-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The FCTOOLS User Manual (Version 1.0)

Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Simone

» To cite this version:

Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Simone. The FCTOOLS User Manual (Version
1.0). [Technical Report] RT-0191, INRIA. 1996, pp.34. inria-00069980

HAL Id: inria-00069980
https://hal.inria.fr /inria-00069980
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00069980
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The FCTOOLS User Manual
(Version 1.0)

Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Simone

N° 191
Avril 1996

THEME 1

apport
technique

Zd I N RIA

SOPHIA ANTIPOLIS

The FCTOOLS User Manual
(Version 1.0)

Amar Bouali, Annie Ressouche, Valérie Roy, Robert de Simone

Theme 1 — Réseaux et systemes
Projet Meije

Rapport technique n° 191 — Avril 1996 — 34 pages

Abstract: We describe a set of modular extensions to our Auto/Graph verification toolset
for networks of communicating processes. These software additions operate from a common
file exchange format for automata and networks, called FC2. Tool functionalities comprise
graphical depiction of objects, global model construction from hierarchical descriptions, var-
ious types of model reductions and of verification of simple modal properties by observers,
counterexample production and visualisation. We illustrate typical verification sessions con-
ducted on usual academic examples: dining philosophers, mutual exclusion algorithms and
round-robin schedulers.

Based on previous experience of drastic state explosion problems we aim here at efficiency
in implementation. We use both explicit representation techniques and implicit techniques
such as BDDs, with functional overlap at places.

Key-words: Verification tools, networks of communicating processes, automata, algo-
rithms, data structures, BDDs, common format FC2

(Résumé : tsup)

ENSMP-CMA, B.P. 207 F-06904 Sophia Antipolis cedex
INRIA, B.P. 93 F-06902 Sophia Antipolis cedex

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie: (33) 9365 77 65

Manuel de I'utilisateur de FCTOOLS
(Version 1.0)

Résumé : On décrit un ensemble d’extensions modulaires & nos systémes Auto/Graph
de vérification des réseaux de processus communicants. Ces nouveaux logiciels opérent sur
la base d’un format commun d’échange pour les automates et les réseaux, appelé FC2. Les
fonctionnalités de ces outils comprennent la description graphique d’objets, la construction
de modele global depuis des description hiérarchiques, plusieurs types de réductions de
modele et de vérification de propriétés modales simples par observateurs, la production et
la visualisation de contre-exemples. On illustre des sessions de vérification conduites sur
des exemples académiques classiques: le probleme du diner des philosophes, des algorithmes
d’exclusion mutuels et les schedulers “round-robin”.

Basé sur les expériences précédentes se heurtant au probleme de ’explosion de I’espace
d’états, nous avons pour but ici une implantation efficace. Nous utilisons deux modes de
représentation, explicite et implicite par BDDs, en ayant une redondance des fonctionnalités
dans chaque mode.

Mots-clé : Outils de vérification, réseaux de processus communicants, automates, algo-
rithmes, structures de données, BDDs, format commun FC2

The FCTOOLS User Manual (Version 1.0) 3

1 Presentation

Systems of communicating and synchronising entities are usually hard to specify in a correct
fashion, due to problems of distributed control and parallelism. In the last decade a number
of verification softwares were implemented to provide computer assistance in the design and
correctness checking of such system descriptions, and used to study distributed algorithms,
protocols and embedded systems. Most commonly these toolsets are based on finite state
modeling of underlying global configurations, and graph-theoretic algorithms.

Our pioneering AUTO/GRAPH toolset was exploring the power of so-called “proof-by-re-
duction” techniques, where methods for compositional reductions of finite state structures
try to suppress as much as possible the combinatorial explosion problem. Functions such as
state quotient (with respect to behavioural equivalences), behavioural abstraction or context
filtering were at the heart of the system, in addition to graphical or textual process algebraic
hierarchical description facilities, and other practical auxiliary functions.

