set of observations
provided by different sensors into tracks, i.e. sets of obser-
vations produced by the same source target. We consider
the case where we have a set of S sensors S;,¢ = 1...8,
each returning Of observations (heading and distance).

B.1 Program Specification

The variables relevant here are:
s (z,a): distance and heading of the target of interest (al-
though there may be several targets, only one (z,a) is
needed).
o (p{ , 0{ ): the j** observation made by the sensor S;.
¢ M;: it is a matching variable that indicates which obser-
vation of the sensor S; corresponds to the target of interest.

Altogether 2 + 23, 0% + S variables that determine the
joint distribution:

s o8
P(z o pt 6} p? 62...99° 69" Miy...Mg) (6)

Before proceeding to the decomposition of (6), a few rea-
sonable assumptions are made:

o The sensors’ observations are conditionally independent
w.7r.t. to the target’s position and the corresponding match-
ing variable (cf. §V-A).

P(pl 671z a gl 6, M; My) = P(o} 60|z o M;)

o The matching variables M;,i = 1...S are conditionally
independent w.r.t. to the target’s position.

P(M;|z a M;) = P(M;|z a)

« The observations of a given sensor S; are conditionally
independent w.r.t. to the target’s position and the corre-
sponding matching variable.

P(p] 6]|z @ pf 8} Mi) = P(p] 6]|2 o My)

Once again, thanks to these assumptions and using the
Bayesian inference rules, we can write the following decom-
position of (6):

s o8
P(zapt 8 plot.. 08 697 Myi...Mg)=

S o*
Pz ) [[ | Pasilz ) [] Pee] 612 o M) )
=1 i=1

Finally, parametric forms are assigned to each of the terms
appearing in the decomposition:
e P(z a) represents the a priori information on the target’s
position.
¢ P(M;|z &) is uniform since knowing the target’s position
only does not suffice to determine M;.
o The form of P(p! 67|z o M;) depends on the value of M;:
— If M; = j then (¢} 67) is an observation of the target of
interest by the sensor S;, and the form of P(p} 61|z a M;)
is the sensor model defined in §IV.
— If M; # j, (b} 67) is not an observation of the target of
interest. The distribution is uniform.
Now the description is complete and questions can be

asked. To solve the association problem, we ask the infer-
ence engine to answer the following question:

s s
P(Mi...Ms|o} 61 3 63...08 09°) 8)

B.2 Experimental Results

To test the association, we have defined the following
experiment: two sensors are used to detect two targets
placed right in front of the vehicle at a distance of 50 m.
with a 3 m. interval between them. In this case, § = 0! =
0? = 2, the question asked is:

P(My Ms|p} 6} p% 03 o} 63 o} 63) (9




TABLE II
ASSOCIATION : SENSITIVITY TO THE SENSORS’ PRECISIONS.

ge(z, )= | 05 2 5
M;=1,M>=1 | 0.294 | 0.364 | 0.239
M1 =2,My=1 | 6e~° | 0.031 | 0.273
My =1,My=2 | 6e® | 4e—° | 0.0931
My =2,M; =2 | 0.704 | 0.594 | 0.386

and it is possible to compute the probability of the four

possible associations: (M; =1, Mz =1) or (M; =2, M5 =
1) or (M1 =1,M, = 2) or (My; = 2,M, = 2). Note that
P(M; =i, My = j) must be interpreted as the probability
that the it* observation of S) is associated with the j**
observation of S5.

‘We carried several experimental runs in order to show
the influence of the sensors’ precisions in the association
and therefore the importance of explicitly modelling the
sensors’ performance. Table II illustrates the outcome of
these experiments: it contains the probability of each pos-
sible association for decreasing precisions in 6 (for both
sensors). From this table, it can be seen that, with ac-
curate sensors (column 1), the association is reliable: two
association probabilities stand out. When the precision de-
creases, it becomes less and less obvious.

C. Association and Estimation
C.1 Program Specification

In the Bayesian framework, it turns out that solving
the association and the estimation problems simultaneously
can be achieved with the description defined in V-B for the
association problem. We keep the same description and
simply ask a new question:

s oS
P(z alpt 61 02 67...02° 697)

(10

C.2 Experimental Results

To test the simultaneous association and estimation, we
have used the same experiment as in §V-B and asked the
question:

P(z alp] 61 o3 67 o3 63 P3 63)

(11)

The output of the inference is a two-dimensional probabil-
ity distribution which is multi-modal: it should contains as
many peaks as there are targets in the environment. Fig. 6
depicts such a multi-modal distribution. Now, given this
distribution, it suffices to search all its modes in order to
identify the different targets.

VI. CONCLUSION

This paper has addressed the problem of multi-sensor
data fusion with a new programming technique based on
Bayesian inference. This method, called Bayesian Pro-
gramming, has been illustrated in an automotive applica-
tion. Several examples were given in order to emphasise the
main advantages of the approach, namely: a) a clear and
well-defined mathematical background. b) a generic and
uniform way to formulate problems. c) the importance of

P(z ale} 6] o} 63 p} 6} 0} 63)

Fig. 6. Simultaneous association and estimation example.

explicitly modelling key problem features (such as the sen-
sors’ performance in our examples). Future developments
will include: a) experiments with real sensor data: so far,
the experiments have been conducted with synthetic sensor
data obtained thanks to virtual sensors. The next step will
be to use models real sensors models and data. The sensors
mounted on the Carsense testbed vehicle will be used. The
vehicle is equipped with laser, radar and video sensors. b)
higher-level sensor fusion: we would like to take advantage
of the generality and the expressive power of Bayesian Pro-
gramming in order to go beyond the ‘simple’ estimation of
the targets’ position and velocity, to take into account ad-
ditional observations, e.g. the shape/type of a target or the
lane within which it is moving, so as to perform target clas-
stfication in terms of “dangerous or not”, and if possible, in
terms of “cars, trucks, cycles, pedestrians, etc.”
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