
HAL Id: inria-00069954
https://hal.inria.fr/inria-00069954

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A C++ Frame Library : User Manual and
Implementation Notes

Sabine Moisan, Jean-Paul Rigault

To cite this version:
Sabine Moisan, Jean-Paul Rigault. A C++ Frame Library : User Manual and Implementation Notes.
[Technical Report] RT-0217, INRIA. 1998, pp.50. �inria-00069954�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50454654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00069954
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

appor t

 t e ch n i qu e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

1998

 A C++ Frame Library:
User Manual and Implementation Notes

SabineMOISAN - Jean-PaulRIGAULT

N˚ 0217
February 1998

PROGRAMME 3

Intelligenceartificielle,
systèmescognitifs

et interactionhommemachine

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS cedex (France)

Téléphone : 04 93 65 77 77 - international : +33 4 93 65 77 77
Télécopie : 04 93 65 77 65 - international : +33 4 93 65 77 65

A C++ Frame Library
User Manual and

Implementation Notes

SabineMOISAN*

Jean-PaulRIGAULT **

Programme 3 : Intelligenceartificielle, systèmescognitifs
et interactionhomme-machine

Projet Orion

Rapport technique n˚0217 - Février 1998

46 pages

Abstract: This document briefly describesFRAMEL IB , a C++ library to manipulate
“frames” as they are used in the Artificial Intelligence world. The library provides a
general framework (!) for creating new frames (!!) by inheritance. The intended use
is to generate new frames automatically, from a frame description language. But
nothing prevents from using this library “manually”. This document should be suffi-
cient for directly using the library or for using it on an automatic generation basis. It
also presents some design issues for those who are interested in the guts of the
library. Note thatFRAMEL IB requires a C++ compiler supporting templates,ANSI

exceptions, andRTTI (Run Time Type Information).

Key-words: knowledge-based systems, frames, C++.

(Résumé : tsvp)

* Email: moisan@sophia.inria.fr
** Email: jpr@essi.fr

Une bibliothèque de
« frames » en C++

Résumé :Ce document décrit brièvementFRAMEL IB , une bibliothèque écrite en
C++ et destinée à manipuler des « frames », structures de représentation des con-
naissance utilisées en Intelligence artificielle. La bibliothèque fournit une cadre
général permettant de créer de nouveau types de frames en utilisant l’héritage de
classes. Typiquement, les frames seront générées ainsi automatiquement à partir
d’un langage de description de frames. Mais rien n’empêche d’utiliser la bibliothè-
que « manuellement ». Ce document devrait être suffisant à la fois pour utiliser
directement la bibliothèque et pour l’utiliser en génération automatique. Il discute
également quelques décisions de conception pour ceux que l’implémentation inté-
resse. Il convient de noter queFRAMEL IB requiert un compilateur C++ supportant
les génériques (templates), les exceptionANSI et l’identification dynamique de type
(RTTI).

Mots-clé : systèmes à base de connaissance, frames, C++.

A C++ Frame Library 5

Table of Contents

 Table of Contents. 5

1 Introduction . 7
1.1 A brief introduction to “frames” . 7
1.2 Examples of frames . 8
1.3 Implementing frames in C++. 9
1.4 Environment and compiler . 12

2 The Frame Library . 12
2.1 Support library . 12
2.2 Class Frame . 13

2.2.1. Instance attributes of Frame 13
2.2.2. Frame class (static) members and methods 14
2.2.3. Frame instance methods 15
2.2.4. Exceptions of class Frame 16

2.3 Class Slot . 17
2.3.1. Types of slots 17
2.3.2. Facets and daemons 18
2.3.3. Methods of slots 18
2.3.4. Exceptions of class Slot 21

2.4 Class Range . 21
2.4.1. Types of ranges 21
2.4.2. Class Interval 22
2.4.3. Class Collection 22

2.5 Generating new frames . 23
2.5.1. General structure of a frame class 23
2.5.2. Fixed (slot independent) part 25
2.5.3. Slot dependent part 26

2.6 Using frames . 27
2.6.1. Creating and manipulating frames globally 27
2.6.2. Accessing slots 28

3 Implementation Notes . 29
3.1 Implementation of daemons (if_needed) . 29
3.2 Implementation of is_kind_of. 29
3.3 Virtual construction of frames . 30

4 Future Work . 31

A Support library . 32
A.1 Common definitions (common_defs.H). 32

A.1.1. Exception handling (Exception.H) 32
A.1.2. Automatic objects (Auto.H) 33

A.2 Class String (String.H) . 33

6 Sabine Moisan, Jean-Paul Rigault

A.2.1. Public members of String 33
A.2.2. Exceptions of class String 35

A.3 Container classes . 35
A.3.1. Iterators 35
A.3.2. Generic lists (SList.H and SPList.H) 36
A.3.3. Generic sets (SSet.H and SPSet.H) 37
A.3.4. Generic symbol tables or dictionaries (Symbol_Table.H)38

B Template instantiation. 39

C File and Directory Structure of the Frame Library 41

 Index . 43

A C++ Frame Library 7

1 Introduction

1.1 A brief introduction to “frames”

Frames are complex data structures used to represent “typical” objects or sit-
uations in Artificial Intelligence systems. Although there might be some religious is-
sues in putting it so directly, a frame looks very much like a class in an object-orient-
ed language such asSMALLTALK or C++. A frame describes a collection of objects;
it has attributes that are calledslots. It has also methods. Frames can inherit from
each other or be combined together to form composite objects.

A main difference with regular classes, though, is that frames exhibit a two
levels structure:

• first, slots (or attributes) represent roles, features involved in the typical object or
situation represented by the frame;

• second,facets qualify these slots.

Thus, slots do not simply carry a value: theirfacets represent various features
attached to the manipulation of the slot value. Some facets exhibit anactive behav-
iour, that is they are associated with some function: such facets are calleddaemons.
They correspond to “reflexes” that must be automatically triggered by the frame sys-
tem. The circumstances when a daemon is executed depends on its type, but its exe-
cution is always transparent to the user. For example, an “if needed” daemon is trig-
gered on a read access to the value of a slot, whereas an “if modified” daemon is trig-
gered on a write access to the value of a slot. In any cases, the corresponding
functions have oneimplicit parameter: the instance of the frame itself.

This version ofFRAMEL IB (V 1.0) supports four kinds of facets (including
one daemon) for each slot:

• A value facet, which simply represents the value of the slot; this value may be of
any scalar type (boolean, integer, real) or of any class type with value semantics*

(such asString,Vector, Array, Set...). It may also be (a reference to) an-
other frame.

• A range facet which represents the domain of the value facet; this range may be
nothing, an interval, an enumeration...

• An “if needed” daemon, which is a function computing the value of the slot when-
ever the value facet has not been initialized.

* A type hasvalue semantics when each object carries its own value, and when this val-
ue may be copied through initialization or assignment. Consequently, there may be first class
citizenvariables (as well as constants) of the type.

8 Sabine Moisan, Jean-Paul Rigault

• A default facet which is used as the value of the slot whenever the value facet has
not been initialized and no “if needed” daemon has been defined. The type of the
default facet is identical to the one of the value facet. The default value must also
fall within the range defined by the range facet.

One can imagine other kinds of facets and daemons, and indeed many of them
have been defined in the AI literature.

Three methods are associated with slots:

• Set value is used to store a value into the value facet;

• Get value either retrieves the value from the value facet, or calls the “if needed”
daemon, or returns the default value, or throw an exception, in this order, depend-
ing on the initialization status of the facet;

• Clear removes the value (if any) set in the value facet (not yet implemented).

1.2 Examples of frames

To give an idea, here follows the description of some frames representing ob-
jects related to persons. The description language used is close to YAKL, ORION

project own frame description language.

The first frame represents the basic attributes of a person. The
family_name and birth_date slots have only a (non initialized) value facet.
The age slot has a range and an “if needed” daemon which is used here as a sort of
active value. The marital status slot is of enumerated type and has a default facet.

Frame {

name: Person
comment: "General description of a person"

Attributes

String name: family_name

Date name: birth_date

Integer name: age
default: 30
range: [0,150]
if_needed: return today.year - birth_date.year;

Symbol name: marital
comment: "marital status"
range: [single,married,divorced,widow]
default: single

A C++ Frame Library 9

method: void get_married(Person partner) {
marital = married;

}
}

Of course, one may define another frame, sayWoman, inheriting fromPer-
son. The new frameWoman adds a new slot (maiden_name) with a default value
and no daemon. It also refines the slotage which is inherited fromPerson, by giv-
ing a new definition of its “if needed” daemon* . Finally, it overrides the method
get_married.

Frame {

name: Woman
Subtype Of: Person

Attributes

String name: maiden_name
default: family_name

Override Integer name: age
if_needed: throw exception dont_ask;

Override method: void get_married(Person husband) {
marital = married;
family_name = husband.family_name

}
}

1.3 Implementing frames in C++

A frame system must provide the following minimal set of services:

• Create a new frame with various slots and facets;

• Create a new instance of an existing frame;

• Read/write the value of a slot;

• Clear a slot, that is remove its value (not yet implemented).