The present User Manual describes basically the “next generation” AuTO/GRAPH im-
plementation. Decision for this reimplementation was based on a number of facts. First,
as functionalities were progressively added the old implementation grew larger and harder
to maintain; the new one had to be modular, consisting in a set of carefully chosen func-
tions which could be combined together for efficient verification. Second,due to national
and international collaborative projects we wanted the new toolset to be open for joint use
with other “foreign” verification tools, which could nicely complement its functionalities; a
“low-level” file exchange format (covering automata and hierarchical networks of such) called
FC2 was then designed, and used in particular in between various software modules. Last,
new symbolic techniques for implicit representation of finite state machines by so-called Bi-
nary Decision Diagrams had appeared, and were becoming prominent in the neighboring
domain of synchronous reactive systems (real-time systems and synchronous hardware for
instance). We adapted our verification techniques to this type of implementation structures
and the relevant algorithmic style, in the scope of asynchronous processes communicating
by rendez-vous synchronisation.

The result is a new set of construction/reduction/analysis/diagnostics functions, corres-
ponding to a number of UNIX commands working from and to FC2 files. The three main
software modules are: AUTOGRAPH, for graphical edition and display; FC2EXPLICIT, for ma-
nipulation of enumerated finite state machines; FC2IMPLICIT, for manipulation of symbolic
finite state machines. FEach fulfills several distinct functions, sometimes with redundancy
between FC2EXPLICIT and FC2IMPLICIT. Other auxiliary modules exist as well.

By nature FCTOOLS is in perpetual ongoing expansion, as more useful analysis functions
are identified and characterised as efficient algorithms. This manual describes only the cur-
rent state, which may already be obsolete by the time of reading in case a next version is al-
ready out. Information on system availability and documentation can be obtained on request
from fc2team@cma.cma.fr, or from URL http://cma.cma.fr/Verification /verif-eng.html.

The next section describes the overall architecture of software modules comprised in the
toolset, with an informal description of their individual functionalities and how they can be
combined. Then a working description of Unix commands and options is given, followed by

RT n°191

4 A.Bouali,A.Ressouche, V.Roy,R.de Simone

a small session example. Each verification module is then further presented and explained,
with insights on its internal algorithms, and indications on how-to-use for best efficiency.

2 Modular Software Architecture

The verification toolset comprises a number of stand-alone tools, each implementing some
well-defined functionalities. Tools may be used in succession through the common Fc2 file
description format. At a deeper programming level, most of our tools use identical internal
representation (in terms of C++ classes), so that combination of code is also possible there.
See the appended Implementation Manual for details.

Figure 1 sketches the overall software architecture, with tools/functions figured in oval
shapes and objects/data in rectangular frames. Explicit mention is made to FC2 format
where available for objects (for instance, there is no direct representation of BDDs in FC2).

In the sequel we present the FC2 format and the individual verification tools at very
abstract level. Each tool will be extensively presented later on.

2.1 The rC2 format

The FC2 format was originally designed to interface several preexisting verification tools. In
this way these heterogeneous tools could be further developed independently, while used in
cooperation for their complementary features.

The format allows for description of labeled transition systems and networks of such.
While the format is not “syntax-friendly” (as it represent objects which are supposedly ob-
tained by translation or compilation), it is still reasonably natural: automata are tables of
states, states being each in turn a table of outgoing transitions with target indexes; networks
are vectors of references to subcomponents (i.e., to other tables), together with synchroni-
sation vectors (legible combinations of subcomponent behaviours acting in synchronised
fashion). Subcomponents can be networks themselves, allowing hierarchical descriptions.

In addition a permissive labeling discipline allows a variety of annotations on all dis-
tinct elements: states, transitions, automata and networks as a whole. It is through this
labeling that behavioural action labels are provided of course, but also structural informa-
tion for source code retrieval, logical model-checking annotation and even private hooked
informations. Processes augmented with time, value or probability informations could cer-
tainly benefit from that, and this is not limitative. Annotative labels are dealt with as
regularly as possible in syntax, in simple form at predictable location, so that they can be
treated smoothly at parsing time by any tool, often by simply disregarding them if they
do not address the tool’s specific functionalities. The actual labeling contents are stored
in tables forming the objects headers, so that only integers references to table entries are
actually present in the object bodies themselves (automata or networks). Finally, labels
can be structured by simple operators (sum, product and several others) to allow richer
information.

More about the FC2 format can be found in [3].

