-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A CH++ Frame Library: User Manual and
Implementation Notes
Sabine Moisan, Jean-Paul Rigault

» To cite this version:

Sabine Moisan, Jean-Paul Rigault. A C4++ Frame Library: User Manual and Implementation Notes.
[Technical Report] RT-0217, INRIA. 1998, pp.50. inria-00069954

HAL Id: inria-00069954
https://hal.inria.fr /inria-00069954
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00069954
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMAIQUE ET EN AUTOMATIQUE

A C++ Frame Library:
User Manual and I mplementation Notes

SabineMoIsSAN - Jean-Bul RIGAULT

N° 0217
February 1998

PROGRAMME 3
Intelligenceatrtificielle,
systémesognitifs
etinteractionhommemachine

apport
technique

% INRIA

SOPHIA ANTIPOLIS

A C++ FramelLibrary
User Manual and
| mplementation Notes

SabineMoISAN .
Jean-RulRIGAULT

Programme 3 : Intelligenasificielle, systémesognitifs
etinteractionhomme-machine

Projet Orion
Rapport technique n°0217 - Février 1998
46 pages

Abstract: This document briefly describE®RAMEL 1B, a C++ library to manipulate
“frames” as thg are used in the Atrtificial Intelligenceond. The library preides a
general framwork (!) for creating n& frames (!!) by inheritance. The intended use

is to generate me frames automaticallyfrom a frame description language. But
nothing preents from using this library “manually”. This document should bf-suf

cient for directly using the library or for using it on an automatic generation basis. It
also presents some design issues for those who are interested in the guts of the
library. Note thatFRAMEL B requires a C++ compiler supporting templaress!
exceptions, an&TTI (Run Time Type Information).

Key-words. knowledge-based systems, frames, C++.

(Résumé : tsvp)

* Email: moisan@sophia.inria.fr
** Email: jpr@essi.fr

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS cedex (France)
Téléphone : 04 93 65 77 77 - international : +33 4 93 65 77 77
Télécopie : 04 93 65 77 65 - international : +33 4 93 65 77 65

Une bibliotheque de
« frames » en C++

Résumé :Ce document décrit briementFRAMEL B, une bibliotheque écrite en

C++ et destinée a manipuler des « frames », structures de représentation des con-
naissance utilisées en Intelligence artificielle. La bibliothéque fournit une cadre
général permettant de créer de remw types de frames en utilisant I'héritage de
classes. Ypiquement, les frames seront générées ainsi automatiquement a partir
d'un langage de description de frames. Mais rien n'empéche d'utiliser la bibliothe-
que « manuellement ». Ce documentrdit étre suisant a la fois pour utiliser
directement la bibliothéque et pour I'utiliser en génération automatique. Il discute
égplement quelques décisions de conception pour ceux que I'implémentation inté-
resse. Il covient de noter qQUERAMELIB requiert un compilateur C++ supportant

les génériques (templates), leseptionansi et I'identification dynamique de type
(RTTI).

Mots-clé : systéemes a base de connaissance, frames, C++.

A C++ FramelLibrary

Table of Contents

Tableof Contents. e

LIntroductiont
1.1 A brief introductionto “frames”
12 Examplesof frames............... i
13 Implementing framesinC++.
1.4 Environmentand compiler

2TheFramelLibrary i,
21 Supportlibrary....... ...
22ClasSFrame

2.2.1. Instance attributes of Fr ane

2.2.2. Fr ane class (static) members and methods
2.2.3. Fr ane instance methods

2.2.4. Exceptions of class Fr ane

23ClasSSl Ot ...

2.3.1. Types of dots

2.3.2. Facets and daemons
2.3.3. Methods of slots

2.3.4. Exceptions of class Sl ot

24CIaSSRANGE . ..o

2.4.1. Types of ranges
2.4.2. Class| nt er val
2.4.3.ClassCol | ecti on

25Generatingnewframes. i

2.5.1. General structure of aframe class
2.5.2. Fixed (dot independent) part
2.5.3. Slot dependent part

26Usingframes. ...

2.6.1. Creating and manipulating frames globally
2.6.2. Accessing slots

3implementation NoOtes.,
3.1 Implementation of daemons (i f _needed)..............
3.2 Implementationof i s_kind of
3.3 Virtual constructionof frames.

AFUture Work

A Supportlibrary.
A.1 Common definitions (common_defs. H)...............

A.1.1. Exception handling (Except i on. H)
A.1.2. Automatic objects (Aut 0. H)

A2ClassString(String. H.........................

6 Sabine Moisan, Jean-Paul Rigault

A.2.1. Public membersof St ri ng 33

A.2.2. Exceptions of class St ri ng 35

A3 CONtaiNer ClasseS v it 35
A.3.1. Iterators 35

A.3.2. Generic lists (SLi st . H and SPLi st . H) 36

A.3.3. Generic sets (SSet . Hand SPSet . H) 37

A.3.4. Generic symbol tables or dictionaries (Synbol _Tabl e. H)38

B Templateinstantiation. 39
C Fileand Directory Structure of the FrameLibrary............. 41

10 To 1= G 43

A C++ Frame Library 7

1 Introduction

1.1 A brief introduction to “frames”

Frames are complex data structures used to represent “typical” objects or sit-
uations in Artificial Intelligence systems. Although there might be some religious is-
sues in putting it so directly, a frame looks very much like a class in an object-orient-
ed language such 8vALLTALK or C++. A frame describes a collection of objects;
it has attributes that are callgats. It has also methods. Frames can inherit from
each other or be combined together to form composite objects.

A main difference with regular classes, though, is that frames exhibit a two
levels structure:

« first, slots (or attributes) represent roles, features involved in the typical object or
situation represented by the frame;

« secondfacets qualify these slots.

Thus, slots do not simply carry a value: tHagets represent various features
attached to the manipulation of the slot value. Some facets exh#mtiaebehav-
iour, that is they are associated with some function: such facets aredzeatiemns.
They correspond to “reflexes” that must be automatically triggered by the frame sys-
tem. The circumstances when a daemon is executed depends on its type, but its exe-
cution is always transparent to the user. For example, an “if needed” daemon is trig-
gered on a read access to the value of a slot, whereas an “if modified” daemon is trig-
gered on a write access to the value of a slot. In any cases, the corresponding
functions have onimplicit parameter: the instance of the frame itself.

This version ofFRAMELIB (V 1.0) supports four kinds of facets (including
one daemon) for each slot:

» A valuefacet, which simply represents the value of the slot; this value may be of
any scalar type (boolean, integer, real) or of any class type with value semantics
(suchastring,Vector,Array, Set...).Iltmay also be (areference to) an-
other frame.

« A range facet which represents the domain of the value facet; this range may be
nothing, an interval, an enumeration...

* An‘“if needed” daemon, which is a function computing the value of the slot when-
ever the value facet has not been initialized.

* A type hasvalue semantics when each object carries itwio value, and when thisal
ue may be copied through initialization or assignment. Consequibetlg may be first class
citizenvariables (as well as constants) of the type.

8 Sabine Moisan, Jean-Paul Rigault

* A default facet which is used asthe value of the slot whenever the value facet has
not been initialized and no “if needed” daemon has been defined. The type of the
default facet isidentical to the one of the value facet. The default value must also
fall within the range defined by the range facet.

One can imagine other kinds of facets and daemons, and indeed many of them
have been defined in the Al literature.

Three methods are associated with dots:
* Satvalueis used to store avalue into the value facet;

* Get value either retrieves the value from the value facet, or calsthe “if needed”
daemon, or returns the default value, or throw an exception, in this order, depend-
ing on the initialization status of the facet;

» Clear removesthe value (if any) set in the value facet (not yet implemented).

1.2 Examplesof frames

To give an idea, here follows the description of some frames representing ob-
jects related to persons. The description language used is close to YAKL, ORION
project own frame description language.

The first frame represents the basic attributes of a person. The
fam |y _nane and bi rt h_dat e dots have only a (non initialized) value facet.
Theage dot hasarange and an “if needed” daemon which is used here as a sort of
activevalue. Themar i t al statusdlot isof enumerated type and has a default facet.

Frame {

name: Person
conment: "General description of a person”

Attributes
String nane: fanmly_nane
Date nane: birth _date

| nt eger nane: age
default: 30
range: [0, 150]
if_needed: return today.year - birth_date.year;

Synmbol nane: nmarital
comment: "marital status”
range: [single,married,divorced, w dow
default: single

A C++ Frame Library 9

met hod: void get_married(Person partner) {
marital = married;
}
}

Of course, one may define another frame,\&&yan, inheriting fromPer -
son. The new fram&bnman adds a new slotr@i den_nane) with a default value
and no daemon. It also refines the slgé which is inherited fronfPer son, by giv-
ing a new definition of its “if needed” daemorFinally, it overrides the method
get _marri ed.

Frame {

name: Wnman
Subtype O : Person

Attri butes

String name: mai den_nane
default: famly_nane

Override |Integer nane: age
i f_needed: throw exception dont_ask;

Override nmethod: void get_married(Person husband) {
marital = married;
fam |y _name = husband.fanily_nane

}
1.3 Implementing framesin C++

A frame system must provide the following minimal set of services:
» Create a new frame with various slots and facets;
« Create a new instance of an existing frame;
+ Read/write the value of a slot;
» Clear a slot, that is remove its value (not yet implemented).
Usually frame systems are implemented with traditional Al languages such as
LIsP and its dialects, or even in languages specialized in knowledge representation.