Usually frame systems are implemented with traditional AI languages such as
LISP and its dialects, or even in languages specialized in knowledge representation.

* In general frame systems, it is possible to redefine entirely an inherited slot (avirtual
slot so to speak). InFRAMEL IB V 1.0 we restrict ourselves to the redefinition of the inherited
daemons. See also §3.1.

10 Sabine Moisan, Jean-Paul Rigault

However we decided to implement a (restricted) frame system in C++ at least
for two reasons:

• Portability: the various dialects ofLISP are not portable, and specialized languag-
es are... special.

• Efficiency: clearly compiled languages like C++ generate much more efficient
code than interpreted ones.

Of course efficiency has its cost. The basically static nature of C++ prevents
from a natural expression of mostreflexive* constructs. If one tries to relax the static
constraints, which is certainly possible, the immediate consequence is losing strong
typing which induces lower programming safety** but also impaired efficiency. In-
deed, the static analysis performed by C++ constitutes one major factor of its effi-
ciency.

So we have to face the challenge of building a system exhibiting a power of
expression (with some metaconstructs) sufficient for our AI applications and still re-
specting the C++ philosophy (strong typing and maximum static analysis).

TheFRAMEL IB library is a set of classes which allows the definition of new
classes representing frames. The main classes ofFRAMEL IB areFrame (the abstract
base class of all frames),Slot (the abstract base class of all slots) and its three var-
iations (ScalarSlot , ClassSlot , andFrameSlot). TheSlot hierarchy is
template-based. A new frame class may be defined by deriving a class fromFrame
(or from any of its descendants). Just to give the flavour of it, this is the sketch of the
definition for classPerson seen in §1.2:

class Person: public Frame {
public:

// If needed daemon definitions
virtual int ifn_age(void) {

return today().year - birth_date.year;
}
// Other if_needed daemons (§2.5.1, §2.5.3)

// Slots
ClassSlot<String, Person> family_name;
ClassSlot<Date, Person> birth_date;
ScalarSlot<int, Person> age;
ScalarSlot<Marital, Person> marital;

* In C++ classes are not objects. There are no metaclasses, although there are some
metaobjects, especially those related toRTTI.

** In fact, programming safety is not our main concern, since in our project,the C++
code is automatically generated, as it will be explained later. Thus most static checks can be
performed before generation.

A C++ Frame Library 11

// Methods
virtual void get_married(Person partner) {

marital = married;
}

// Application constructors (§2.3.3, §2.5)
// (automatically generated by YAKL)
//In particular,these constructors have the
//responsability to link the «if needed» daemon
//(ifn-age) with its slots (age)

// Some fix code automatically generated
// by macro FRAME_FIX_PART (§2.5)

};

When defining classWoman, we just have to add the new slot and to redefine
the virtual function associated with the daemon:

class Woman: public Person {
public:

// Exceptions
DCL_EXCEPTION(Woman, dont_ask, All);

// If needed daemon (re)definitions
virtual int ifn_age(void) {

throw dont_ask();
}

// Slots
FrameSlot<String, Woman> maiden_name;

// Methods
virtual void get_married(Person husband) {

marital = married;
family_name = husband.family_name;

}
// Application constructors (§2.3.3, §2.5)
// (automatically generated by YAKL)

// Some fix code automatically generated
// by macro FRAME_FIX_PART (§2.5)

};

As will be discussed later (§3.1) the principal design decision inFRAMEL IB

was to figure out how to implement the daemon definition (andredefinition).

12 Sabine Moisan, Jean-Paul Rigault

Of course, frames are used as regular C++ classes, and slots may be used (most
of the time) as regular members of the class (there are some restrictions, though: see
§2.6):

Woman& w = *new Woman();

w.family_name = "Doe";

w.age = 42;

try {

cout << “age of “ << w.family_name << " = " << w.age;

}

catch (Woman::dont_ask) {...}

1.4 Environment and compiler

FRAMEL IB is template-based. It uses (non-template) classes nested within
template classes. It does not require an automatic template instantiating mechanism,
although that would be useful.

Frame and slot methods raise (throw)ANSI exceptions which must be de-
scendants from classFrameLib_Exception .

When manipulating frames we need to be able to inquire for the type of a
frame at run time. For this we rely on the C++RTTI mechanism as it has been defined
by theANSI C++ committee. But we had to extend it a little (more on this in §3.2).

Finally we use someANSI extensions: booleans (bool), explicit template in-
stantiation, initialization ofconst static members...

Consequently we need a compiler close to theANSI C++ level (as of April 95,
at least). We implementedFRAMEL IB with GNU g++ (versions 2.7.0 and 2.7.2).
However, theANSI implementation in these compilers is not mature yet, and we had
to fight with some compiler bugs (“internal compiler error” being the mildest!), es-
pecially in the area of exception handling.

FRAMEL IB does not require any class foundation library, since it provides its
own (and simple) one (see Appendix A). Anyhow, it requires theiostream library
which comes with any C++ compiler.

2 The Frame Library

2.1 Support library

FRAMEL IB provides its own library of support classes (fundamental data
structures) which will be fully described in appendix A. This support library in-
cludes:

A C++ Frame Library 13

• Some common classes used throughout the library for handling exceptions
(§A.1); all exceptions in FRAMELIB are derived from class
FrameLib_Exception, which in turn derives from exception, the ANSI

standard class;

• Class String (§A.2): a class encapsulating the usual (null-terminated) C char-
acter strings, with full value semantics and usual operations (concatenation with
operator +, indexing, and also sub-stringing);

• Class SList<Elem> (§A.3.2) and class SSet<Elem> (§A.3.3): generic lists
and sets; the first one is an ordered collection allowing redundancy; the second is
unordered without redundancy; Elem represents any type with value semantics
(copy operations); copy of objects are stored; both classes have full value seman-
tics (i.e. copy operations duplicate all the elements in the collection);

• Class SPList<Elem> (§A.3.2) and SPSet<Elem> (§A.3.3): generic lists and
sets of pointers; the first one is an ordered collection allowing redundancy (of
pointer values), the second is unordered without redundancy (of pointer values);
Elem represents any type; only pointers to objects are stored; both classes have
pointer value semantics (i.e. copy operations duplicate only the pointers, thus the
objects pointed to are shared after duplication);

• Class Symbol_Table<Symbol> (§A.3.4): a dictionary class; the type denoted
by Symbol must have a method name(void) returning a String which is
used as access key in the table; no redundancy is permitted; type Symbol must
have also full value semantics, since copies of Symbol’s are stored in the table.

All classes, except String, have an associated iterator class (§A.3.1) which
is also a generic class (SList_Iter<Elem>, SPSet_Iter<Elem>,
Symbol_Table_Iter<Elem>...).

As usual in C++, template instantiation is a problem, since it differs from one
compiler to the other. One can find how it is done for g++ in appendix B.

2.2 Class Frame

Class Frame is the focal point of the frame library. It is the base class of all
frame classes. The class maintains the set of its instances and of the instances of all
its derivatives (the extension of the class). Methods are provided to extract subsets
corresponding to specific types from this extension.

Note that Frame instances have no value semantics by default (no copy oper-
ators are defined). They may just be purposely cloned, that is duplicated.

2.2.1. Instance attributes of Frame

All the following members are private to class Frame.

14 Sabine Moisan, Jean-Paul Rigault

String _id
The unique identifier of this frame instance. It is of the form
frame_NNN whereNNN is some number.

const String *_class_name
The name of the class this instance belongs to. It is a pointer since
many instances may share the same class name. It is initialized through
the _this_class_name static member (§2.2.2). This member
helps in supplementing theRTTI mechanism (§3.2).

String _alias
Another name for this instance. Contrarily to_id, it is not guaranteed
to be unique, since it is user defined.

SPSet<Slot> _slots_using
The set of (pointers to) slots referencing this frame. The cardinal of this
set acts as areference count of all slots referencing the frame.

bool _valid
This flags indicates that the instance is currently valid (i.e. alive). This
is reserved for future uses.

2.2.2. Frame class (static) members and methods

Static data members specific toFrame itself

All the following static members areprivate to classFrame.

SPSet<Frame> _extension
The extension of classFrame, that is a set of (pointers to) all the
instances of frames (that is instances of class Frame or of any class
derived from it, at whatever level).

int _cpt
A counter used to compute the unique identifier_id. It is incremented
by one each time a new instance of frame is created.

const String _ID_SEED
The base name for_id. Currently it is"frame_".

Symbol_Table<dict_entry> _exemplars_dict
The set of exemplars. There is one exemplar for each class derived
from Frame. This helps to extend theRTTI mechanism (§3.2) and also
to ensure persistency and virtual construction (§3.3). The structure
dict_entry is defined as a class nested within classFrame.