INRIA

The FCTOOLS User Manual (Version 1.0) 5

2.2 Functional Modules

A typical case-study analysis will contain a number of typical design steps, corresponding
to successive application of distinct functional modules from our toolset. The main such
functions are:

description of the network of communicating agents (possibly graphically) The gra-
phical editor AUTOGRAPH allows to draw such descriptions much in the usual fashion
of process-algebraic terms, and then produces FC2 format representations. It also
contains the annotation labeling facilities. See autograph description in this manual
for details.

linking of multifile descriptions Large hierarchical system descriptions can be split bet-
ween different files (for instance as different AUTOGRAPH windows). The tabulated
naming informations in resulting Fc22 files need not be consistent across files, and
so merging these partial descriptions into a single file for later analysis takes some
bookkeeping care.

construction of “some form of” global model Model-based automatic verification re-
lies on expansion of network into a global state-transition model. Two main imple-
mentation techniques can be used here: the extensional approach with a classical repre-
sentation of expanded automata with enumerated states and transitions; the symbolic
approach, based on implicit representation by Binary Decision Diagrams of sets of
states (only), while representation of the full transition relation is avoided, and remain
parted by possible events, somehow in the Petri net fashion. Our tools cover both
modes of implementation with large mutual redundancy, so that best efficiency can be
thought according to each given specification.

Of course global models can suffer state or bdd size explosion problems, leading to
the well-known bottleneck of the approach. Several methods can be used to refrain
this explosion, like abstracting or minimizing (explicit) subnetworks at intermediate
level of hierarchical descriptions. In all cases the global model expansion remains a
fundamental part of verification systems, even if applied in particular settings or on
transformed objects to cope with complexity.

reduction/abstraction of the model Smaller models can be obtained in roughly two
ways. First, one can abstract the actual concrete behaviours into new ones of a more
concise nature; it corresponds to the converse of action refinement, where more beha-
vioural details are progressively added (here they are abstracted away). Second, states
with equivalent potential behaviours can be merged (using bisimulation for instance).
Note that behaviour abstraction paves the way to state reduction, as it usually re-
moves differences between otherwise similar states (consider for instance observational
behaviours, including taw invisible steps inside visible ones).

These techniques can be even more beneficial when applied in a compositional fashion,
minimising intermediate level descriptions.

RT n°191

6 A.Bouali,A.Ressouche, V.Roy,R.de Simone

o FORMAT ros2 Other textual
TRANSLATION h*automton input
I ato
Graphical Description Fc2 Files Descriptions

nets 2
net0
h“automaton

Hierarchical Fc2 Description

IMPLICIT STATE SPACE

CONSTRUCTION
fc2isp

EXPLICIT AUTOMATON
CONSTRUCTION
fc2gl ob

K44

1 0 1 0 1 0
Implicit Automata

ENUMERATION
fc2iglob

Explicit Automata

Representation Representation

ABSTRACTION
REDUCTION
OBSERVERS

fc2imn, fc2iabst

f c2i obs

REDUCTION
ABSTRACTION
fc2min, fc2abst

EXTRACTION
ANALYSIS
fc2idead, fc2wite

i il

B

SOURCE
RECOVERY

SOURCE
RECOVERY

1
1
1 nets2 nets2 nets2
1 net 0 net 0 net 0
hautomaton hautomaton hautomaton _——— e
V2 V2 V2
VO E1 VO E1 (VO EL
Sets of States (Fc2) Result in Fc2 Format Counter Example Path (Fc2)

Figure 1: Software hierarchy

INRIA

The FCTOOLS User Manual (Version 1.0) 7

Another way of reducing the model is by taking into consideration a given context
limiting the state-space exploration. This context can for instance be extracted from
a given property to check.

specification of properties and model-checking There are several ways of specifying
correctness properties. Some basic obvious properties can be stated directly as charac-
teristics of the finite state model, and checked by simple analysis on it: existence of
deadlock, livelock or divergent states for instance. More refined properties can be expres-
sed either as modal temporal logic formulae or as specification automata. Distinctions
are usually made according to visions of time: in linear time frameworks properties of
behavioural sequences are considered, while in arborescent branching time frameworks
one gets interested in properties of states through their past and future neighbours.
An abundant literature was devoted to comparison of expressiveness and design of
algorithmic methods best adapted in various cases. Our tools focus on specification of
properties as specification automata, given that the temporal logic approach seemed
well treated elsewhere.