* In general frame systems, it is possible to redefine entirely an inherited\shotigh
slot so to speak). IRRAMEL 1B V 1.0 we restrict oursebs to the redefinition of the inherited
daemons. See also §3.1.

10 Sabine Moisan, Jean-Paul Rigault

However we decided to implement a (restricted) frame system in C++ at least
for two reasons:

« Portability: the various dialects afsp are not portable, and specialized languag-
es are... special.

« Efficiency: clearly compiled languages like C++ generate much more efficient
code than interpreted ones.

Of course efficiency has its cost. The basically static nature of C++ prevents
from a natural expression of mostl exive constructs. If one tries to relax the static
constraints, which is certainly possible, the immediate consequence is losing strong
typing which induces lower programming safetput also impaired efficiency. In-
deed, the static analysis performed by C++ constitutes one major factor of its effi-
ciency.

So we have to face the challenge of building a system exhibiting a power of
expression (with some metaconstructs) sufficient for our Al applications and still re-
specting the C++ philosophy (strong typing and maximum static analysis).

The FRAMELIB library is a set of classes which allows the definition of new
classes representing frames. The main classésofEL IB areFrame (the abstract
base class of all frame§lot (the abstract base class of all slots) and its three var-
iations GcalarSlot , ClassSlot , andFrameSlot). TheSlot hierarchy is
template-based. A new frame class may be defined by deriving a cladsrénoa
(or from any of its descendants). Just to give the flavour of it, this is the sketch of the
definition for clasdPerson seen in 81.2:

class Person: public Frame {
public:
/I If needed daemon definitions
virtual int ifn_age(void) {
return today().year - birth_date.year;

}
/I Other if_needed daemons (§2.5.1, §2.5.3)

/I Slots

ClassSlot<String, Person> family_name;
ClassSlot<Date, Person> birth_date;
ScalarSlot<int, Person> age;
ScalarSlot<Marital, Person> marital;

* In C++ classes are not objects. There are no metaclasses, although there are some
metaobjects, especially those relatedtal.

** |n fact, programming safety is not our main concern, since in our project,the C++
code is automatically generated, as it will Bplained laterThus most static checks can be
performed before generation.

A C++ FramelLibrary

11

/l Methods
virtual void get_married(Person partner) {
marital = married;

}

I/l Application constructors (82.3.3, §2.5)

I/l (automatically generated by YAKL)
/lIn particular,these constructors have the
/lresponsability to link the «if needed» daemon
/[(ifn-age) with its slots (age)

/l Some fix code automatically generated
// by macro FRAME_FIX_PART (§2.5)

3

When defining clasg/omanwe just have to add the new slot and to redefine

the virtual function associated with the daemon:

class Woman: public Person {
public:
/l Exceptions
DCL_EXCEPTION(Woman, dont_ask, All);

/' If needed daemon (re)definitions
virtual int ifn_age(void) {
throw dont_ask();

}

I Slots
FrameSlot<String, Woman> maiden_name;

/I Methods

virtual void get_married(Person husband) {
marital = married;
family_name = husband.family_name;

}

I/ Application constructors (§2.3.3, §2.5)

I/l (automatically generated by YAKL)

/I Some fix code automatically generated
/l by macro FRAME_FIX_PART (82.5)

3

As will be discussed later (83.1) the principal design decisi¢éiREkMEL 1B

was to figure out how to implement the daemon definition (adefinition).

12 Sabine Moisan, Jean-Paul Rigault

Of course, frames are used as regular C++ classes, and slots may be used (most
of the time) as regular members of the class (there are some restrictions, though: see
§2.6):

Womané& w = *new Woman();
w.family_name = "Doe";

w.age = 42;
try {

cout << “age of “ << w.family_name << " =" <<w.age;
}

catch (Woman::dont_ask) {...}

1.4 Environment and compiler

FRAMELIB is template-based. It uses (non-template) classes nested within
template classes. It does not require an automatic template instantiating mechanism,
although that would be useful.

Frame and slot methods raise (throw)si exceptions which must be de-
scendants from claggameLib_Exception

When manipulating frames we need to be able to inquire for the type of a
frame at run time. For this we rely on the G¥fTI mechanism as it has been defined
by theans| C++ committee. But we had to extend it a little (more on this in §3.2).

Finally we use someNsi extensions: booleanbdol), explicit template in-
stantiation, initialization o€onst static members...

Consequently we need a compiler close toathel C++ level (as of April 95,
at least). We implementdeRAMELIB with GNU g++ (versions 2.7.0 and 2.7.2).
However, theaNs! implementation in these compilers is not mature yet, and we had
to fight with some compiler bugs (“internal compiler error” being the mildest!), es-
pecially in the area of exception handling.

FRAMELIB does not require any class foundation library, since it provides its
own (and simple) one (see Appendix A). Anyhow, it requiresdasteeam library
which comes with any C++ compiler.

2 TheFramelLibrary

2.1 Support library

FRAMELIB provides its own library of support classes (fundamental data
structures) which will be fully described in appendix A. This support library in-
cludes:

A C++ Frame Library 13

e Some common classes used throughout the library for handling exceptions
(8A.1); dl exceptions in FRAMELIB ae derived from class
FrameLi b_Excepti on, which in turn derives from except i on, the ANSI
standard class;

* ClassString (8A.2): aclass encapsulating the usual (null-terminated) C char-
acter strings, with full value semantics and usua operations (concatenation with
operator +, indexing, and also sub-stringing);

e Class SLi st <El en» (8A.3.2) and class SSet <El en» (8A.3.3): generic lists
and sets; thefirst one is an ordered collection allowing redundancy; the second is
unordered without redundancy; EI emrepresents any type with value semantics
(copy operations); copy of objects are stored; both classes have full value seman-
tics (i.e. copy operations duplicate all the elementsin the collection);

e ClassSPLi st <El enP (8A.3.2) and SPSet <El en (8A.3.3): genericlistsand
sets of pointers; the first one is an ordered collection allowing redundancy (of
pointer values), the second is unordered without redundancy (of pointer values);
El emrepresents any type; only pointers to objects are stored; both classes have
pointer value semantics (i.e. copy operations duplicate only the pointers, thus the
objects pointed to are shared after duplication);

* ClassSynbol _Tabl e<Synbol > (8A.3.4): adictionary class; thetype denoted
by Synmbol must have a method nane(voi d) returning a St ri ng which is
used as access key in the table; no redundancy is permitted; type Synmbol must
have also full value semantics, since copies of Synbol 'sare stored in the table.

All classes, except St ri ng, have an associated iterator class (8A.3.1) which
is aso a generic class (SList_Iter<El enmr, SPSet Iter<El enp,
Synbol _Tabl e_Iter<El enp..).

Asusual in C++, template instantiation is a problem, since it differs from one
compiler to the other. One can find how it is done for g++ in appendix B.

2.2 ClassFranme

Class Fr ane isthe focal point of the frame library. It is the base class of all
frame classes. The class maintains the set of its instances and of the instances of all
its derivatives (the extension of the class). Methods are provided to extract subsets
corresponding to specific types from this extension.

Note that Fr ame instances have no value semantics by default (no copy oper-
ators are defined). They may just be purposely cloned, that is duplicated.

2.2.1. Instance attributes of Fr ane

All the following members are private to class Fr ane.

14 Sabine Moisan, Jean-Paul Rigault

String _id
The unique identifier of this frame instance. It is of the form
f r ame_NNN whereNNN is some number

const String *_class_nane
The name of the class this instance belongs to. It is a pointer since
mary instances may share the same class name. It is initialized through
the this_class_nanme static member (82.2.2). This member
helps in supplementing tiRr 71 mechanism (83.2).

String _alias
Another name for this instance. Contrarily tiod, it is not guaranteed
to be unique, since it is user defined.

SPSet <Sl ot > _sl ots_using
The set of (pointers to) slots referencing this frame. The cardinal of this
set acts as i&ference count of all slots referencing the frame.

bool _valid
This flags indicates that the instance is currerdlidyi.e. alve). This
is resered for future uses.

2.2.2. Fr ane class (static) membersand methods

Static data members specific ko ane itself
All the following static members apgivate to clasd-r ane.

SPSet <Fr ane> _ext ensi on
The extension of classFr ane, that is a set of (pointers to) all the
instances of frames (that is instances of class Frame oryoflass
derived from it, at whateer level).

int _cpt
A counter used to compute the unique identified. It is incremented
by one each time a weinstance of frame is created.

const String | D SEED
The base name foii d. Currently itis'franme_".

Synbol _Tabl e<di ct _entry> _exenpl ars_di ct
The set of xemplars. There is onex@mplar for each class deed
from Fr ane. This helps toxend therTTI mechanism (83.2) and also
to ensure persistepcand virtual construction (83.3). The structure
di ct _entry is defined as a class nested within clasane.

Static data members that must be replicated in all dediclass
All the following members arprivate to classr amne.

const String _this_class_nane
The name of the current class. Each clasyeérdromFr ane must

A C++ Frame Library 15

define such a static member.

Frame _exenpl ar
An exemplar of this frame. This is used to introduce a new type of
frame to the extended RTTI mechanism. Each class derived from
Fr ame must define such a static member.

These two fields must be initialized for any frame derived from class Fr ane.
A C++ preprocessor macro, FRAVE_DEF_STATI C, helpinitiaizing them (82.5.2).