Static data members that must be replicated in all derived class

All the following members areprivate to classFrame.

const String _this_class_name
The name of the current class. Each class derived fromFrame must

A C++ Frame Library 15

define such a static member.

Frame _exemplar

An exemplar of this frame. This is used to introduce a new type of
frame to the extended RTTI mechanism. Each class derived from
Frame must define such a static member.

These two fields must be initialized for any frame derived from class Frame.
A C++ preprocessor macro, FRAME_DEF_STATIC, help initializing them (§2.5.2).

Static methods

All the following members are public to class Frame. They make it possible
to extract from the extension of Frame all the instances corresponding to a specific
subtype.

SPSet<Frame> strict_extension(const Frame& f)
static SPSet<Frame> strict_extension(const String& cln)
SPSet<Frame> strict_extension(const type_info& ti)

Strict extension: given either a Frame instance f, its class name cln,
or its type information ti as returned by typeid, return the set of
(pointers to) all the instances with exactly the same type.

SPSet<Frame> full_extension(const Frame& f)
SPSet<Frame> full_extension(const String& cln)

Full extension: given either a Frame instance f or its class name cln,
return the set of (pointers to) all the instances with exactly the same
type or with a type derived from it. One may wonder why there is not
an SPSet <Frame> full-extension (const type-info&)-see §3.2 for the
beginning of the answer.

The following method is protected, since it is to be used only within subclass-
es.

const Frame *exemplar_of(const String& cln)

Return a pointer to the exemplar of class with name cln. If it cannot
be found return the null pointer. Exemplar handling is described in §3.2
and §3.3.

2.2.3. Frame instance methods

Accessors

All these methods are public.

const String& id(void) const
const String& class_name(void) const
const String& alias(void) const}
bool valid(void) const

Accessors to the private fields with identical names but prefixed with

16 Sabine Moisan, Jean-Paul Rigault

an underscore.

int n_slots_using(void) const
Number of slots referring to this Frame.

Type manipulation

The following functions are public.

virtual bool is_kind_of(const String& cln) const
Return true when the current instance has the same type or a type
derived from the class with class name cln (§3.2).

virtual bool is_super_of(const Frame& f) const
Return true if the current frame has a type which is a super-type of
the type of f (§3.2).

Constructors, destructors and similar functions

This function is public.

virtual Frame& clone(const String& al = ““) const
Return a new instance (actually allocated by new) which is an absolute
copy of the current frame. The facets are simply duplicated, member-
wise. Any uninitialized facet remains so.

The two following constructors are protected since class Frame is logically
abstract and cannot be constructed except from its derived classes.

Frame(const String *cln, const String& al = "")
Construct a Frame with class name cln and alias al.

Frame(Exemplar ex, const String *cln)
Construct an exemplar of the class, “introducing” it to the base class
Frame and putting it into _exemplars_dict (§3.2 and §3.3).

Note that, since Frame has no public constructor, it may be constructed only
by its derivatives.

IO operators

This is a friend function.

friend ostream& operator<<(ostream& os, const Frame& f)
Output operator displaying the frame class name, its id, and its possible
alias.

2.2.4. Exceptions of class Frame

All exceptions are public nested classes.

class Frame::all : public FrameLib_Exception
The base class of all Frame exceptions.

A C++ Frame Library 17

class Frame::unknown : public Frame::all

An instance was searched for within the Frame extension and could
not be found.

class Frame::abstract : public Frame::all

Class Frame is logically abstract, but cannot be such for C++ (for a
number of technical reasons). This exception signals the fact that
Frame is trying to be used as a concrete class (for example when one
attempts to clone it).

2.3 Class Slot

Class Frame itself has no slot, but most of the classes derived from it will
have some. They represents the attributes of the objects together with some specific
behaviour when manipulating their value.

2.3.1. Types of slots

There are three kinds of slots federated through an unique base class Slot.
This is mainly for efficiency reasons since one single class would have been logically
enough.Whereas class Slot is a regular class, the three others are template classes,
with two type parameters: T is the value type, and F is the type of the frame which
the slot belongs to (see §3.1 for details on the use of F).

• Class ScalarSlot<T, F>: this class corresponds to slots the value of wh.ich
is a built-in type with full copy semantics. Parameter passing and function return-
ing is efficiently performed by value. Parameter T should designate a C++ built-
in type (char, int, long, float, double...) but this cannot be enforced by
testing.

• Class ClassSlot<T, F>: this class corresponds to slots the value of which is
a type with full copy semantics but for which passing and returning by value is
not efficient. So passing (and returning whenever possible) by reference (to a
const) is preferred instead. Typical examples include String, Vector, Ar-
ray, Set... Note that one may safely use class ScalarSlot for these types:
the only risk is poor efficiency. Here again, we cannot enforce statically the ex-
istence of the full copy semantics.

• Class FrameSlot<T, F>: this class corresponds to slots the value of which is
another frame. Remember that frames have no value semantics. Thus the same
frame instance may be freely shared by several slots. The value and default facets
are simply pointers to the frame. The cardinal of _slots_using
(n_slots_using) represents the number of slots sharing the current frame
(§2.2.1).

Class Slot has private copy constructor and private assignment operator to
avoid any default value semantics for slots (and consequently for frame).

18 Sabine Moisan, Jean-Paul Rigault

2.3.2. Facets and daemons

Each slot, whichever kind, has a (private) pointer to the frame instance it be-
longs to (_context). We call this instance its context frame. And it has also four
facets including one daemon, as already mentioned: value, range, ”if needed” dae-
mon, and default. All facets are private.

The exact type of the value and default facets depends on the type of the slot.
For ScalarSlot and ClassSlot, it is necessary to know whether the value has
been initialized. Thus a boolean flag is associated with these facets (forming a nested
private class Facet). This is not needed for FrameSlot, since the facets are sim-
ply a pointer to a frame, and the null pointer indicates “uninitialized” well enough.

The range slot is always a pointer to a Range object. Indeed, as we shall see
in §2.4, Range is the root class of a full hierarchy.

Finally, the “if needed” facet is implemented as a private nested class Dae-
mon. This class contains a pointer to a method of class F (the embedding frame)
without argument and returning a T value (for ScalarSlot and ClassSlot) or
a reference to T (for FrameSlot). Thus the type of this pointer (designated as If-
Daemon) to member is either T (F::*)(void) or T& (F::*)(void). In
the latter case, it is the responsibility of the method itself to ensure that the returned
object has been correctly allocated. Associated with this pointer, one can find a
boolean flag indicating that the pointer to member has been initialized.

This means that for each facet, there must exist at least one method of the right
type in the embedding frame class. If the corresponding method is virtual, a derived
frame will be able to redefine it, changing the behaviour of the base class daemon.
This is exactly what we wished. More on this in §3.1.

2.3.3. Methods of slots

Constructors

Class Slot itself has no other methods than private copy operators (§2.3.1)
and a default constructor needed for internal reasons.

The three kinds of slots have a (public) default constructor (still for internal
reasons) and a sort of copy constructor:

ScalarSlot(F *cxt, const ScalarSlot& sl)
ClassSlot(F *cxt, const ClassSlot& sl)
FrameSlot(F *cxt, const FrameSlot& sl)

"Copy constructors" for slots, used during frame cloning. The context
frame must be passed also, this is why they are not copy constructors in
the usual sense.

They also present the following four different regular constructors the proto-
types of which vary depending on the slot type:

A C++ Frame Library 19

ScalarSlot(F *cxt, If_Daemon ifn, bool ifn_valid = false)
ClassSlot(F *cxt, If_Daemon ifn,bool ifn_valid = false)
FrameSlot(F *cxt, If_Daemon ifn, bool ifn_valid = false)

Initialize the slot with context frame cxt and the “if needed” daemon
pointing to method ifn. The parameter ifn must point to a virtual
function of class F, returning either a T or a T& (see §2.3.2). The
boolean ifn_valid indicates whether the “if needed” daemon is
considered valid within the current frame class or that it is the responsi-
bility of derived class to validate it.

ScalarSlot(F *cxt, If_Daemon ifn, T def,
bool ifn_valid = false)

ClassSlot(F *cxt, If_Daemon ifn, const T& def,
bool ifn_valid = false)

FrameSlot(F *cxt, If_Daemon ifn, T& def,
bool ifn_valid = false)

Initialize the slot with context frame cxt, the “if needed” daemon
pointing to method ifn, and the default facet being set to def. The
parameter ifn must point to a virtual function of class F, returning
either a T or a T& (§2.3.2). The boolean ifn_valid indicates
whether the “if needed” daemon is considered valid within the current
Frame class or that it is the responsibility of derived class to validate it.

ScalarSlot(F *cxt, If_Daemon ifn, Range<T> *pr,
bool ifn_valid = false)

ClassSlot(F *cxt, If_Daemon ifn, Range<T> *pr,
bool ifn_valid = false)

FrameSlot(F *cxt, If_Daemon ifn, Range<T> *pr,
bool ifn_valid = false)

Initialize the slot with context frame cxt, the “if needed” daemon
pointing to method ifn, and the range facet being pointed to by pr.
The parameter ifn must point to a virtual function of class F, return-
ing either a T or a T& (§2.3.2). The boolean ifn_valid indicates
whether the “if needed” daemon is considered valid within the current
Frame class or that it is the responsibility of derived class to validate it.