Again, there are two approaches to compare two finite state models, one being the
specification of some (maybe partial) intended behaviour of the other. The first one
is bistmulation comparison; it works well when “partial” means “abstract”, when time
is “branching” and the processes may both exhibit nondeterministic behaviours. The
second one considers the specification automaton as an observer, and performs some
kind of product machine construction to deduce whether (un)desirable joint configu-
rations can be attained; this approach, known as “on-the-fly” technique, works well
under determinism assumptions on the specification automaton. Also, as a rule of
thumb, “explicit representation” methods win in the first approach, while “implicit
representation” are best suited to the second one.

Another dimension to the property specification problem depends on whether the
analysed process is viewed as a transparent or a black box, that is whether the property
may explicitly refer to control points (states) in it, or only through behavioural abilities
(leading to or possible from the states in question). For instance a mutual exclusion
property can most naturally be stated by the fact that no global configuration may
contain specific local states in parallel subcomponents. Thus the toolset will have to
provide ways of composing this type of property from the system description, and this
without affecting the latter for each property to prove.

counterexample production at the network level Diagnostics from analysis and mo-
del-checking on incorrect descriptions usually result in either sets of (undesirable)
states, or counterexample paths. Typically, deadlock or divergent states are of the first
form, while runs without bisimilar counterpart are of the second form.

With the addition of prior reduction phases these results are produced on smaller
automata, and are themselves usually smaller than the corresponding ones on original
networks. But these now have to be retrieved, if the user is to be informed at a level of

RT n°191

8 A.Bouali,A.Ressouche, V.Roy,R.de Simone

description he/she can understand. The struct annotation field of the FC2 format was
in fact used to carry exactly that minimal information which allows reconstruction.
For instance, if weak bisimulation minimisation was used and hidden transitions thus
removed, these transitory behaviours may have to be rediscovered to glue actual visible
steps back together.

Diagnostic reconstruction may be a time penalty, but is only necessary in case of
property failure, and avoids storing much extra information at all times, which could
abort verification for lack of space.

Figure 1 displays our global software architecture, with tool names and functionalities and
types of arguments and results. Next section will provide a synthetic overview of each tool
and ways to use it in practice.

INRIA

The FCTOOLS User Manual (Version 1.0) 9

2.3 Tools and Commands

We now describe the different software modules at the level of UNIX commands, with names
and options.

Remark: most of the transformation tools generate single FC2 description, dumped on
screen (UNIX standard output). In order to save the result in a file, one has to redirect the
output of the command to that file.

e atg:

SYNOPSIS:
UNIX command for AUTOGRAPH, the graphical editor and display system for FC2
descriptions. AUTOGRAPH uses usual process algebra conventions for graphical
representation of automata and networks, and provides translation into FC2 for-
mat. AUTOGRAPH currently reads only plain automata from this format, while
a dedicated .atg file format can be loaded and written on file for any drawing,
even ill-structured or incomplete.

USAGE:

atg [files.fc2|[files.atg]
RESULT:

A menu bar for graphical edition and a specific window for each loaded file (from
.fc2 automata only initial states are displayed at first). AUTOGRAPH and its
functionalities are further described in section 3.

e fc2link:

SYNOPSIS:
Linker of (partial) rc2 files produced by ATa. It redirects references to a sub-
components to its actual description (found from another file), and matches the
labeling indexes.

USAGE:
fc2link -main [-nodebug] file.fc2 [filel.fc2...[fileN.fc2]...]

RESULT:

The result is a single rC2 file containing the complete hierarchical FC2 description
of netO in file file.fc2 together with all its subcomponents found in any file men-
tioned. Default resulting file contains verification debugging information used by
source recovery functions, such as the file names of individual FC2 components
given under an FC2 expression recalling the hierarchy of the network. This extra
information can be discarded from the result by setting the -nodebug option.
Misformed descriptions end up in so-called “consistency errors”. The result is
output on screen.