Static methods

All the following members are public to class Fr anme. They make it possible
to extract from the extension of Frame all the instances corresponding to a specific
subtype.

SPSet <Frane> strict_extensi on(const Frame& f)

static SPSet<Frame> strict_extension(const String& cln)

SPSet <Frame> strict_extension(const type_ info& ti)
Strict extension: given either aFr ane instancef , its class namecl n,
or its type information t i as returned by t ypei d, return the set of
(pointers to) all the instances with exactly the same type.

SPSet <Fr ame> ful | _extensi on(const Frame& f)

SPSet <Frame> ful | _extension(const String& cln)
Full extension: given either aFr ane instancef oritsclassnamecl n,
return the set of (pointers to) all the instances with exactly the same
type or with atype derived from it. One may wonder why there is not
an SPSet <Frame> full-extension (const type-info&)-see §3.2 for the
beginning of the answer.

The following method is protected, sinceit isto be used only within subclass-

const Frane *exenpl ar_of (const String& cln)
Return a pointer to the exemplar of class with name cl n. If it cannot
be found return the null pointer. Exemplar handling is described in 83.2
and 83.3.

2.2.3. Fr ane instance methods

Accessors
All these methods are public.

const String& id(void) const
const String& class_nane(void) const
const String& alias(void) const}
bool valid(void) const
Accessors to the private fields with identical names but prefixed with

16 Sabine Moisan, Jean-Paul Rigault

an underscore.
int n_slots using(void) const
Number of dots referring to this Fr ane.
Type manipulation
The following functions are public.

virtual bool is_kind_of(const String& cln) const
Return t r ue when the current instance has the same type or a type
derived from the class with class name cl n (83.2).

virtual bool is_super_of(const Frane& f) const
Return t r ue if the current frame has a type which is a super-type of
thetype of f (83.2).

Constructors, destructors and similar functions
Thisfunction is public.

virtual Frane& clone(const String& al = “*) const
Return anew instance (actually allocated by new) which is an absolute
copy of the current frame. The facets are simply duplicated, member-
wise. Any uninitialized facet remains so.

The two following constructors are protected since class Fr ane islogically
abstract and cannot be constructed except from its derived classes.

Frame(const String *cln, const String& al ="")
Construct aFr ame with classnamecl n and diasal .

Frame(Exenpl ar ex, const String *cln)
Construct an exemplar of the class, “introducing” it to the base class
Fr ame and putting it into _exenpl ar s_di ct (83.2 and 83.3).

Note that, since Fr ame has no public constructor, it may be constructed only
by its derivatives.

| O operators
Thisisafriend function.

friend ostream& operator<<(ostream& os, const Franme& f)
Output operator displaying the frame class name, itsid, and its possible
alias.

2.2.4. Exceptions of class Fr ane
All exceptions are public nested classes.

class Frane::all : public FraneLi b_Exception
The base class of all Fr ane exceptions.

A C++ Frame Library 17

cl ass Frame::unknown : public Frame::all
An instance was searched for within the Fr ane extension and could
not be found.

class Frane::abstract : public Frane::all
Class Fr ane islogicaly abstract, but cannot be such for C++ (for a
number of technical reasons). This exception signals the fact that
Fr ame istrying to be used as a concrete class (for example when one
attemptsto cloneit).

2.3 Class Sl ot

Class Fr ane itself has no slot, but most of the classes derived from it will
have some. They represents the attributes of the objects together with some specific
behaviour when manipulating their value.

2.3.1. Types of dots

There are three kinds of slots federated through an unique base class Sl ot .
Thisismainly for efficiency reasons since one single classwould have been logically
enough.Whereas class Slot is a regular class, the three others are template classes,
with two type parameters. T is the value type, and F is the type of the frame which
the slot belongsto (see 83.1 for details on the use of F).

e ClassScal ar Sl ot <T, F>: thisclass correspondsto sots the value of wh.ich
isabuilt-in type with full copy semantics. Parameter passing and function return-
ing is efficiently performed by value. Parameter T should designate a C++ built-
intype (char, i nt,long, fl oat, doubl e...) but this cannot be enforced by
testing.

e ClassC assSl ot <T, F>:thisclass correspondsto slotsthe value of whichis
atype with full copy semantics but for which passing and returning by valueis
not efficient. So passing (and returning whenever possible) by reference (to a
const) ispreferredinstead. Typical examplesinclude St ri ng, Vect or, Ar -
ray, Set ... Note that one may safely use class Scal ar Sl ot for these types:
the only risk is poor efficiency. Here again, we cannot enforce statically the ex-
istence of the full copy semantics.

e ClassFraneSl ot <T, F>:thisclasscorrespondsto sotsthe value of whichis
another frame. Remember that frames have no value semantics. Thus the same
frame instance may befreely shared by several slots. The value and default facets
are simply pointers to the frame. The cardina of _slots_using
(n_sl ot s_usi ng) represents the number of slots sharing the current frame
(82.2.2).

Class S| ot has private copy constructor and private assignment operator to
avoid any default value semantics for dots (and consequently for frame).

18 Sabine Moisan, Jean-Paul Rigault

2.3.2. Facets and daemons

Each dot, whichever kind, has a (private) pointer to the frame instance it be-
longsto (_cont ext). We call thisinstance its context frame. And it has also four
facets including one daemon, as already mentioned: value, range, "if needed” dae-
mon, and default. All facets are private.

The exact type of the value and default facets depends on the type of the dlot.
For Scal ar Sl ot andCl assSl ot , it is necessary to know whether the value has
been initialized. Thusaboolean flag is associated with these facets (forming a nested
private class Facet). Thisisnot needed for Fr ane Sl ot , since the facetsare sim-
ply a pointer to aframe, and the null pointer indicates “uninitialized” well enough.

The range dlot is always a pointer to a Range object. Indeed, as we shall see
in 82.4, Range istheroot class of afull hierarchy.

Finally, the “if needed” facet is implemented as a private nested class Dae-
non. This class contains a pointer to a method of class F (the embedding frame)
without argument and returning a T value (for Scal ar Sl ot and Cl assSl| ot) or
areferenceto T (for Fr ame S| ot). Thusthe type of this pointer (designated as| f -
Daenon) to member iseither T (F::*)(void) or T& (F::*)(void).In
the latter case, it is the responsibility of the method itself to ensure that the returned
object has been correctly allocated. Associated with this pointer, one can find a
boolean flag indicating that the pointer to member has been initialized.

Thismeansthat for each facet, there must exist at least one method of theright
type in the embedding frame class. If the corresponding method is virtual, a derived
frame will be able to redefine it, changing the behaviour of the base class daemon.
Thisis exactly what we wished. More on thisin 83.1.

2.3.3. Methods of dots

Constructors

Class Sl ot itself has no other methods than private copy operators (82.3.1)
and a default constructor needed for internal reasons.

The three kinds of dlots have a (public) default constructor (still for internal
reasons) and a sort of copy constructor:

Scal ar Sl ot (F *cxt, const Scal ar Sl ot & sl)

Cl assSl ot (F *cxt, const Cl assSloté& sl)

FrameSl ot (F *cxt, const FrameSl ot & sl)
"Copy constructors' for slots, used during frame cloning. The context
frame must be passed also, thisiswhy they are not copy constructorsin
the usual sense.

They also present the following four different regular constructors the proto-
types of which vary depending on the slot type:

A C++ Frame Library 19

ScalarSlot (F *cxt, |f_Daenon ifn, bool ifn valid = fal se)

ClassSlot(F *cxt, If_Daenon ifn,bool ifn_ valid = fal se)

FrameSl ot (F *cxt, |f_Daenon ifn, bool ifn_valid = fal se)
Initialize the slot with context frame cxt and the “if needed” daemon
pointing to method i f n. The parameter i f n must point to a virtual
function of class F, returning either a T or a T& (see §2.3.2). The
boolean i f n_val i d indicates whether the “if needed” daemon is
considered valid within the current frame class or that it is the responsi-
bility of derived classto validate it.

Scal arSlot (F *cxt, |f_Daenon ifn, T def,
bool ifn_ valid = fal se)
ClassSlot(F *cxt, If_Daenon ifn, const T& def,
bool ifn_ valid = fal se)
FrameSl ot (F *cxt, |f_Daenon ifn, T& def,
bool ifn_ valid = fal se)
Initialize the dot with context frame cxt , the “if needed” daemon
pointing to method i f n, and the default facet being set to def . The
parameter i f n must point to a virtual function of class F, returning
either a T or a T& (82.3.2). The boolean i f n_val i d indicates
whether the “if needed” daemon is considered valid within the current
Frame class or that it isthe responsibility of derived classto validateit.

Scal arSl ot (F *cxt, |f_Daenon ifn, Range<T> *pr,
bool ifn_valid = fal se)
ClassSl ot (F *cxt, |1f_Daenon ifn, Range<T> *pr,
bool ifn_valid = fal se)
FrameSl ot (F *cxt, |f_Daenon ifn, Range<T> *pr,
bool ifn_valid = fal se)
Initialize the slot with context frame cxt , the “if needed” daemon
pointing to method i f n, and the range facet being pointed to by pr.
The parameter i f n must point to a virtual function of class F, return-
ing either a T or a T& (82.3.2). The boolean i f n_val i d indicates
whether the “if needed” daemon is considered valid within the current
Frame class or that it is the responsibility of derived classto validateit.