ScalarSlot(F *cxt, If_Daemon ifn, T def,
Range<T> *pr,bool ifn_valid = false)

ClassSlot(F *cxt, If_Daemon ifn, const T& def,
Range<T> *pr, bool ifn_valid = false)

FrameSlot(F *cxt, If_Daemon ifn, T& def,
Range<T> *pr,bool ifn_valid = false)

Initialize the slot with context frame cxt, the “if needed” daemon
pointing to method ifn, the default facet being set to def, and the
range facet being pointed to by pr. The parameter ifn must point to a
virtual function of class F, returning either a T or a T& (§2.3.2). The
boolean ifn_valid indicates whether the “if needed” daemon is

20 Sabine Moisan, Jean-Paul Rigault

considered valid within the current Frame class or that it is the respon-
sibility of derived class to validate it.

Value manipulation

The three kinds of slots have all the following public methods:

void set_valid(void)

Validate the if “needed” daemon of the slot. The pointer to member
must have been previously initialized using one of the slot constructors
(possibly in a base class). Of course this supersedes the value of
ifn_valid given at construction time.

void clear(void)

Clear the value facet of the slot (that is slot becomes uninitialized).

All three kinds of slot present also the following methods to set and retrieve
the slot value. They also make it possible to manipulate a slot with typeT as if it were
a simple object of typeT (more or less–see §2.6.2).

T ScalarSlot::operator=(T t)
const T& ClassSlot::operator=(const T& t)
T& FrameSlot::operator=(T& t)

Set the value facet tot. The first two operators perform a full copy,
according toT value semantics. This means thatT must have copy
operations (copy constructor and assignment) defined, at least by
default. The last operator merely sets a pointer.

ScalarSlot::operator T(void)
ClassSlot::operator T(void)
FrameSlot::operator T&(void)

Retrieves the slot value: return the value facet if it is valid; otherwise
call the “if needed” daemon if it is valid; otherwise return the default
value if it is valid; otherwise throw exceptionuncomputable. Each
possible value is tested against the possible range facet. Should the test
fail, exceptionout_of_range is thrown. Also, if the “if needed”
daemon returns a valid result, this result becomes the new contents of
the value facet* .

These two operators may be respectively replaced by the following two meth-
ods (older pre-C++ style):

void ScalarSlot::set_value(T t)
void ClassSlot::set_value(const T& t)
void FrameSlot::set_value(T& t)

Identical tooperator=.

* This is clearly a choice. It might appear questionable in the future.

A C++ Frame Library 21

T ScalarSlot::get_value(void)
const T& ClassSlot::get_value(void)
T& FrameSlot::get_value(void)

Identical to operator T.

For convenience (§2.6.2) we also provide the following operator which makes
it possible to use slots as methods (an accessor to itself, so to speak):

T ScalarSlot::operator()(void)
const T& ClassSlot::operator()(void)
T& FrameSlot::operator()(void)

Identical to operator T&

2.3.4. Exceptions of class Slot

Class Slot defines the following (nested) public exception classes:

class Slot::all : public FrameLib_Exception

The base class of all Frame exceptions.

class Slot::bad_copy : public Slot::all

Attempt to perform a C++ default copy of a slot.

class Slot::uncomputable : public Slot::all

Thrown when the value of a slot cannot be computed.

class Slot::out_of_range : public Slot::all

Thrown when the value of a slot does not fall within its range.

2.4 Class Range

2.4.1. Types of ranges

Range instances are objects representing domain of values. In fact there is a
full hierarchy of domains federated under the base class Range<T>. All classes in
this hierarchy are template classes depending on the type T of the value. T may be
any type (scalar, built-in, user class, frame).

Class Range<T> itself is an abstract class with no members but a pure virtual
function:

virtual bool contains(const T& t) const = 0

This function returns true if the object t “falls within the range”. Its
precise definition is under the responsibility of the derived classes.

Since this interface is the only thing that classes Frame and Slot know about
Range, the system is completely open, and new subtypes of Range may be freely
added.

At this time (version V 1.0), we have defined only two subtypes of Range:

22 Sabine Moisan, Jean-Paul Rigault

class Interval<T> : public Range<T>
An interval is defined by two values of typeT, tmin and tmax.
Methodcontains returnstrue whentmin <= t <= tmax. Of
course this supposes that typeT has gotoperator<=.

class Collection<T> : public Range<T>
A (finite) collection ofT objects. In other words an enumerated type.
Methodscontains returnstrue when t is equal to one of the mem-
bers of the collection. This supposes thatT definesT::operator==.

Both classes have a display operator (operator<<), mainly for debugging
purposes.

2.4.2. Class Interval

ClassInterval is very simple indeed. AnInterval object is constructed
from two values of typeT:

Interval(const T& mi, const T& mx)
Construct the interval with lower* boundmi and upper boundmx. The
bounds are part of the interval itself.

Recall thatT::operator<= must be defined.

2.4.3. Class Collection

ClassCollection is not much more complicated thanInterval. It sim-
ply has a richer variety of constructors:

Collection(void)
Default constructor: the collection is empty (contains always return
false).

Collection(const T& t)
A singleton collection.

Collection(const T tab[], int n)
Initialize the collection from acopy of the components in arraytab, of
dimensionn. This supposes thatT has value semantics.

Collection(const SSet<T>& s)
Initialize the collection from acopy of the components in the (simple)
sets. This supposes thatT has value semantics (this is also needed by
SSet–see §A.3.3).

bool is_empty(void) const
What do you think?

int card(void) const
Thecardinality of the collection, that is its number of elements.

* In fact it does not matter which is the largest.

A C++ Frame Library 23

2.5 Generating new frames

Creating frame classes consists simply in deriving new classes from the base
class Frame or from one of its descendants. The frame classes will have slots and
daemons. However, the derivation must obey a systematic process in order to main-
tain the consistency of the frame system.

In the Orion project at INRIA, we generate automatically the code of the new
frame classes from the analysis of a frame description language. This section ex-
plains how to perform this generation.

2.5.1. General structure of a frame class

There are two main parts in the definition of a new frame class:

• An application-dependent part, which contains the definitions related to slots and
daemons; this includes also the constructors needed to initialize correctly a frame
object.

• A fixed part, present in all frames, which contains fields and methods indispensa-
ble to maintain the frame system consistent. This part is absolutely independent
of the particular frame or of its slot.

Let us revisit the first example given in §1.2 and §1.3. Here follows the full
definition of the frame class Person in our system:

1 class Person: public BaseClass {
2 public:
3
4 //---
5 // Application dependent part: slots and methods
6 //---
7
8 enum Marital {SINGLE, MARRIED, DIVORCED, WIDOW};
9
10 // Functions for daemons (all slots)
11 virtual String ifn_family_name(void);
12 virtual Date ifn_birth_date(void);
13 virtual int ifn_age(void);
14 virtual Marital ifn_Marital(void);
15
16 // The slots themselves
17 ClassSlot<String, Person> family_name;
18 ClassSlot<Date, Person> birth_date;
19 ScalarSlot<int, Person> age;
20 ScalarSlot<Marital, Person> marital;
21
22 // Methods
23 virtual void get_married(Person partner) {
24 marital = married;
25 }

24 Sabine Moisan, Jean-Paul Rigault

26
27 //---
28 // Application dependent part: constructors
29 //---
30
31 // Regular (user) constructor(s)
32 Person(const String& al = "")
33 : BaseClass(&Person::_this_class_name, al),
34 family_name(this, &ifn_family_name),
35 birth_date(this, &ifn_birth_date),
36 age(this, &ifn_age, &age_range, true),
37 marital(this, &ifn_marital, SINGLE)
38 {}
39
40 protected:
41
42 // Construction relay
43 Person(const String *cln, const String& al = "")
44 : BaseClass(cln, al),
45 family_name(this, &ifn_family_name),
46 birth_date(this, &ifn_birth_date),
47 age(this, &ifn_age, &age_range, true),
48 marital(this, &ifn_marital, SINGLE)
49 {}
50
51 // Copy constructors (for clone())
52 Person(const Person& p, const String& al = "")
53 : BaseClass(&Person::_this_class_name, al),
54 family_name(this, p.family_name),
55 birth_date(this, p.birth_date),
56 age(this, p.age),
57 marital(this, p.marital)
58 {}
59
60 Person(const Person& p, const String *cln,
61 const String& al = "")
62 : BaseClass(cln, al),
63 family_name(this, p.family_name),
64 birth_date(this, p.birth_date),
65 age(this, p.age),
66 marital(this, p.marital)
67 {}
68
69 //---
70 // Fixed part (independent of the slots)
71 // generated by the macro call
72 // FRAME_FIX_PART(Person, BaseClass);
73 //---
74
75 private:
76

A C++ Frame Library 25

77 static const String Person::_this_class_name;
78 static Person Person::_exemplar;
79
80 protected:
81
82 Person(Exemplar ex)
83 : BaseClass(ex, &Person::_this_class_name)
84 {}
85
86 Person(Exemplar ex, const String *cln)
87 : BaseClass(ex, cln)
88 {}
89
90 public:
91
92 virtual bool is_super_of(const Frame& f) const
93 {
94 return is_kind_of(f, *this);
95 }
96
97 virtual bool is_kind_of(const String& cln) const
98 {
99 Frame *pf = exemplar_of(cln);
100 return pf == 0 ? false: pf->is_super_of(*this);
101 }
102
103 virtual Person& clone(const String& al = ““) const
104 {
105 return *new Person(*this, al);
106 }
107
108 };

Even in the slot dependent part, not all the code is dependent on the particular
frame. The dependent code is indicated in slanted Courier font, like
family_name on line 63.