RT n" 191

10 A.Bouali,A.Ressouche, V.Roy,R.de Simone

e fc2min:

SYNOPSIS:
(Explicit) Automata minimizer with respect to strong, weak and branching bisi-
mulation.

USAGE!:
fc2min -bisimulation [-fc2] [-debugl file.fc2
The option bisimulation can be one of the options s, w or b for strong, weak and
branching bisimulation respectively.

RESULT:
If option -fc2 is set, the result is the quotient automaton in FC2 format. Other-
wise it is a partition of the state space into equivalence classes. The -debug source
recovery option adds, for each quotient state or partition element, a description
of its content as sum (union) of state references from the initial automaton. This
information is stored in the struct field of the new states in the FC2 structure.

e fc2implicit:

SYNOPSIS:
Symbolic manipulation of labeled synchronized automata vectors (FC2 networks).
It contains several functionalities, selected by options.

USAGE: The command can be invoked with either one or two argument files:

1. One file mode:
fc2implicit [-reach | -dead | -live | -dive]
[-s | -w | -b [-itaul] [-debug] [-fc2] file.fc2
where

-reach: computes the set of reachable global states.

-dead, -live, -dive: computes the set of deadlock, livelock and divergent
global states of the network respectively. If option -fc2 is set in addi-
tion, fc2implicit generates a counterexample path in FC2 (as a string
automaton), leading from the initial state to one of the computed states.

-s, -w, -b: computes the strong, weak and branching equivalence parti-
tion respectively. If option -fc2 is set, then generates an FC2 description
of the quotient automaton. Option -itau can be added for branching
bisimulation to turn off the 7-closure memorization, replaced by a local
recomputation at need.

-debug: adds extra information for source recovery in the structlabels of
global nets, states and transitions.

1file.fc2 must contain a single automaton. Otherwise, an error message is generated. If minimization
is asked for the global automaton of a network described in a fc2 file, fc2explicit/fc2implicit processors
should be used instead.

INRIA

The FCTOOLS User Manual (Version 1.0) 11

2. Two files mode:
fc2implicit {-seq | -weq } [-debug]l [-fc2] filel.fc2 file2.fc2
where

-seq, -weq: performs the strong and weak bisimulation comparison bet-
ween the topmost nets of both files.

-debug: produces a counterexample path in FC2 leading to a state without
equivalent in the other automaton, with other infos (iteration level in the
partitioning, ...).

SHORTHAND COMMANDS:

The following UNIX commands are equivalent to the general fc2implicit com-
mand with particular options. The i letter following fc2 here stands for implicit.

fc2ireach = fc2implicit -reach
fc2idead = fc2implicit -dead -fc2
fc2ilive = fc2implicit -live -fc2
fc2idive = fc2implicit -dive -fc2
fc2istrong — fc2implicit -s
fc2iweak = fc2implicit -w
fc2ibranch = fc2implicit -b
fc2iglob = fc2implicit -reach -fc2

RESULT :

Whenever option -fc2 is set, generates an FC2 description of the result. Other-
wise produces information messages (result size, existence of deadlocks for ins-
tance).

RT n"191

12 A.Bouali,A.Ressouche, V.Roy,R.de Simone

e fclexplicit

SYNOPSIS:

Explicit manipulation of labeled synchronized automata vectors (FC2 networks).
It contains several functionalities, selected by options.

USAGE: The command can be invoked with either one or two argument files. Currently
only the -abstract option uses two files.

fc2explicit [-s | -w | -b | -abstract] [-comp | -globall [-bitset]
[-fc2] [-debug]l [-o file.fc2] filel.fc2 [file2.fc2

where

-abstract: Assumes one file contains a net description and the other an abs-
traction criterion. Performs the abstraction of the global automaton of net
w.r.t. the abstraction criterion. Further description of abstraction use can
be found in section 7.

-seq, -weq: Requires two FC2 files containing two networks. Performs the
comparison of the two systems with respect to strong (-seq) or weak (-weq)
bisimulation. In case of non equivalence potential states without match are
searched for as early as possible, and a path leading to such a state is provided
as result.

-comp: Computes the global automaton from the network contained in the ar-
gument file in a compositional way, following the hierarchical description in
nested subnets. Used in conjunction with -s, -w, -b options to alternate
minimisation and construction phases.