ScalarSlot (F *cxt, |f_Daenon ifn, T def,
Range<T> *pr, bool ifn_valid = fal se)
ClassSlot(F *cxt, |If_Daenon ifn, const T& def,
Range<T> *pr, bool ifn_valid = fal se)
FrameSl ot (F *cxt, |f_Daenon ifn, T& def,
Range<T> *pr, bool ifn_valid = fal se)
Initialize the dlot with context frame cxt, the “if needed” daemon
pointing to method i f n, the default facet being set to def , and the
range facet being pointed to by pr . The parameter i f n must point to a
virtual function of class F, returning either aT or a T& (82.3.2). The
boolean i f n_val i d indicates whether the “if needed” daemon is

20 Sabine Moisan, Jean-Paul Rigault

considered alid within the current Frame class or that it is the respon-
sibility of derived class toalidate it.

Value manipulation
The three kinds of slots have all the following public methods:

void set_valid(void)
Validate the if “needed” daemon of the slot. The pointer to member
must hae been préously initialized using one of the slot constructors
(possibly in a base class). Of course this supersedesathe wof
i fn_val i d given at construction time.

voi d cl ear(void)
Clear the walue ficet of the slot (that is slot becomes uninitialized).

All three kinds of slot present also the following methods to set and retrieve
the slot value. They also make it possible to manipulate a slot with g€ it were
a simple object of typ& (more or less—see §2.6.2).

T Scal arSlot::operator=(T t)

const T& Cl assSlot::operator=(const T& t)

T& FraneSl ot::operator=(T& t)
Set the alue fcet tot . The first two operators perform a full cgp
according toT value semantics. This means tAaimust hae coy
operations (cop constructor and assignment) defined, at least by
default. The last operator merely sets a pointer

Scal ar Sl ot : : operator T(voi d)

Cl assSl ot::operator T(void)

FrameSl| ot : : operator T&(void)
Retrieves the slot &lue: return thealue fcet if it is \alid; otherwise
call the “if needed” daemon if it isalid; otherwise return the dailt
value if it is \alid; otherwise thna exceptionunconput abl e. Each
possible alue is tested ainst the possible rangadet. Should the test
fail, exceptionout _of _r ange is throvn. Also, if the “if needed”
daemon returns aalid result, this result becomes thawmneontents of
the \alue facet.

These two operators may be respectively replaced by the following two meth-
ods (older pre-C++ style):

void ScalarSlot::set_value(T t)
void C assSlot::set_value(const T& t)
void FraneSlot::set_value(T& t)

Identical tooper at or =.

* This is clearly a choice. It might appear questionable in the future.

A C++ Frame Library 21

T Scal ar Sl ot: : get _val ue(voi d)
const T& C assSlot::get _val ue(void)
T& FraneSl ot:: get _val ue(void)

Identical to oper at or T.

For convenience (82.6.2) we also provide the following operator which makes
it possible to use slots as methods (an accessor to itself, so to speak):

T Scal ar Sl ot:: operator()(void)
const T& Cl assSlot::operator()(void)
T& FrameS| ot:: operator () (void)

Identical tooperat or T&
2.3.4. Exceptions of class S| ot
Class Sl ot definesthe following (nested) public exception classes:

class Slot::all : public FrameLi b_Exception
The base class of all Fr ane exceptions.

class Slot::bad copy : public Slot::al
Attempt to perform a C++ default copy of adot.

class Slot::unconputable : public Slot::al
Thrown when the value of a dot cannot be computed.

class Slot::out_of range : public Slot::al
Thrown when the value of a dot does not fall within its range.

24 ClassRange

2.4.1. Typesof ranges

Range instances are objects representing domain of values. In fact thereisa
full hierarchy of domains federated under the base class Range<T>. All classesin
this hierarchy are template classes depending on the type T of the value. T may be
any type (scaar, built-in, user class, frame).

ClassRange<T> itself isan abstract class with no members but a pure virtual
function:

virtual bool contains(const T& t) const = 0
Thisfunction returnst r ue if the object t “falls within the range”. Its
precise definition is under the responsibility of the derived classes.

Sincethisinterfaceistheonly thing that classesFr ane and S| ot know about
Range, the system is completely open, and new subtypes of Range may be freely
added.

At thistime (version V 1.0), we have defined only two subtypes of Range:

22 Sabine Moisan, Jean-Paul Rigault

class Interval <T> : public Range<T>
An intenal is defined by te values of typeT, t m n andt max.
Methodcont ai ns returnst rue whentmn <= t <= tnmax. Of
course this supposes that typlas gobper at or <=.

class Collection<T> : public Range<T>
A (finite) collection of T objects. In other ards an enumerated type.
Methodscont ai ns returnst r ue when t is equal to one of the mem-
bers of the collection. This supposes thatkefinesT: : oper at or ==,

Both classes have a display operatgegr at or <<), mainly for debugging
purposes.

2.4.2. Class| nt er val

Clasdl nt er val is very simple indeed. Ainnt er val object is constructed
from two values of typd:

Interval (const T& m, const T§L nX)
Construct the inteat with lower boundm and upper boundx. The
bounds are part of the intehitself.

Recall thafT: : oper at or <= must be defined.
24.3.ClassCol | ecti on

ClassCol | ecti on is not much more complicated thiant er val . It sim-
ply has a richer variety of constructors:

Col | ection(voi d)
Default constructor: the collection is empgofit ai ns always return
f al se).

Col l ection(const T& t)
A singleton collection.

Col | ection(const T tab[], int n)
Initialize the collection from aopy of the components in arrayab, of
dimensiom. This supposes tha@thas alue semantics.

Col I ection(const SSet<T>& s)
Initialize the collection from aopy of the components in the (simple)
sets. This supposes thathas alue semantics (this is also needed by
SSet —see §A.3.3).

bool is_enpty(void) const
What do you think?

int card(void) const
Thecardinality of the collection, that is its number of elements.

* |n fact it does not matter which is thedast.

A C++ Frame Library 23

2.5 Generating new frames

Creating frame classes consists simply in deriving new classes from the base
class Fr ane or from one of its descendants. The frame classes will have slots and
daemons. However, the derivation must obey a systematic process in order to main-
tain the consistency of the frame system.

In the Orion project at INRIA, we generate automatically the code of the new
frame classes from the analysis of a frame description language. This section ex-
plains how to perform this generation.

2.5.1. General structure of aframeclass
There are two main parts in the definition of a new frame class:

« An application-dependent part, which contains the definitionsrelated to slotsand
daemons; thisincludes also the constructors needed to initialize correctly aframe
object.

» A fixed part, present in all frames, which contains fields and methods indispensa-
ble to maintain the frame system consistent. This part is absolutely independent
of the particular frame or of its dot.

Let us revisit the first example given in 81.2 and 81.3. Here follows the full
definition of the frame class Per son in our system:

1 class Person: public Based ass {

2 public:

3

4 R R
5 /1 Application dependent part: slots and nethods
6 e PR
7

8 enum Marital {SINGLE, MARRI ED, DI VORCED, W DOW;

9

10 /1 Functions for daenons (all slots)

11 virtual String ifn_famly_nanme(void);

12 virtual Date ifn_birth_date(void);

13 virtual int ifn_age(void);

14 virtual Mrital ifn_Mrital (void);

15

16 /1 The slots thensel ves

17 ClassSlot<String, Person> fam |ly_nane;

18 Cl assSl ot <Dat e, Person> birth_date;

19 Scal ar Sl ot <i nt, Person> age;

20 Scal ar Sl ot <Marital, Person> marital;

21

22 /1 Met hods

23 virtual void get_married(Person partner) {

24 marital = marri ed;

25 }

24

Sabine Moisan, Jean-Paul Rigault

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

R e T P

/1 Application dependent part: constructors

R e T P

/'l Regul ar (user) constructor(s)

Person(const String& al ="")
BaseCl ass(&Person:: _this_class_nane, al),
famly _name(this, & fn_fam|y_nane),
birth_date(this, & fn_birth_date),
age(this, & fn_age, &age_range, true),
marital (this, & fn_marital, SINGLE)

{}

pr ot ect ed:

/'l Construction relay
Per son(const String *cln, const String& al = "")

{}

BaseC ass(cln, al),

fam ly_name(this, & fn_fam |y_nane),
birth_date(this, & fn_birth_date),
age(this, & fn_age, &age_range, true),
nmarital (this, & fn_marital, SINGLE)

/1 Copy constructors (for clone())
Person(const Person& p, const String& al = "")

{}

BaseCl ass(&Person:: _this_class_nanme, al),
fam |y _name(this, p.fam ly_nane),
birth_date(this, p.birth_date),

age(this, p.age),

marital (this, p.marital)

Per son(const Person& p, const String *cln,

/1
11
/1

const String& al ="")
BaseC ass(cln, al),
fam |ly_name(this, p.famly_nane),
birth_date(this, p.birth_date),
age(this, p.age),
marital (this, p.rmarital)

Fi xed part (independent of the slots)
generated by the macro call
FRAME_FI X_PART(Per son, Based ass);

private:

A C++ Frame Library 25

77 static const String Person::_this_class_naneg;
78 static Person Person::_exenpl ar

79

80 pr ot ect ed:

81

82 Per son(Exenpl ar ex)

83 . Based ass(ex, &Person::_this_class_nane)
84 {}

85

86 Per son(Exenpl ar ex, const String *cln)

87 . Based ass(ex, cln)

88 {}

89

90 public:

91

92 virtual bool is_super_of(const Frame& f) const
93 {

94 return is_kind_ of (f, *this);

95 }

96

97 virtual bool is_kind_of(const String& cln) const
98 {

99 Frame *pf = exenplar_of (cln);

100 return pf == 0 ? false: pf->is_super_of (*this);
101 }

102

103 virtual Person& clone(const String& al =
104 {

105 return *new Person(*this, al)
106 }

107

108 };

“ou

) const

Even in the slot dependent part, not all the code is dependent on the particular
frame. The dependent code is indicated in sl anted Courier font, like
fam | y_nane online 63.