2.5.2. Fixed (slot independent) part

This is the simplest part. It starts from line 69. It is entirely parametrable by
the name of the frame class, here Person, and the name of the base class, here
BaseClass. Thus, we defined a preprocessor macro, FRAME_FIX_PART, with
two parameters, to generate this part.

Consequently all lines from 69 to 107 can be replaced by the single line:

FRAME_FIX_PART(Person, BaseClass);

In the fixed part one can find the declaration of two static members: the frame
own class name (_this_class_name) and an “exemplar” for this frame (lines 77
and 78). As usual in C++, these static members must be defined (and initialized) ex-

26 Sabine Moisan, Jean-Paul Rigault

actly once in the whole program (usually in a.C file). To help this initialization, we
defined the macroFRAME_DEF_STATIC(cl) wherecl is the frame class (here
Person). So it is enough to put somewhere at the beginning of thePerson.C file
the line

FRAME_DEF_STATIC(Person);

to get these two statics properly initialized.

Note that the constructors come by pair. This pattern in consistently used
throughout the frame class. For instance, at line 82 and 86, one can find two construc-
tors taking anExemplar as first parameter. The first one

Person::Person(Exemplar ex)

is used to construct an object ofexact type Person. The second one,

Person(Exemplar ex, const String *cln)

is just arelay constructor. The classes derived fromPerson will invoke it, with
their own class name as the second parameter. And it will just propagate this infor-
mation upwards, to its base class. (Note how the first constructor calls the second
one, but for its base class.)

The role and handling of exemplars will be explained in 3.2 and §3.3.

2.5.3. Slot dependent part

In the slot dependent part, one can find the definitions of frame and of every-
thing related to them (slots, methods, daemons...). This is of course highly dependent
on the frame itself and on its application.

Slots and daemons

At the beginning (line 8) we find the definition of an enumeration type which
is used as the value type for slotmarital. This is of course application dependent.
Then we find (lines 11–14) one declaration of a virtual function for every slot that
will be defined in this frame. This function is to be called when the ”if needed” dae-
mon of the slot is invoked. Since it is virtual, it will be redefinable in classes derived
from Person, changing the behaviour of thePerson’s slot.

Note that here, onlyifn_age is likely to have avalid definition inPerson
itself. This explains why line 36 includestrue as last parameter for the constructor
of slotage (2.3.3). The other daemon functions must also have a definition. They
cannot be pure virtual unless we want to turnPerson into an abstract class.

Then (lines 17–20) comes the slots definition. No mystery here. Note that the
second template parameter must be the embedding frame name (herePerson).

If the frame has methods (other than daemon related ones), they could be de-
clared at this point (line 23).

A C++ Frame Library 27

Constructors

After the slots definition, the slot dependent part conclude with a bunch of four
constructors. As already indicated (§2.5.2) they come by pair: one for constructing
and object of exact type Person, the other for relaying a construction of a derived
class object.

The first pair of constructors (lines 32 and 43) may be termed “regular” con-
structors. Only the first one is supposed to be called from outside the frame system,
hence its public status. The arguments indicated are minimal. They can be supple-
mented by (trailing) application-dependent parameters.

Note that both constructors have the same structure:

• A member initialization list consisting of

– one line for the base class, calling the relay constructor;

– one line for each defined slot, choosing one of the slot constructors
(§2.3.3).

• An empty body, although a application may fill it with some specific code.

A note on lines 36 and 47: we suppose here that age_range is a global ob-
ject of type Range defined somewhere in the program; for instance

Interval<int> age_range(0, 150);

The second pair of constructors take a first parameter of type Person. So
they look like copy constructors. Indeed, they are needed to implement clone (line
103). They are very similar to the first pair, with one important difference: they no
longer depend on the application will and wish, but only on the list of slots.

2.6 Using frames

2.6.1. Creating and manipulating frames globally

Frame classes may be used as any C++ class. One can define frame objects,
apply methods to them, pass them as parameters, return them from functions, and so
on.

However recall that frames are not supposed to have value semantics. The
only copy operation which is allowed is cloning (clone). Of course an application
may define copy operators for frames (copy constructor, assignment). This is under
its own responsibility.

The absence of (default) copy operations implies that frame are not first class
citizens for C++. In particular, it is unwise to manipulate frames through anything
else than a pointer or a reference. As it is unwise to create a frame without using the
new operator. Class Frame itself will certainly assume in the future that all frames
are allocated onto the heap.

28 Sabine Moisan, Jean-Paul Rigault

2.6.2. Accessing slots

As already mentioned (§1.3), frame slots can be manipulated almost as if they
were regular C++ class data members. For instance, the following is correct and con-
venient:

Person somebody;
somebody.age = 17; // Slot<int, Person>::operator=
cout << somebody.age; // conversion to int: operator T

Using get_value and set_value is much more awkward:

somebody.age.set_value(17);
cout << somebody.age.get_value();

However, the world is not perfect! Nor is the identification between type T and
type Slot<T, F> . The problem arises for ClassSlot<T, F> and FrameS-
lot<T, F> when one tries to call a T method. For instance:

int n = somebody.family_name.length();

This does not work! The error message from g++ is something like

no member function `ClassSlot<String,Person>::length()’
defined

The reason is simple: for various reasons, C++ refuses to perform implicit con-
versions onto the target parameter of a method call. So slot family_name is not
automatically converted to String . Of course, the user may use get_value

int n = somebody.family_name.get_value().length();

or even uglier use cast, like

int n = ((const String&)somebody.family_name).length()

or, to make it “modern” C++

int n = static_cast<const
String&>(somebody.family_name).length();

The following syntaxes are also acceptable but, since they involve a full con-
struction of a String object, they are less efficient:

int n =
static_cast<String>(somebody.family_name).length();
int n = ((String)somebody.family_name).length();

Of course, all these forms are horrible. This is why we provide operator()
for slots (§2.3.3). The syntax is much nicer, since a slot can now be considered as a
method, an accessor to its value:

int n = somebody.family_name().length();

A C++ Frame Library 29

3 Implementation Notes

3.1 Implementation of daemons (if_needed)

The implementation of” if needed” daemon is one interesting point in
FRAMELIB. The constraints where the following:

• The daemon is triggered within a slot, thus it has to be a slot attribute;

• The daemon must be executed within the context of the frame the daemon be-
longs to, thus it has to be a member-function of this frame;

• The daemon may be specialized in classes derived from this frame, thus it has to
be a virtual function.

The first two points may seem somewhat contradictory, at first glance. In fact
using a pointer to member as explained in §2.3.2 helps solving the contradiction. Of
course, we need to have a frame to invoke the function pointed to; but each slot
knows its embedding frame (its _context, §2.3.2). The third point is satisfied also,
owing to the fact that, in C++, access through a pointer to member always implies
dynamic binding.

3.2 Implementation of is_kind_of

Another annoying problem was the absence of a general is_kind_of oper-
ator in C++. Of course, we have weak forms of this operator using dynamic_cast;
the expression

dynamic_cast<A *>(p)

is non-null if, and only if, p points to an object of type A or derived from A, that is
iff p points to a kind of A, or iff the type of *p is a subtype of A. Unfortunately, class
A must be statically defined; even with RTTI enabled, it is impossible to write (al-
though it would be simple to implement!):

dynamic_cast<typeid(*p1)>(p)

to check whether p points to the sort of object pointed to by p1. To circumvent the
difficulty, we proceed in two steps.

First a general template function is_kind_of is defined in
common_defs.H:

template <class Deriv, class Base>
inline bool is_kind_of(const Deriv& d, const Base& b)
{

return dynamic_cast<const Base *>(&d) != 0;
}

This function is automatically instantiated when it is called; for instance in

30 Sabine Moisan, Jean-Paul Rigault

A& a = ...;
B& b = ...;
if (is_kind_of(a, b))...

the function is_kind_of<A, B> gets instantiated; the result is true iff a is a
kind of B that is iff the class of a (which is A or derived from A) is a subtype of B.