-global: Computes the global automaton from the network contained in the
file argument in its “flattened” version (non hierarchical). Default value.

-s, -w, -b Applies strong, weak or branching bisimulation minimisation on
network contained in file argument. Can be combined with -comp option.
Internally invokes fc2min (see above) on each intermediate automaton.

-bitset Computes the state space by applying action events under a bitset
scheme algorithm for replacement of local states in the vector. Used best
with the -global option, on large vectors of small individual automata com-
ponents. See further FC2EXPLICIT description in 5.1.

-o: provides a filename for output.

-fc2: if set, result is the FC2 description of the quotient automaton; otherwise
only size figures are printed. Prints on standard output, except if -o option
is used.

-debug: if set, automata states are decorated with structure information for
source recovery on original network description.

INRIA

The FCTOOLS User Manual (Version 1.0) 13

SHORTHAND COMMANDS:

The following UNIX commands are equivalent to the general fc2explicit com-
mand with particular options.

fc2glob = fc2explicit -global -fc2
fc2strong — fc2explicit -global -s -fc2
fc2weak = fc2explicit -global -w -fc2
fc2branch = fc2explicit -global -b -fc2
fc2compstrong = fc2explicit -comp -s -fc2
fc2compweak = fc2explicit -comp -w -fc2
fc2compbranch = fc2explicit -comp -b -fc2
fc2abst — fc2explicit -abstract -fc2
fc2abststrong — fc2explicit -abstract -s -fc2
fc2abstweak — fc2explicit -abstract -w -fc2
fc2abstbranch — fc2explicit -abstract -b -fc2

RESULT :

Whenever option -fc2 is set, generates an FC2 description of the result. Other-
wise produces information messages (result size for instance).

RT n" 191

14 A.Bouali,A.Ressouche, V.Roy,R.de Simone

o fc2view

SYNOPSIS :

Source recovery viewer. When a path is given as argument (the path must be
retrieved from a global automaton of a network), FC2VIEW pops up two windows,
one containing the graphical tree representing the hierarchy of nets forming the
network from which the path has been recovered, and a control panel to simulate
the path. Nodes and leaves of the tree are labeled by the names of the corres-
ponding nets. In the control panel, buttons are provided to fire transitions in
the path going back and forth, and step by step, plus a graphical scale allowing
the user to access directly at some depth in the path and fire the transition at
that depth. Each time a transition is fired, its (global) label is displayed in a
dedicated zone (near the name of the path) and so are in the graphical tree the
local ones that have produce the global label: these labels are displayed in the
graphical tree, near the components that have offered them, which are themselves
highlighted. An extra feature allows the user to visualise the FC2 description of
any net appearing in the tree by clicking on its displayed name. Actives part (if
any) of the text are also highlighted (source and target states of current active
transition) as well as the text background when the component is active.

USAGE :
fc2view file.fc2?

where file.fc2 is assumed to contain a path synthesized from a network using the
-debug option, so that it can be displayed as a distributed run on the range of
corresponding FC2 files. Creates as many (slave) windows as there are automata
components in the network, in their FC2 syntax. Each window displays current
local share of transition in a graphical header, and FC2 text below on demand.
Simulation can travel back and forth under control of a graphical panel.

RESULT :
See above

e fc2hide

SYNOPSIS :
When a FC2 network is given in input, pops up a window showing the list of
action labels the network can perform at the global level. Mouse clicking on
labels permits selection of labels to hide. When selection is finished, the user can
save the result in a new FC2 file as a new network where the selected global label
has been renamed into the silent action 7. This allows to restrict the range of
visible behaviours, and thus to increase observational reduction.

2 The argument file must contain a single string automaton containing a path (obtained by fc2idead for
instance), and containing debug informations

INRIA

The FCTOOLS User Manual (Version 1.0) 15

USAGE :
fc2hide file.fc2
Assumes file.fc2 contains a network.

RESULT :

A new network where selected labels of synchronisation vectors of the main net
are renamed into 7.

2.4 First steps: a session example

We now illustrate the basic verification features on the famous dining philosophers problem.
More advanced features will be demonstrated later on.