2.5.2. Fixed (slot independent) part

Thisis the simplest part. It starts from line 69. It is entirely parametrable by
the name of the frame class, here Per son, and the name of the base class, here
Based ass. Thus, we defined a preprocessor macro, FRAME_FI X_PART, with
two parameters, to generate this part.

Consequently al lines from 69 to 107 can be replaced by the singleline:
FRAVE_FI X_PART(Per son, Based ass);

In the fixed part one can find the declaration of two static members: the frame
ownclassname(_t hi s_cl ass_nane) and an“exemplar” for thisframe (lines 77
and 78). Asusual in C++, these static members must be defined (and initialized) ex-

26 Sabine Moisan, Jean-Paul Rigault

actly once in the whole program (usually in & file). To help this initialization, we
defined the macr&éRAVE_DEF_STATI C(cl) wherecl is the frame class (here
Per son). So it is enough to put somewhere at the beginning d?¢hson. Cfile
the line

FRAMVE_DEF_STATI C(Per son) ;
to get these two statics properly initialized.

Note that the constructors come by pair. This pattern in consistently used
throughout the frame class. For instance, at line 82 and 86, one can find two construc-
tors taking arexenpl ar as first parameter. The first one

Per son: : Per son(Exenpl ar ex)
is used to construct an objectesfict type Per son. The second one,
Per son(Exenpl ar ex, const String *cln)

is just arelay constructor. The classes derived froRer son will invoke it, with

their own class name as the second parameter. And it will just propagate this infor-
mation upwards, to its base class. (Note how the first constructor calls the second
one, but for its base class.)

The role and handling of exemplars will be explained in 3.2 and §3.3.
2.5.3. Slot dependent part

In the slot dependent part, one can find the definitions of frame and of every-
thing related to them (slots, methods, daemons...). This is of course highly dependent
on the frame itself and on its application.

Slots and daemons

At the beginning (line 8) we find the definition of an enumeration type which
is used as the value type for shair i t al . This is of course application dependent.
Then we find (lines 11-14) one declaration of a virtual function for every slot that
will be defined in this frame. This function is to be called when the "if needed” dae-
mon of the slot is invoked. Since it is virtual, it will be redefinable in classes derived
from Per son, changing the behaviour of tRer son’s slot.

Note that here, onlyf n_age is likely to have aalid definition inPer son
itself. This explains why line 36 includées ue as last parameter for the constructor
of slotage (2.3.3). The other daemon functions must also have a definition. They
cannot be pure virtual unless we want to teem son into an abstract class.

Then (lines 17-20) comes the slots definition. No mystery here. Note that the
second template parameter must be the embedding frame namieglheom).

If the frame has methods (other than daemon related ones), they could be de-
clared at this point (line 23).

A C++ Frame Library 27

Constructors

After the slots definition, the slot dependent part conclude with abunch of four
constructors. As aready indicated (82.5.2) they come by pair: one for constructing
and object of exact type Per son, the other for relaying a construction of a derived
class object.

Thefirst pair of constructors (lines 32 and 43) may be termed “regular” con-
structors. Only the first oneis supposed to be called from outside the frame system,
hence its public status. The arguments indicated are minimal. They can be supple-
mented by (trailing) application-dependent parameters.

Note that both constructors have the same structure:
* A member initialization list consisting of
— onelinefor the base class, calling the relay constructor;

— one line for each defined slot, choosing one of the dot constructors
(82.3.3).

* Anempty body, although a application may fill it with some specific code.

A note on lines 36 and 47: we suppose here that age_r ange isaglobal ob-
ject of type Range defined somewhere in the program; for instance

I nterval <i nt > age_range(0, 150);

The second pair of constructors take a first parameter of type Per son. So
they look like copy constructors. Indeed, they are needed to implement clone (line
103). They are very similar to the first pair, with one important difference: they no
longer depend on the application will and wish, but only on thelist of sots.

2.6 Usingframes

2.6.1. Creating and manipulating frames globally

Frame classes may be used as any C++ class. One can define frame objects,
apply methods to them, pass them as parameters, return them from functions, and so
on.

However recall that frames are not supposed to have value semantics. The
only copy operation which is allowed is cloning (cl one). Of course an application
may define copy operators for frames (copy constructor, assignment). Thisis under
its own responsibility.

The absence of (default) copy operations implies that frame are not first class
citizens for C++. In particular, it is unwise to manipulate frames through anything
elsethan a pointer or areference. Asit isunwiseto create a frame without using the
new operator. Class Fr ane itself will certainly assumein the future that all frames
are allocated onto the heap.

28 Sabine Moisan, Jean-Paul Rigault

2.6.2. Accessing dots

As already mentioned (81.3), frame slots can be manipulated amost asif they
wereregular C++ class datamembers. For instance, the following is correct and con-
venient:

Person somebody;
somebody.age = 17; /I Slot<int, Person>::operator=
cout << somebody.age; /I conversion to int: operator T

Using get value andset value ismuch more awkward:

somebody.age.set_value(17);
cout << somebody.age.get_value();

However, theworldisnot perfect! Nor istheidentification between type T and
type Slot<T, F> . The problem arises for ClassSlot<T, F> and FrameS-
lot<T, F> when onetriesto call aT method. For instance:

int n = somebody.family_name.length();
This does not work! The error message from g++ is something like

no member function “ClassSlot<String,Person>::length()’
defined

Thereasonissimple: for variousreasons, C++ refusesto performimplicit con-
versions onto the target parameter of a method call. So dlot family_name isnot
automatically converted to String . Of course, the user may use get_value

int n = somebody.family_name.get_value().length();

or even uglier use cast, like

int n = ((const String&)somebody.family _name).length()
or, to make it “modern” C++

int n = static_cast<const
String&>(somebody.family_name).length();

The following syntaxes are a so acceptable but, since they involve afull con-
struction of aString object, they are less efficient:

intn=
static_cast<String>(somebody.family_name).length();
int n = ((String)somebody.family_name).length();

Of course, all these forms are horrible. Thisiswhy we provide operator()
for slots (82.3.3). The syntax is much nicer, since a slot can now be considered as a
method, an accessor to its value:

int n = somebody.family_name().length();

A C++ Frame Library 29

3 Implementation Notes

3.1 Implementation of daemons (i f _needed)

The implementation of” if needed” daemon is one interesting point in
FRAMEL1B. The constraints where the following:

» Thedaemon istriggered within aslot, thusit hasto be a slot attribute;

* The daemon must be executed within the context of the frame the daemon be-
longs to, thus it has to be a member-function of this frame;

e The daemon may be specialized in classes derived from this frame, thus it hasto
be avirtual function.

Thefirst two points may seem somewhat contradictory, at first glance. In fact
using a pointer to member as explained in 82.3.2 helps solving the contradiction. Of
course, we need to have a frame to invoke the function pointed to; but each sot
knowsitsembedding frame (its_cont ext , 82.3.2). Thethird point is satisfied also,
owing to the fact that, in C++, access through a pointer to member aways implies
dynamic binding.

3.2 Implementationof i s_ki nd_of

Another annoying problem was the absence of ageneral i s_ki nd_of oper-
ator in C++. Of course, we have weak formsof thisoperator usingdynani c¢_cast ;
the expression

dynani c_cast <A *>(p)

is non-null if, and only if, p points to an object of type A or derived from A, that is
iff p pointsto akind of A, or iff thetype of * p isasubtype of A. Unfortunately, class
A must be statically defined; even with RTTI enabled, it isimpossible to write (al-
though it would be simple to implement!):

dynami c_cast <t ypei d(*p1) >(p)
to check whether p points to the sort of object pointed to by p1. To circumvent the
difficulty, we proceed in two steps.

First a genera template function is_kind_of is defined in
common_defs. H:

tenpl ate <class Deriv, class Base>
inline bool is_kind of(const Deriv& d, const Base& b)

{

}
Thisfunction is automatically instantiated when it is called; for instance in

return dynam c_cast <const Base *>(&d) != 0;

30 Sabine Moisan, Jean-Paul Rigault

A& a ..
B& b
if (is_kind of(a, b))...

the functioni s_ki nd_of <A, B> getsinstantiated; the result ist r ue iff aisa
kind of B that isiff the class of a (whichis A or derived from A) is a subtype of B.

Second class Frame and each of its descendants (represented by F in the fol-
lowing), defines the following two virtua functions:

virtual bool F::is_super_of(const Frane& f) const

{
}

return ::is_kind_of (f, *this);

virtual bool F::is_kind_of(const String& cln) const
{
const Frane *pf = exenplar_of (cln); \
return pf == 0 ? false : pf->is_super_of(*this); \

}

The first one, when called, provokes the instantiation of i s_ki nd_of <F,
Fr ame> which returnst r ue iff parameter f has atype which is a subtype of F, or
say the other way round, iff the current frame F is a supertype of the type of f .