Second class Frame and each of its descendants (represented by F in the fol-
lowing), defines the following two virtual functions:

virtual bool F::is_super_of(const Frame& f) const
{

return ::is_kind_of(f, *this);
}

virtual bool F::is_kind_of(const String& cln) const
{

const Frame *pf = exemplar_of(cln); \
return pf == 0 ? false : pf->is_super_of(*this); \

}

The first one, when called, provokes the instantiation of is_kind_of<F,
Frame> which returns true iff parameter f has a type which is a subtype of F, or
say the other way round, iff the current frame F is a supertype of the type of f.

To really implement is_kind_of as a method of F, we need to reverse the
process, hence the second function. Parameter cln is a frame class name (§2.2.2).
The function exemplar_of retrieves an object of the corresponding type to which
we may apply the is_super_of method. So the is_kind_of method returns
true iff the current frame F is a subtype of the one the class name of which is cln.

Note that the code of these two functions is absolutely the same, whichever
frame it is part of. However, it must be replicated in any class derived from Frame.
Indeed the type of *this triggers the automatic template instantiation (at compile-
time) of the (two parameters) function is_kind_of.

Of course these are really tricks. Although we handle type expressions, we
have to use objects as a relay. The flaw is that RTTI is not powerful enough as a meta-
mechanism to deal dynamically with types.

3.3 Virtual construction of frames

Exemplars are the key elements for scaffolding a virtual construction mecha-
nism for frames (Coplien’s style*). This mechanism plays an important role for sup-
porting persistency (saving/restoring frames).

* See “Advanced C++: Programming Style and Idioms”, by James O. Coplien, Addi-
son-Wesley, 1992.

A C++ Frame Library 31

These mechanisms are not yet fully available in V1.0.

4 Future Work

• Destruction of frames is not supported yet.

• Save/restore of frames is to be done. Since frames may be shared between several
slots, we must carefully save a given frame only once.

– The extension of class Frame should be represented in an optimized
fashion to facilitate searching, saving and restoring. At this time, the
extension is just an SPset<Frame>.

• The support library should be improved.

– Class String should be optimized and, in particular, should use
“copy on write” to make copying and returning from function
efficient.

– Class SSet and SPSet should be real classes, with efficient
searching and not a simple specializations of the SList and SPList
classes.

• At this time, it is possible to redefine a slot daemon in a subframe, but not the
whole slot itself. This will be considered for further releases.

• However the structure of the first version of FrameLib is to be revisited complete-
ly since we intend to perform code generation using a Meta Object Protocol
(MOP). This will have the advantage of loosening the dependency between the
YAKL parser and FrameLib itself. Also, we need to handle metaobjects repre-
senting the type of objects at run time in a much more powerful way than RTTI
proposes. Here again a MOP appears to be useful. The MOP we are considering
relies on Open C++ v2.0.

32 Sabine Moisan, Jean-Paul Rigault

A Support library

FRAMELIB uses its own library of fundamental data structures. At this time,
only a preliminary version only is available, containing character strings, lists and
sets, and dictionaries (symbol tables).

A.1 Common definitions (common_defs.H)

The file common_defs.H is included by all files in FRAMELIB (and its sup-
port library). It includes all needed standard header files (typeinfo , exception ,
iostream , assert ...).

A.1.1. Exception handling (Exception.H)

File common_defs.H includes the file Exception.H which defines an
exception class similar to ANSI C++ one (including a method what). The following
macro helps in defining exceptions in new classes.

DCL_EXCEPTION(cl, en, base)
Creates the class en , deriving from class base , and nested within
class cl . Class base itself should be Exception or derived from it.
The message returned by what will be something like "cl::en" .
Thus, in

class String
{

DCL_EXCEPTION(String, all, Exception);
DCL_EXCEPTION(String, out_of_range, all);
...

};
the two exception classes String::all , and
String::out_of_range are defined. Class all is a base class of
out_of_range ; all derives from Exception . For the first class,
the what method returns "String::out_of_range" .

The previous pattern is used consistently throughout the library: each class
with exception defines a nested class all which is the base class for all the specific
exceptions thrown by the embedding class. This makes it possible to catch either a
specific exception, or any exception thrown by a given class, as in this continuation
of the previous example:

try {
// do something with String’s

}
catch (String::out_of_range) {

// specific action for bad indexing
}
catch (String::all) {

A C++ Frame Library 33

// trap any (other) exception thrown by String
}

Remember that the order of catch ’s is significant.

A.1.2. Automatic objects (Auto.H)

When manipulating exceptions, one must be very careful about automatic
cleaning up: it is guaranteed only for automatic (i.e. stack allocated) objects. The file
Auto.H , which is included from common_defs.H , helps turn some kinds of ob-
jects into automatic ones. It contains the definition of two classes:

• Auto_Ptr<T> , a template class for dynamically allocated objects, that is ob-
jects allocated by new;

• Auto_File for automatic closing of files.

An Auto_Ptr object is created from a pointer to T; this pointer must be the
result of a call to new T . The two operators -> and * are defined to allow access to
the object pointed to. The accessor ptr returns the value of the pointer itself.

Auto_Ptr<String> ps = new String("hello");
*ps = “bonjour";
cout << Ps->length();
String *p = ps.ptr();

The class Auto_File turns a FILE * obtained by fopen into an automat-
ically closed object. An Auto_File object is just usable as a FILE pointer:

Auto_File fp("foo", "r");// call fopen("foo", "r")
int buf[10];
fread(buf, sizeof(int), 10, fp);// read 10 int’s into buf

A.2 Class String (String.H)

This is a very simple class encapsulating character strings. It provides full val-
ue semantics (copy constructor and assignment), concatenation (operators + and
+=), relational operators, indexing (operator []), substring operator (operator ()),
and usual iostream operators (<< and >>).

A.2.1. Public members of String

String(const char * = 0)
String(char)
~String()

Regular constructors and destructor. The first one, used as the default
constructor, builds the empty string.

operator const char *() const
String(const Sub_String&)

Conversions from String to regular C string and from

34 Sabine Moisan, Jean-Paul Rigault

Sub_String to String . See below for an explanation about
Sub_String .

String(const String&)
String& operator=(const String&)
String& operator+=(const String&)

Copy operations with full value semantics.

int length() const
bool is_empty() const

Accessors to the length of the string (not including the terminating null
character).

friend String operator+(const String&, const String&)
Concatenation operator.

friend bool operator==(const String&, const String&)
friend bool operator!=(const String&, const String&)
friend bool operator<(const String&, const String&)
friend bool operator<=(const String&, const String&)
friend bool operator>(const String&, const String&)
friend bool operator>=(const String&, const String&

Relational operators.

char& operator[](int)
char operator[](int) const

Indexing. The first operator is for variable strings. It may be used as the
lefthand side of an assignment. The second is for constant strings and
is forbidden as the lefthand side of an assignment.

Sub_String operator()(int, int = -1)
const Sub_String operator()(int, int = -1) const

Substring operators. If s is a String , s(i, j) returns the substring
of s from index i to j , inclusively. If the second parameter is omitted,
take up to the end of string s . The first operator is for variable strings.
It may be used in the left hand side of an assignment; the string is then
modified in place:

String s = "0123456789";
String s1 = s(3, 5); // s1=="345”
s(2, 7) = “hello, kids"; // s=="01hello, kids89"

The second operator is for constant strings and is forbidden as an
lvalue. A Sub_String may be used wherever a String may.

friend ostream& operator<<(ostream&, const String&)
friend istream& operator>>(istream&, String&)

Usual iostream operators.

void fput(FILE *fp) const
void fget(FILE *fp)

These functions are temporary. They help to circumvent a g++ 2.7 bug

A C++ Frame Library 35

which prevents from using a file stream when RTTI is active.

void save(FILE *fp) const
static String *restore(FILE *fp)

Persistency support.

A.2.2. Exceptions of class String

String::out_of_range

Bad indexing or substringing.

String::bad_io

Bad IO operation in fput, fget, save, or restore.

A.3 Container classes

The FRAMELIB support library provides generic (template) classes for lists
(sequence of elements or of pointers to elements) and sets (unordered collection of
elements or pointers to elements). It also provides a generic symbol table (that is
(string, value) pairs).

A.3.1. Iterators

Each of these container class, say C<Elem> where Elem denotes the type of
the elements in the collection, has an associated (passive) iterator class, named
C_Iter<Elem>. A C_Iter<Elem> object is constructed from a C<Elem> ob-
ject; operator () returns a reference (or a pointer if C<Elem> is a collection of
pointers) to the current element in the C<Elem> object and advance to the next ele-
ment; method is_at_end returns true if there is no more element in the C<El-
em> object. Thus with an SList collection (a simple sequence of elements, see be-
low):

SList<int> l; // a list of int

...

SList_Iter<int> it(l); // an iterator to traverse l

while (!it.is_at_end()) // full traversal of l

{

int current = it(); // take current and advance

cout << current << ' ';

}

Finally, method reset allows to set the iterator back onto the “first” element
of the collection.