The graphical ATG description of the system (in the case of 3 philosophers) is displayed
in figure 2 (in its Postscript output form). It consists essentially of the automata describing
the possible behaviours of the forks and of halfbrains for philosophers. A full philosopher
is obtained by synchronising these halves on eating and thinking (each half deals with
one fork). The full synchronisation network is also displayed, with visible actions becoming
indexed by a philosopher’s rank.

We now suppose these three parts (the fork, halfbrain automata and the network)
have been translated (by ATG) into distinct FC2 files, say fork.fc2, halfbrain.fc2 and
philonet.fc2. The FC2 version of the fork automaton is displayed in figure 3. The par-
tial description of the network, with only component interface declaration for the fork and
halfbrain, is displayed in figure 4.

Linking these files will produce the appropriate correspondence between these “subsystem
calls” and their automata contents from the other files.

0-duick$ fc2link -main philonet.fc2 fork.fc2 halfbrain.fc2 > philo.fc2
—- fc2link: education version vO

—- fc2tool: parsing fc2 file: philonet.fc2.

— fc2tool: file: philonet.fc2 parsed successfully

— fc2tool: parsing fc2 file: fork.fc2.

— fc2tool: file: fork.fc2 parsed successfully

- fc2tool: parsing fc2 file: halfbrain.fc2.

— fc2tool: file: halfbrain.fc2 parsed successfully

—- fc2link: File "philonet.fc2"

—- fc2link: net number O has struct "philonet"

— fc2link: net number 1 has struct "fork"

—- fc2link: net number 2 has struct "halfbrain"

—- fc2link: File "fork.fc2"

—- fc2link: net number O has struct "fork"

—- fc2link: File "halfbrain.fc2"

—- fc2link: net number O has struct "halfbrain"

—- fc2link: Check consistency on class of net 0, file philonet

—- fc2link: Check consistency on class of net 0, file fork

—- fc2link: Check consistency on class of net 0, file halfbrain>
0-duick$

RT n"191

16 A.Bouali,A.Ressouche, V.Roy,R.de Simone

drop take
fork
halfbrain
t hi nk1
drop think | [think drop

halfbrain halfbrain

|l fork -
drop take

O Qtake eat Weat
. O

drop

halfbrain
think _eat

thi nk3—¢ eat 3 eat 2 == O O ¥— t hi nk2
think ~eat i
O

take
halfbrain

halfbrain

drop drop

philonet

Figure 2: The 3 dining philosophers specification

The result is displayed in figure 5
Now the description can be submitted to our analysis and verification tools.

2.4.1 Implicit evaluation of the global system

We first evaluate the global system to have an idea of the size of the state space. We use for
that symbolic methods based on BDDs that allow easy evaluation of global state spaces.

0-duick$ fc2implicit -reach philo.fc2
—- fc2implicit: education version vO

INRIA

The FCTOOLS User Manual (Version 1.0) 17

nets 1
hook"main" > 0
struct"fork"
net 0

behavs 2

:0 "take"

11 "drop"

logic "initial">0
hook "automaton"
vertice 2
vertex0

edges 1

edge0

behav 0

> 1

vertexi

edges 1

edge0

behav 1

->0

Figure 3: file fork.fc2

— fc2tool: parsing fc2 file: philo.fc2.

— fc2tool: file: philo.fc2 parsed successfully

— fc2implicit: Making reachable state space

—- fc2implicit: Reachable states: «214» — BDD nodes: «85»
0-duick$

The global automaton has 214 states. The BDD that represents it has 85 nodes only.

2.4.2 Finding and Recovering the Deadlocks

This academical problem is known to have deadlocks. We have a way to detect them and
to extract an example path leading to a deadlock from the global initial state. Here is the
session using fc2implicit:

0-duick$ fc2implicit -dead -fc2 philo.fc2 > deadpath.fc2

—- fc2implicit: education version v0

—- fc2tool: parsing fc2 file: philo.fc2.

— fc2tool: file: philo.fc2 parsed successfully

—- fc2implicit: Making reachable state space

—- fc2implicit: State space depth: 13

—- fc2implicit: First deadlock(s) detected at depth 7

—- fc2implicit: Reachable states: «214» — BDD nodes: «85»

—- fc2implicit: Global automaton has 2 DEADLOCKS state(s) — BDD nodes:

«27»

0-duick$

The first detected deadlocks have been found at depth 7 in the global automaton, that
is the shortest path leading to a deadlock has 7 states and 6 transitions. As we have set the
option -fc2, an example path has been extracted and written in FC2 in deadpath.fc2.