Toredly implementi s_ki nd_of asamethod of F, we need to reverse the
process, hence the second function. Parameter ¢l n is aframe class name (§2.2.2).
Thefunctionexenpl ar _of retrieves an object of the corresponding type to which
we may apply thei s_super _of method. So thei s_ki nd_of method returns
t r ue iff the current frame F is a subtype of the one the class name of whichiscl n.

Note that the code of these two functions is absolutely the same, whichever
frameit is part of. However, it must be replicated in any class derived from Fr ane.
Indeed the type of *t hi s triggers the automatic template instantiation (at compile-
time) of the (two parameters) functioni s_ki nd_of .

Of course these are really tricks. Although we handle type expressions, we
haveto use objectsasarelay. Theflaw isthat RTTI isnot powerful enough asameta
mechanism to deal dynamically with types.

3.3 Virtual construction of frames

Exemplars are the key eIements for scaffolding avirtual construction mecha
nism for frames (Coplien’ s style). This mechanism plays an important role for sup-
porting persistency (saving/restoring frames).

* See “Advanced C++: Programming Style and Idioms’, by James O. Coplien, Addi-
son-Wesley, 1992.

A C++ Frame Library 31

These mechanisms are not yet fully availablein V1.0.
4 FutureWork

» Destruction of framesis not supported yet.

» Savelrestore of framesisto be done. Since frames may be shared between severa
dots, we must carefully save a given frame only once.

— The extension of class Fr ane should be represented in an optimized
fashion to facilitate searching, saving and restoring. At this time, the
extension isjust an SPset <Fr anme>.

e The support library should be improved.

— Class String should be optimized and, in particular, should use
“copy on write” to make copying and returning from function
efficient.

— Class SSet and SPSet should be real classes, with efficient
searching and not a simple specializations of the SLi st and SPLi st
classes.

« Atthistime, it is possible to redefine a ot daemon in a subframe, but not the
whole dlot itself. Thiswill be considered for further rel eases.

* However the structure of thefirst version of FrameLib isto berevisited complete-
ly since we intend to perform code generation using a Meta Object Protocol
(MOP). This will have the advantage of loosening the dependency between the
YAKL parser and FrameLib itself. Also, we need to handle metaobjects repre-
senting the type of objects at run time in a much more powerful way than RTTI
proposes. Here again a MOP appears to be useful. The MOP we are considering
relies on Open C++ v2.0.

32 Sabine Moisan, Jean-Paul Rigault

A Support library

FRAMELIB usesits own library of fundamental data structures. At thistime,
only a preliminary version only is available, containing character strings, lists and
sets, and dictionaries (symbol tables).

A.1 Common definitions (conmon_def s. H)

Thefilecommon_defs.H isincluded by all filesin FRAMEL 1B (and its sup-
port library). It includes all needed standard header files (typeinfo , exception
iostream , assert ..).

A.1.1. Exception handling (Except i on. H)

File common_defs.H includes the file Exception.H which defines an
exception class similar to ANSI C++ one (including a method what). The following
macro helpsin defining exceptions in new classes.

DCL_EXCEPTION(cl, en, base)
Creates the class en, deriving from class base , and nested within
classcl . Classbase itself should be Exception or derived fromiit.
The message returned by what will be something like "cl::en"

Thus, in
class String
{
DCL_EXCEPTION(String, all, Exception);
DCL_EXCEPTION(String, out_of_range, all);
2
the two exception classes String::all : and
String::out_of range are defined. Classall isabase class of

out_of range ;all derivesfrom Exception . For thefirst class,
thewhat method returns "String::out_of _range"

The previous pattern is used consistently throughout the library: each class
with exception definesanested classall which isthe base class for all the specific
exceptions thrown by the embedding class. This makes it possible to catch either a
specific exception, or any exception thrown by a given class, asin this continuation
of the previous example:

try {

}
catch (String::out_of_range) {
Il specific action for bad indexing

/I do something with String’s

}
catch (String::all) {

A C++ Frame Library 33

I trap any (other) exception thrown by String
}

Remember that the order of catch ’sissignificant.
A.1.2. Automatic objects (Aut 0. H)

When manipulating exceptions, one must be very careful about automatic
cleaning up: it isguaranteed only for automatic (i.e. stack allocated) objects. Thefile
Auto.H , which isincluded from common_defs.H , helps turn some kinds of ob-
jectsinto automatic ones. It contains the definition of two classes:

e Auto Ptr<T> , atemplate class for dynamically alocated objects, that is ob-
jects allocated by new;

* Auto_File for automatic closing of files.

An Auto_Ptr object is created from a pointer to T; this pointer must be the
result of acall tonew T . The two operators -> and * are defined to allow accessto
the object pointed to. The accessor ptr returns the value of the pointer itself.

Auto_Ptr<String> ps = new String("hello");
*ps = “bonjour”;

cout << Ps->length();

String *p = ps.ptr();

TheclassAuto_File turnsaFILE* obtained by fopen into an automat-
ically closed object. An Auto_File object isjust usable asaFILE pointer:

Auto_File fp('foo", "r");/ call fopen('foo", "r")
int buf[10];
fread(buf, sizeof(int), 10, fp);/ read 10 int’s into buf

A.2 ClassString (String. H

Thisisavery simple class encapsul ating character strings. It providesfull val-
ue semantics (copy constructor and assignment), concatenation (operators + and
+=), relational operators, indexing (operator []), substring operator (operator ()),
and usual iostream operators (<< and >>).

A.2.1. Public membersof Stri ng

String(const char * = 0)

String(char)

~String()
Regular constructors and destructor. The first one, used as the default
constructor, builds the empty string.

operator const char *() const
String(const Sub_String&)
Conversions from String to regular C string and from

Sabine Moisan, Jean-Paul Rigault

Sub_String to String . See below for an explanation about
Sub_String

String(const String&)
String& operator=(const String&)
String& operator+=(const String&)
Copy operations with full value semantics.

int length() const

bool is_empty() const
Accessorsto the length of the string (not including the terminating null
character).

friend String operator+(const String&, const String&)
Concatenation operator.

friend bool operator==(const String&, const String&)

friend bool operator!=(const String&, const String&)

friend bool operator<(const String&, const String&)

friend bool operator<=(const String&, const String&)

friend bool operator>(const String&, const String&)

friend bool operator>=(const String&, const String&
Relational operators.

char& operator[](int)

char operator[](int) const
Indexing. The first operator isfor variable strings. It may be used asthe
lefthand side of an assignment. The second is for constant strings and
is forbidden as the lefthand side of an assignment.

Sub_String operator()(int, int = -1)

const Sub_String operator()(int, int = -1) const
Substring operators. If s isaString , s(i, j) returns the substring
of s fromindexi toj , inclusively. If the second parameter is omitted,
take up to the end of string s. The first operator is for variable strings.
It may be used in the left hand side of an assignment; the string is then
modified in place:

String s ="0123456789";

String s1 = (3, 5); I/l s1=="345"

s(2, 7) = “hello, kids"; /[s=="01hello,kids89"
The second operator is for constant strings and is forbidden as an
Ivalue. A Sub_String may be used wherever aString may.

friend ostream& operator<<(ostreamé&, const String&)
friend istream& operator>>(istreamé&, String&)
Usual iostream operators.

void fput(FILE *fp) const
void fget(FILE *fp)
These functions are temporary. They help to circumvent ag++ 2.7 bug

A C++ Frame Library 35

which prevents from using afile stream when RTTI iS active.

voi d save(FI LE *fp) const
static String *restore(FlILE *fp)

Persistency support.
A.2.2. Exceptionsof classSt ri ng

String::out_of_range
Bad indexing or substringing.

String::bad_ io
Bad 10 operationinf put , f get , save, orrest ore.

A.3 Container classes

The FRAMEL 1B support library provides generic (template) classes for lists
(sequence of elements or of pointers to elements) and sets (unordered collection of
elements or pointers to elements). It also provides a generic symbol table (that is
(string, value) pairs).

A.3.1. lterators

Each of these container class, say C<El en where EI emdenotes the type of
the elements in the collection, has an associated (passive) iterator class, nhamed
C Ilter<El enr. A C_Iter<El enr object is constructed from a C<El en» ob-
ject; operator () returns a reference (or a pointer if C<El en® is a collection of
pointers) to the current element in the C<El en® object and advance to the next ele-
ment; methodi s_at _end returnst r ue if thereis no more element in the C<El -
enp object. Thuswith an SLi st collection (asimple sequence of elements, see be-
low):

SList<int> |; /1 alist of int
SList _ lter<int>it(l); /1 an iterator to traverse |
while (lit.is_at_end()) /1 full traversal of |
{
int current = it(); /1 take current and advance

cout << current << ' ';

}

Finally, method r eset allowsto set theiterator back onto the “first” element
of the collection.

All iterators may possibly throw the access_beyond_end exception
(more precisely C |t er <El en®: : access_beyond_end) if one attempts to
use operator () beyond the last element of the collection.

36 Sabine Moisan, Jean-Paul Rigault

A.3.2. Genericlists(SLi st . H and SPLi st . H)

Sl i st <El en» isasimple list of objects of type El em El emis not sup-
posed to be a pointer type, and must have full value semantics (copy operations must
be defined). Elements are copied by value into the list itself, thus they cannot be
shared between several container classes.