All iterators may possibly throw the access_beyond_end exception
(more precisely C_Iter<Elem>::access_beyond_end) if one attempts to
use operator () beyond the last element of the collection.

36 Sabine Moisan, Jean-Paul Rigault

A.3.2. Generic lists (SList.H and SPList.H)

Slist<Elem> is a simple list of objects of type Elem. Elem is not sup-
posed to be a pointer type, and must have full value semantics (copy operations must
be defined). Elements are copied by value into the list itself, thus they cannot be
shared between several container classes.

SList(void)
~SList(void)

The (default) constructor builds the empty list; the destructor deletes
the whole list.

SList(const SList&)
const SList& operator=(SList&)

Copy operations; the right hand side list is duplicated, thus any element
is duplicated as well.

bool is_empty(void) const
int length(void) const

Accessors to the number of elements in the list.

Elem *search(const Elem&) const
Search a (copy of the) given element in the list; return 0 if not found.

void append(const Elem&)
void prepend(const Elem&)

Insert (a copy of) an element at the end (append) or the beginning
(prepend) of the list.

Elem get(void)
Return a copy of the first element of the list and remove this first ele-
ment from the list.

bool del(const Elem&)
Destroy a (copy of the) given element from the list; if the element is
not found, the list is unchanged and the function returns false; other-
wise it returns true.

friend ostream& operator<<(ostream&, const SList<Elem>&)
void save(FILE *fp) const
static SList<Elem> *restore(FILE *fp)

Usual output operator and persistency support functions.

Class SPList<Elem> is very similar to SList<Elem>, except that point-
ers to Elem are stored in the list, not Elem objects themselves. This makes sharing
possible, but no direct support for controlling it is provided. The methods are quite
similar to SList, with slight variations.

SPList(void)
~SPList(void)

The (default) constructor builds the empty list; the destructor delete the

A C++ Frame Library 37

whole list.

SPList(const SPList&)
const SPList& operator=(SPList&)

Copy operations; only the pointers are duplicated, thus the elements
are shared between the two lists.

bool is_empty(void) const
int length(void) const

Accessors to the number of elements in the list.

void append(Elem *)
void prepend(Elem*)

Insert an element at the end (append) or the beginning (prepend) of
the list.

bool search(Elem *v) const
Search the given pointer in the list; return 0 if not found.

friend ostream& operator<<(ostream&, const SPList<Elem>&)
Usual output operator; print the objects pointed to, not the pointers val-
ues.

A.3.3. Generic sets (SSet.H and SPSet.H)

SSet<Elem> is a simple (unordered, without redundancy) set of object of
type Elem. Elem is not supposed to be a pointer type, and must have full value se-
mantics (copy operations must be defined). Elements are copied by value into the set
itself, thus they cannot be shared between several container classes. The default con-
structor build the empty set.

bool contains(const Elem& e) const
Return true if (a copy of) the given element is in the set.

void add(const Elem& e)
Add (a copy of) the element into the set, if it is not present yet.

int card(void) const
Return the cardinality (number of elements) of the set.

int is_empty() const
Return true if the set is empty.

friend ostream& operator<<(ostream&s, const SSet<Elem>&)
Usual output operator.

Class SPSett<Elem> is very similar to SSet<Elem>, except that pointers
to Elem are stored in the set, not Elem objects themselves. This makes sharing pos-
sible, but no direct support for controlling it is provided. The methods are quite sim-
ilar to SSet, with slight variations.

bool contains(Elem* e) const
Return true if the pointer value can be found in the set.

38 Sabine Moisan, Jean-Paul Rigault

void add(Elem *e)
Add the pointer into the set, if it is not present yet.

int card(void) const
Return the cardinality (number of elements) of the set.

int is_empty()const
Return true if the set is empty.

friend ostream& operator<<(ostream&, const SPSet<Elem>&p)
Usual output operator; print the objects pointed to, not the pointers val-
ues.

A.3.4. Generic symbol tables or dictionaries (Symbol_Table.H)

Symbol_Table<Symbol> is a dictionary of Symbol’s. Symbol may be
any type provided that it has full value semantics (copy operations must be defined),
that a method

String Symbol::name(void) const

has been defined, and that operator << exists for symbols. The String re-
turned by method name is used for searching, inserting, and retrieving in the table.
There are no redundancy (it is impossible for the same name to appear more than
once). The table itself has no value semantics (no copy). The Symbol’s are copied
(by value) into the table.

Symbol_Table(int = HASH_SIZE)
Symbol_Table(int, const Symbol[], int = HASH_SIZE)
~Symbol_Table(void);

The first constructor builds an empty table. The second turns a regular
C array of Symbol into a Symbol_Table. Elements are copied (by
value). The default value of HASH_SIZE is 1009, enough for a table
upto 1000-2000 symbols.

int nb_symbols(void) const
Return the number of Symbol’s currently in the table.

bool operator()(const String&)
Search for the symbol with the given String as name; return true
if found.

Symbol& operator[](const String&)
If a symbol with the given String as name is in the table, return a
reference to it. Otherwise insert a new symbol with this name and
return a reference to it. Thus symbol tables are a sort of associative
array in the manner of AWK.

void del(const String&)
void remove(const String& s)

Both function remove the symbol with the given String as name

A C++ Frame Library 39

from the table; if the symbol is not in the table, do nothing.

friend ostream& operator<<(ostream&,
const Symbol_Table<Symbol>&)

Print out the whole table.

void save(FILE *fp) const
static Symbol_Table *restore(FILE *,

Symbol_Table<Symbol> * = 0)
Persistency support. If the second argument of restore is present, it
must point to an existing Symbol_Table (not necessarily empty) ,
which is filled with the symbols read from the input. Otherwise, a new
Symbol_Table is allocated within restore .

B Template instantiation

This is really a serious problem with present C++ compilers, since no portable
scheme has been defined so far and the fourth coming ISO C++ standard does not
addresses this issue. Each compiler has its own way to support–or not to support–au-
tomatic instantiation of templates. GNU g++ decided (at least as of version 2.7.x) not
to support automatic instantiation. Thus the programmer must perform explicit tem-
plate instantiation.

We decided to use the possibility offered by g++ of having external templates
(compilation flag -fexternal-templates). This requires that we use the
#pragma interface and #pragma implementatio n facilities*.

Let us describe how we perform the template instantiation** using class
SPSet as an example. Suppose that in the whole application we have to instantiate
SPSet<String> , SPSet<int> , and SPSet<Person> . Since the files
SSet.H and SSet.C which contain the definition of class SSet both include the
line

#pragma interface

no code will be generated unless we do the instantiation explicitly in a file con-
taining a pragma implementation. To do this, we introduce file SPSet_impl.C :

// File SPSet_impl.C: implementation of class SPSet
//---
#pragma implementation “SPSet.H”
#include “SPSet.H”

// Explicit intantiation for class String

* “Facility” is ironic here!
** This is one among many possible schemes. We suggest it because it seems simple

and efficient.

40 Sabine Moisan, Jean-Paul Rigault

#include “String.H”
template class SPSet<String>;
template class SPSet_Iter<String>;
template ostream& operator<<(ostream&, const
SPSet<String>&);

// Explicit intantiation for int
template class SPSet<int>;
template class SPSet_Iter<int>;
template ostream& operator<<(ostream&, const
SPSet<int>&);

// Explicit intantiation for class Person
#include “Person.H”
template class SPSet<Person>;
template class SPSet_Iter<Person>;
template ostream& operator<<(ostream&, const
SPSet<Person>&);

// Other explicit instantiations of SPSet, SPSet_Iter...

Note that friend functions (here operator<<) must be instantiated separate-
ly from the class itself. Also, iterator classes usually have to be instantiated as well.

Of course the file SPSet_impl.C must be compiled and linked with the oth-
er files constituting the application. But, here this is not enough. The linker will com-
plain about several functions of SPList not being defined. The reason is that
SPSet uses SPList for its implementation. Thus we have to introduce also (if not
done already) the file SPList_impl.H with a contents very similar to
SPSet_impl.C:

// File SPList_impl.C: implementation of class SPList
//---
#pragma implementation “SPList.H”
#include “SPList.H”

// Explicit intantiation for class String
#include “String.H”
template class SPList<String>;
template class SPList_Iter<String>;
template ostream& operator<<(ostream&, const
SPList<String>&);

// Explicit intantiation for int
template class SPList<int>;
template class SPList_Iter<int>;
template ostream& operator<<(ostream&, const
SPList<int>&);

A C++ Frame Library 41

// Explicit intantiation for class Person

#include “Person.H”

template class SPList<Person>;

template class SPList_Iter<Person>;

template ostream& operator<<(ostream&, const
SPList<Person>&);

// Other explicit instantiations of SPList,
SPList_Iter...

Needless to say that the same construction must be applied to all template
classes used either by the library or the application. For instance, files like
Slot_impl.C and Range_impl.C will certainly be mandatory.