SLi st (voi d)

~SLi st (voi d)
The (default) constructor builds the empty list; the destructor deletes
thewholelist.

SLi st (const SLi st &)

const SList& operator=(SLi st &)
Copy operations; the right hand side list is duplicated, thus any element
is duplicated as well.

bool is_enpty(void) const
int |length(void) const
Accessors to the number of elementsin thelist.

El em *search(const El em&) const
Search a (copy of the) given element in the list; return O if not found.

voi d append(const El en®)

voi d prepend(const El eng)
Insert (a copy of) an element at the end (append) or the beginning
(pr epend) of thelist.

El em get (voi d)
Return a copy of the first element of the list and remove this first ele-
ment from the list.

bool del (const El eng&)
Destroy a (copy of the) given element from the list; if the element is
not found, the list is unchanged and the function returnsf al se; other-
wiseit returnst r ue.

friend ostream& operator<<(ostream& const SList<El enr&)
voi d save(FILE *fp) const
static SList<El enmr *restore(FlLE *fp)

Usual output operator and persistency support functions.

Class SPLi st <El en isvery similar to SLi st <El en, except that point-
ersto El emare stored in the list, not EI emobjects themselves. This makes sharing
possible, but no direct support for controlling it is provided. The methods are quite
similar to SLi st , with dight variations.

SPLi st (voi d)
~SPLi st (voi d)
The (default) constructor builds the empty list; the destructor delete the

A C++ Frame Library 37

wholelist.

SPLi st (const SPLi st &)
const SPLi st & oper at or =(SPLi st &)
Copy operations; only the pointers are duplicated, thus the elements

are shared between the two lists.
bool is_enpty(void) const
int length(void) const
Accessors to the number of elementsin thelist.

voi d append(El em *)

voi d prepend(El ent)
Insert an element at the end (append) or the beginning (pr epend) of
thelist.

bool search(El em *v) const
Search the given pointer in the list; return O if not found.

friend ostream& operator<<(ostream& const SPLi st <El enr&)
Usual output operator; print the objects pointed to, not the pointers val-
ues.

A.3.3. Generic sets(SSet . Hand SPSet . H)

SSet <El en® is a simple (unordered, without redundancy) set of object of
type El em El emis not supposed to be a pointer type, and must have full value se-
mantics (copy operations must be defined). Elements are copied by value into the set
itself, thus they cannot be shared between several container classes. The default con-
structor build the empty set.

bool contains(const El en& e) const
Returnt r ue if (acopy of) the given element isin the set.

voi d add(const El en& e)
Add (a copy of) the element into the set, if it is not present yet.

int card(void) const
Return the cardinality (number of elements) of the set.

int is_enpty() const
Returnt r ue if the set is empty.

friend ostream& operator<<(ostream&s, const SSet<El enr&)
Usual output operator.

Class SPSet t <El en® isvery similar to SSet <El en®, except that pointers
to El emare stored in the set, not EI emobjects themselves. This makes sharing pos-
sible, but no direct support for controlling it is provided. The methods are quite sim-
ilar to SSet , with dlight variations.

bool contains(El ent e) const
Returnt r ue if the pointer value can be found in the set.

38 Sabine Moisan, Jean-Paul Rigault

voi d add(El em *e)
Add the pointer into the set, if it is not present yet.

int card(void) const
Return the cardinality (number of elements) of the set.

int is_enpty()const
Returnt r ue if the set is empty.

friend ostream& operator<<(ostream& const SPSet <El enr&p)

Usual output operator; print the objects pointed to, not the pointers val-
ues.

A.3.4. Generic symbol tables or dictionaries (Synbol _Tabl e. H)

Synbol _Tabl e<Synbol > isadictionary of Synbol 's. Synbol may be
any type provided that it has full value semantics (copy operations must be defined),
that a method

String Synbol :: nanme(voi d) const

has been defined, and that operator << exists for symbols. The Stri ng re-
turned by method nane is used for searching, inserting, and retrieving in the table.
There are no redundancy (it is impossible for the same name to appear more than
once). The table itself has no value semantics (no copy). The Synbol 's are copied
(by value) into the table.

Synmbol _Tabl e(i nt = HASH_SI ZE)

Synbol _Tabl e(int, const Synmbol[], int = HASH S| ZE)

~Synbol _Tabl e(voi d);
The first constructor builds an empty table. The second turns a regular
C array of Synbol into aSynbol _Tabl e. Elements are copied (by
value). The default value of HASH_SI ZE is 1009, enough for a table
upto 1000-2000 symboals.

int nb_synbol s(voi d) const
Return the number of Synbol 's currently in the table.

bool operator()(const String&
Search for the symbol with the given St ri ng asnane; returnt r ue
if found.

Synbol & operator[](const String&)
If a symbol with the given St ri ng as nane isin the table, return a
reference to it. Otherwise insert a new symbol with this name and
return a reference to it. Thus symbol tables are a sort of associative
array in the manner of AWK.

voi d del (const String&)
void renove(const String& s)

Both function remove the symbol with the given St ri ng as nane

A C++ Frame Library 39

from the table; if the symbol is not in the table, do nothing.

friend ostream& operator<<(ostreamé&,
const Symbol_Table<Symbol>&)
Print out the whole table.

void save(FILE *fp) const
static Symbol_Table *restore(FILE *,
Symbol_Table<Symbol> * = 0)
Persistency support. If the second argument of restore s present, it
must point to an existing Symbol_Table (not necessarily empty) ,
which isfilled with the symbols read from the input. Otherwise, a new
Symbol_Table isallocated within restore

B Templateinstantiation

Thisisreally aserious problem with present C++ compilers, since no portable
scheme has been defined so far and the fourth coming |SO C++ standard does not
addressesthisissue. Each compiler hasits own way to support—or not to support—au-
tomatic instantiation of templates. GNU g++ decided (at |east as of version 2.7.x) not
to support automatic instantiation. Thus the programmer must perform explicit tem-
plate instantiation.

We decided to use the possibility offered by g++ of having external templates
(compilation flag -fexternal-templates). This requires that we use the
#pragma interface and #pragma implementatio n facilities .

Let us describe how we perform the template instantiation”™ using class
SPSet as an example. Suppose that in the whole application we have to instantiate
SPSet<String> , SPSet<int> , and SPSet<Person> . Since the files
SSet.H and SSet.C which contain the definition of class SSet both include the
line

#pragma interface

no code will be generated unlesswe do theinstantiation explicitly in afile con-
taining a pragmaimplementation. To do this, we introduce file SPSet_impl.C

/I File SPSet_impl.C: implementation of class SPSet
I
#pragma implementation “SPSet.H”
#include “SPSet.H”

Il Explicit intantiation for class String

* “Facility” isironic herel
** This is one among many possible schemes. We suggest it because it seems simple
and efficient.

40

Sabine Moisan, Jean-Paul Rigault

#include “String. H

tenpl ate cl ass SPSet <Stri ng>;

tenpl ate class SPSet Iter<String>;

tenpl at e ostream& operat or<<(ostream&, const
SPSet <Stri ng>8&) ;

/1l Explicit intantiation for int

tenpl ate cl ass SPSet <i nt >;

tenpl ate cl ass SPSet Iter<int>;

tenpl at e ostream& operat or <<(ostream&, const
SPSet <i nt >&) ;

/1 Explicit intantiation for class Person

#i ncl ude “Person. H

tenpl ate cl ass SPSet <Per son>;

tenpl ate cl ass SPSet It er<Person>;

tenpl at e ostream& operat or <<(ostream&, const
SPSet <Per son>8&) ;

/1l Other explicit instantiations of SPSet, SPSet_Iter...

Note that friend functions (hereoper at or <<) must beinstantiated separate-

ly from the classitself. Also, iterator classes usually have to be instantiated as well.

Of coursethefile SPSet _i npl . Cmust be compiled and linked with the oth-

er files constituting the application. But, here thisis not enough. The linker will com-
plain about several functions of SPLi st not being defined. The reason is that
SPSet uses SPLi st for itsimplementation. Thus we have to introduce also (if not
done dready) the file SPLi st i npl.H with a contents very similar to
SPSet _i nmpl . C.

/1 File SPList _ inpl.C inplenentation of class SPLi st

#pragma i npl enentation “SPLi st. H
#i ncl ude “SPList. H

/1 Explicit intantiation for class String
#include “String. H

tenpl ate class SPLi st<String>;

tenpl ate class SPList _Iter<String>;

tenpl at e ostream& oper at or <<(ostrean&, const
SPLi st <Stri ng>&);

/[l Explicit intantiation for int

tenpl ate cl ass SPLi st <i nt>;

tenpl ate class SPList_Iter<int>;

tenpl at e ostream& oper at or <<(ostrean&, const
SPLi st <i nt >&) ;

A C++ Frame Library 41

/1l Explicit intantiation for class Person
#i ncl ude “Person. H’

tenpl ate cl ass SPLi st <Per son>;

tenpl ate cl ass SPLi st_Iter<Person>;

tenpl at e ostream& operat or<<(ostrean®, const
SPLi st <Per son>¢&) ;

/'l Oher explicit instantiations of SPList,
SPList _Iter...

Needless to say that the same construction must be applied to all template
classes used either by the library or the application. For instance, files like
Sl ot _i npl . Cand Range_i npl . Cwill certainly be mandatory.

C Fileand Directory Structure of the Frame Library

common. nk

Common definitions for Makefiles in subdirectories. Usable with SUN
make.

i ncl ude_support
A subdirectory containing common definitions, support library classes
specifications, and support template classes implementations. This
directory should bein the search path of C++ include’s.

Ssrc_support
A subdirectory containing source files for non-template support classes
(at thistime, only St r i ng).

test _support

A subdirectory containing source files for testing individually the sup-
port classes. The Makefile here builds al the tests.

franes
A subdirectory containing the source of the frame system, together
with atest example. The Makefile here buildsthe test (t st _Fr ane).
frames/ doc

A sub-subdirectory containing the documentation for the frame library
(this document) (FrameM aker format).

42

Sabine Moisan, Jean-Paul Rigault

A C++ FramelLibrary

43

| ndex

Symbols

#pragma i npl enentation 39
#pragma interface 39
_alias 14

_class_nane 14
_context 18,29

_cpt 14

_exenplar 15,25
_exenplars_dict 14,16
_extension 14

_id 14

_ID SEED 14
_slots_using 14,17
_this_class_nanme 14,25

Frame:: this_class_nane 25

_valid 14

~SList 36

~SPLi st 36
~String 33
~Synbol _Table 38

A

abstract 17
access_beyond_end 35
add 37,38
age_range 27
alias 15
all 16,21,32
ansi C++ 12
append 36, 37
array

associative — 38
assert 32
associative

— array 38
Auto.H 33
Auto_File 33
Auto_Ptr 33

bad_copy 21
bad_io 35
binding

dynamic — 29
bool 12

C

card 22,38
cardinality 22
cards 37
character
— string 13
class
— extension 14, 17
frame — 23
class_nanme 15
ClassSlot 10,17,18, 19, 28
ClassSlot::d assSlot 18,19
Cl assSlot::get_value 21
Cl assSlot::operator T 20
Cl assSlot::operator() 21
Cl assSl ot::operator= 20
Cl assSlot::set_value 20

clear 8
clear 20
clone 16,25

Frane::clone 27
cloning 13, 16, 18, 27
Col |l ection 22
Col l ection::card 22
Col l ection::Collection 22
Collection::is_empty 22
common_defs. H 29, 32
construction

virtual — 14, 30

constructor

copy — 18, 27

frame — 27

relay — 26
contains 21,22,37
context

— frame 18, 19
copy

— constructor 18, 27
count

reference — 14

D

Daenon 18

daemon 7, 26

Sabine Moisan, Jean-Paul Rigault

if modified— 7

if needed — 7, 18, 26, 29
DCL_EXCEPTI ON 32
default

—facet 8,18
del 36,38
dict_entry 14
dictionary 13,38
dynamic

—binding 29
dynani c_cast 29

E

enumeration 22
exception 13, 16, 20
exception 13,32
Exception.H 32
Exenpl ar 16, 26
exemplar 14, 16
exenpl ar _of 15,30
extension 13

class— 14,17
full — 15
strict — 15
external
—template 39
F
Facet 18
facet 7,18
default — 8,18
range— 7,18, 20
value— 7,18
-fexternal -tenpl ates 39
fget 34
FILE 33
fopen 33
fput 34
Frame 10,13, 14, 15, 16, 7217, 21
frame 7
—class 23

context — 18,19
Frame:: alias 14
Frame:: class_name 14
Frame:: _cpt 14
Frame:: exenplar 15
Frame:: _exenmplars_dict 14,16

Franme:: extension 14
Frame::_id 14

Franme:: | D SEED 14

Frane:: slots_using 14,17
Franme:: this_class_nane 14
Frane:: valid 14

Frane: : abstract 17
Frane::alias 15

Frane::all 16

Frame: :cl ass_nane 15
Frane::clone 16
Frame::dict_entry 14
Frame: : exenpl ar _of 15,30
Franme: : Frame 16

Franme::full _extension 15
Frame::id 15
Frane::is_kind of 16,30
Frane::is_super_of 16,30
Frame::n_slots_using 16
Frame: :strict_extension 15
Frame: : unknown 17
Frane::valid 15
FRAME DEF STATIC 15,26
FRAMVE_FI X_PART 25

FrameLi b_Exception 12,13, 16
FraneSl ot 10,17, 18, 19, 28

FrameSl ot :: FranmeSl ot 18,19
FraneSl ot::get_value 21
FraneSl ot::operator T 20
FraneSl ot:: operator= 20
FrameSl ot: :set_value 20
full

— extension 15
full __extension 15

G
g+t+ 12,39
get 36
getvalue 8
get _value 21,28
H

HASH SI ZE 38

id 15

A C++ FramelLibrary

45

if modified

—daemon 7
if needed

— daemon 7, 18, 26, 29
i f_needed 29
instantiation

template— 12, 39
intantiation

template— 13
Interval 22
Interval ::Interval 22
i ostream 32
iostream 12
is at_end 35
is_enpty 22, 34,36, 37, 38
i s_kind of 16,25,29, 30
i s_super_of 16, 25,30

iterator 13,35

L
| ength 34,36, 37
list 13,36

M
make 41
method 7

N

n_slots_using 16, 17
nb_synbols 38
new 16, 27

O

operator 34,34,36,37,38,39

operator T 20,28
operator!= 34
operator() 21,28, 34,38
operator+= 34

oper at or << 16, 22

operat or= 20, 28, 34, 36, 37
operator== 34
operator> 34

out _of _range 20,21,35

P
persistency 14, 39

persitancy 30
prepend 36,37
protected 16

Range 18,21
range

—facet 7,18,20
Range::contains 21
reference

—count 14
relay

— constructor 26
renove 38
reset 35
restore 35, 36,39
rtti 12, 14, 15, 29, 30, 35

S

save 35, 36,39

Scal ar::set_value 20
Scal ar Sl ot 10, 17, 18, 19
Scal ar Sl ot : : get _val ue

21

Scal ar Sl ot::operator T 20

Scal ar Sl ot : : operat or ()
Scal ar Sl ot : : oper at or =
Scal ar Sl ot : : Scal ar Sl ot
search 36,37
semantics

vaue— 7,13,17,22, 27
set 13,37
setvalue 8
set valid 20
set _value 20,28
SList 13,36
SList.H 36
SList::~SList 36
SlLi st::append 36
SList::del 36
SList::get 36
Slist::is_enpty 36
SList::length 36
SList::operator= 36
SList::prepend 36
SList::restore 36
SList::save 36
SList::search 36

21
20
18, 19

46

Sabine Moisan, Jean-Paul Rigault

SList::SList 36
Slot 10,17,21
sot 7,17,26
Slot:: context 18,29
Slot::all 21
Slot::bad copy 21
Slot::clear 20
Slot::get _value 28
Slot::operator T 28
Slot::operator() 21,28
Sl ot::operator= 28
Slot::out_of _range 20,21
Slot::set_valid 20
Slot::set_value 28
Sl ot::unconput abl e 20,21
SPLi st 13,36
SPList.H 36
SPLi st::~SPList 36
SPLi st:: append 37
SPList::is_enpty 37
SPList::length 37
SPLi st::operator= 37
SPLi st:: prepend 37
SPLi st::search 37
SPLi st::SPList 36
SPSet 13,14, 15
SPSet. H 37
SPSet ::add 38
SPSet::card 38
SPSet : : contains 37
SPSet::is_enpty 38
SSet 13,22
SSet.H 37
SSet::add 37
SSet::card 37
SSet::contains 37
SSet::is_enpty 37
strict

— extension 15
strict_extension 15
String 13,14,15,33
string

character — 13
String::~String 33
String::bad io 35
String::fget 34
String::fput 34

String::is_enpty 34
String::length 34
String::operator() 34
String::operator+= 34
String::operator= 34
String::out_of _range 35
String::restore 35
String::save 35
String::String 33
symbol

—table 13
Synbol _Tabl e 13,14,38
Synbol _Table.H 38

Synbol _Tabl e: : ~Synbol _Tabl e

38
Synbol _Tabl e: : del 38

Synbol _Tabl e: : HASH SI ZE 38
Synbol _Tabl e: : nb_synbols 38

Synbol _Tabl e: : operat or ()
Synbol _Tabl e: : renmove 38
Synbol _Tabl e::restore 39
Synbol _Tabl e:: save 39

Synbol Tabl e:: Synbol _Table 38

T
T::operator<= 22
T::operator== 22
table

symbol — 13
template

— ingtantiation 12, 13, 39

external — 39
template-based 12
typeid 15
typeinfo 32

U

unconput abl e 20,21
unknown 17

\/
valid 15
value
—facet 7,18
— semantics 7, 13,17, 22, 27
virtual 18, 26

A C++ FramelLibrary

47

— construction 14, 30
W
what 32
Y
yakl 8

Sabine Moisan, Jean-Paul Rigault

dINRIA

Unité de recherche INRIA Lorraine, technopéle de NaBiabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LESIGY
Unité de recherche INRIA Rennes, IRISA, Campusensitaire de Beaulieu, 35042 RENNES Cede
Unité de recherche INRIA Rhone-Alpes, A@aue Félix Vallet, 38031 GRENOBLE Cedel
Unité de recherche INRIA Rocquencourt, domaine aledéau, Rocquencourt, BP 105, LE CHESNCede
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLS Cede

Editeur
Inria, Domaine de duceau, Rocquencourt, BP 105 LE CHENCede (France)

ISSN 0249-6399