C File and Directory Structure of the Frame Library

common.mk

Common definitions for Makefiles in subdirectories. Usable with SUN

make.

include_support

A subdirectory containing common definitions, support library classes
specifications, and support template classes implementations. This
directory should be in the search path of C++ include’s.

src_support

A subdirectory containing source files for non-template support classes
(at this time, only String).

test_support

A subdirectory containing source files for testing individually the sup-
port classes. The Makefile here builds all the tests.

frames

A subdirectory containing the source of the frame system, together
with a test example. The Makefile here builds the test (tst_Frame).

frames/doc

A sub-subdirectory containing the documentation for the frame library
(this document) (FrameMaker format).

42 Sabine Moisan, Jean-Paul Rigault

A C++ Frame Library 43

Index

Symbols

#pragma implementation 39
#pragma interface 39
_alias 14
_class_name 14
_context 18, 29
_cpt 14
_exemplar 15, 25
_exemplars_dict 14, 16
_extension 14
_id 14
_ID_SEED 14
_slots_using 14, 17
_this_class_name 14, 25

Frame::_this_class_name 25
_valid 14
~SList 36
~SPList 36
~String 33
~Symbol_Table 38

A

abstract 17
access_beyond_end 35
add 37, 38
age_range 27
alias 15
all 16, 21, 32
ansi C++ 12
append 36, 37
array

associative — 38
assert 32
associative

— array 38
Auto.H 33
Auto_File 33
Auto_Ptr 33

B

bad_copy 21
bad_io 35
binding

dynamic — 29
bool 12

C

card 22, 38
cardinality 22
cards 37
character

— string 13
class

— extension 14, 17
frame — 23

class_name 15
ClassSlot 10, 17, 18, 19, 28
ClassSlot::ClassSlot 18, 19
ClassSlot::get_value 21
ClassSlot::operator T 20
ClassSlot::operator() 21
ClassSlot::operator= 20
ClassSlot::set_value 20
clear 8
clear 20
clone 16, 25

Frame::clone 27
cloning 13, 16, 18, 27
Collection 22
Collection::card 22
Collection::Collection 22
Collection::is_empty 22
common_defs.H 29, 32
construction

virtual — 14, 30
constructor

copy — 18, 27
frame — 27
relay — 26

contains 21, 22, 37
context

— frame 18, 19
copy

— constructor 18, 27
count

reference — 14

D

Daemon 18
daemon 7, 26

44 Sabine Moisan, Jean-Paul Rigault

if modified — 7
if needed — 7, 18, 26, 29

DCL_EXCEPTION 32
default

— facet 8, 18
del 36, 38
dict_entry 14
dictionary 13, 38
dynamic

— binding 29
dynamic_cast 29

E

enumeration 22
exception 13, 16, 20
exception 13, 32
Exception.H 32
Exemplar 16, 26
exemplar 14, 16
exemplar_of 15, 30
extension 13

class — 14, 17
full — 15
strict — 15

external
— template 39

F

Facet 18
facet 7, 18

default — 8, 18
range — 7, 18, 20
value — 7, 18

-fexternal-templates 39
fget 34
FILE 33
fopen 33
fput 34
Frame 10, 13, 14, 15, 16, ??–17, 21
frame 7

— class 23
context — 18, 19

Frame::_alias 14
Frame::_class_name 14
Frame::_cpt 14
Frame::_exemplar 15
Frame::_exemplars_dict 14, 16

Frame::_extension 14
Frame::_id 14
Frame::_ID_SEED 14
Frame::_slots_using 14, 17
Frame::_this_class_name 14
Frame::_valid 14
Frame::abstract 17
Frame::alias 15
Frame::all 16
Frame::class_name 15
Frame::clone 16
Frame::dict_entry 14
Frame::exemplar_of 15, 30
Frame::Frame 16
Frame::full_extension 15
Frame::id 15
Frame::is_kind_of 16, 30
Frame::is_super_of 16, 30
Frame::n_slots_using 16
Frame::strict_extension 15
Frame::unknown 17
Frame::valid 15
FRAME_DEF_STATIC 15, 26
FRAME_FIX_PART 25
FrameLib_Exception 12, 13, 16
FrameSlot 10, 17, 18, 19, 28
FrameSlot::FrameSlot 18, 19
FrameSlot::get_value 21
FrameSlot::operator T 20
FrameSlot::operator= 20
FrameSlot::set_value 20
full

— extension 15
full_extension 15

G

g++ 12, 39
get 36
get value 8
get_value 21, 28

H

HASH_SIZE 38

I

id 15

A C++ Frame Library 45

if modified
— daemon 7

if needed
— daemon 7, 18, 26, 29

if_needed 29
instantiation

template — 12, 39
intantiation

template — 13
Interval 22
Interval::Interval 22
iostream 32
iostream 12
is_at_end 35
is_empty 22, 34, 36, 37, 38
is_kind_of 16, 25, 29, 30
is_super_of 16, 25, 30
iterator 13, 35

L

length 34, 36, 37
list 13, 36

M

make 41
method 7

N

n_slots_using 16, 17
nb_symbols 38
new 16, 27

O

operator 34, 34, 36, 37, 38, 39
operator T 20, 28
operator!= 34
operator() 21, 28, 34, 38
operator+= 34
operator<< 16, 22
operator= 20, 28, 34, 36, 37
operator== 34
operator> 34
out_of_range 20, 21, 35

P

persistency 14, 39

persitancy 30
prepend 36, 37
protected 16

R

Range 18, 21
range

— facet 7, 18, 20
Range::contains 21
reference

— count 14
relay

— constructor 26
remove 38
reset 35
restore 35, 36, 39
rtti 12, 14, 15, 29, 30, 35

S

save 35, 36, 39
Scalar::set_value 20
ScalarSlot 10, 17, 18, 19
ScalarSlot::get_value 21
ScalarSlot::operator T 20
ScalarSlot::operator() 21
ScalarSlot::operator= 20
ScalarSlot::ScalarSlot 18, 19
search 36, 37
semantics

value — 7, 13, 17, 22, 27
set 13, 37
set value 8
set_valid 20
set_value 20, 28
SList 13, 36
SList.H 36
SList::~SList 36
SList::append 36
SList::del 36
SList::get 36
SList::is_empty 36
SList::length 36
SList::operator= 36
SList::prepend 36
SList::restore 36
SList::save 36
SList::search 36

46 Sabine Moisan, Jean-Paul Rigault

SList::SList 36
Slot 10, 17, 21
slot 7, 17, 26
Slot::_context 18, 29
Slot::all 21
Slot::bad_copy 21
Slot::clear 20
Slot::get_value 28
Slot::operator T 28
Slot::operator() 21, 28
Slot::operator= 28
Slot::out_of_range 20, 21
Slot::set_valid 20
Slot::set_value 28
Slot::uncomputable 20, 21
SPList 13, 36
SPList.H 36
SPList::~SPList 36
SPList::append 37
SPList::is_empty 37
SPList::length 37
SPList::operator= 37
SPList::prepend 37
SPList::search 37
SPList::SPList 36
SPSet 13, 14, 15
SPSet.H 37
SPSet::add 38
SPSet::card 38
SPSet::contains 37
SPSet::is_empty 38
SSet 13, 22
SSet.H 37
SSet::add 37
SSet::card 37
SSet::contains 37
SSet::is_empty 37
strict

— extension 15
strict_extension 15
String 13, 14, 15, 33
string

character — 13
String::~String 33
String::bad_io 35
String::fget 34
String::fput 34

String::is_empty 34
String::length 34
String::operator() 34
String::operator+= 34
String::operator= 34
String::out_of_range 35
String::restore 35
String::save 35
String::String 33
symbol

— table 13
Symbol_Table 13, 14, 38
Symbol_Table.H 38
Symbol_Table::~Symbol_Table
38
Symbol_Table::del 38
Symbol_Table::HASH_SIZE 38
Symbol_Table::nb_symbols 38
Symbol_Table::operator() 38
Symbol_Table::remove 38
Symbol_Table::restore 39
Symbol_Table::save 39
Symbol_Table::Symbol_Table 38

T

T::operator<= 22
T::operator== 22
table

symbol — 13
template

— instantiation 12, 13, 39
external — 39

template-based 12
typeid 15
typeinfo 32

U

uncomputable 20, 21
unknown 17

V

valid 15
value

— facet 7, 18
— semantics 7, 13, 17, 22, 27

virtual 18, 26

A C++ Frame Library 47

— construction 14, 30

W

what 32

Y

yakl 8

48 Sabine Moisan, Jean-Paul Rigault

Éditeur

Inria, Domaine de Voluceau, Rocquencourt, BP 105 LE CHESNAY Cedex (France)

ISSN 0249-6399

Unité de recherche INRIA Lorraine, technopôle de Nancy-Brabois, 615 rue du jardin botanique, BP 101, 54600 VILLERS-LÈS-NANCY
Unité de recherche INRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex

Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, domaine de Voluceau, Rocquencourt, BP 105, LE CHESNAY Cedex

Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