RT n" 191

18 A.Bouali,A.Ressouche, V.Roy,R.de Simone

nets 3
hook"main" > 0
struct"philonet”
net 1

structs 1

10 "fork"

behavs 2

10 "take"

11 “drop"

struct 0

behav 1+0

hook "synch_vector"
net 2

structs 1

:0 "halfbrain”
behavs 4

10 "eat"

11 "take"

“arop"

:3 "think"
struct 0

behav 2+1+0+3
hook "synch_vector"

w N

net 0
behavs 6

10 "eatl"
11 "eat2"
12 "eat3"
:3 "think1"
:4 "think2"
:5 "think3"

struct _< 1,2,2,2,1,2,2,2,1

hook "synch_vector"

vertice 1

vertex 0

edges 18

edge 0

behav 3 < *,%,%,3,%,3,%,%,% ->0
edge 1

behav O < *,%,%,0,%,0,%,%,% ->0
edge 2

behav 5 < *,3,3,%,%,%,%,%,% >0
edge 3

behav 2 < *,0,0,%,% % * % *x ->0
edge 4

behav 1 < *,% % % % % 0,0,% ->0
edge 5

behav 4 < *,% % % % % 3,3,% >0
edge 6

behav tau < *,% %, % % 2 % x,1 >0
edge 7

behav tau < *,% % % %, 1 ,% %0 ->0
edge 8

behav tau < 1,%,%,2,% % % %% ->0
edge 9

behav tau < 0,%,%,1,% % % % % ->0
edge 10

behav tau < 1,%,2,% % % % % % ->0
edge 11

behav tau < 0,%,1,% %% %, % % ->0
edge 12

behav tau < *,2,%,%,1 % % % % >0
edge 13

behav tau < *,1,%,%,0,% %,%,% ->0
edge 14

behav tau < *,%,%, % % ,%,2,%,1 ->0
edge 15

behav tau < *,%,% % %, %,1,%,0 ->0
edge 16

behav tan < *,%,%,%,1,%,%,2,% ->0
edge 17

behav tan < *,%,%,%,0,%,%,1,% ->0

Figure 4: file philonet.fc2

INRIA

The FCTOOLS User Manual (Version 1.0)

19

% FC2 file generated by fc2link from FC2 files:
% philonet.fc2 (main) fork.fc2 halfbrain.fc2

D
prefix file(any any) -> any

nets 3

h "main">0

s file("philonet",0) < file("fork",0),file("halfbrain",0),file("halfbrain",0),
file("halfbrain",0),file("fork",0),file("halfbrain",0),file("halfbrain",0),
file("halfbrain”,0),file("fork",0)

net 1
B2

10 "take"
1 “drop"

s "fork" 1 "initial">0 h "automaton"

v2

v0 E1
e0bOr1
vi E1
e0b1ro0
net 2

B4

:0 "eat"
:1 "take"
:2 “drop"
:3 "think"

s "halfbrain" 1 "initial">0 h "automaton"
v4

v0 E1
e0b3r1
vi E1
e0bir?2
v2 E1
e0bOr3
v3 E1
e0b2ro0
net 0

B6

10 "eatl"
11 "eat2"
12 "eat3"
:3 "think1"
:4 "think2"
:5 "think3"

s "philonet"<1,2,2,2,1,2,2,2,1 h "synch_vector"
vi

v0 E18

e0 b 3<k ¥, % ,3,%,3 % % %
el b O<k % ,%,0,%,0,%,% %
02 b 5<k,3,3,% % k%, % %
@3 b 2<k,0,0,% % %, %, % %
@4 b 1<k K % % % ,%,0,0,%
@5 b &<k Kk % % ,%,3,3,%
@6 b tauck,* k%, %,2,%,%,1
@7 b tauck,* ¥,k %, 1,%,%,0
@8 b tauci,*,*,2, %% % % *
@9 b tau<0,* %, 1,% % % % *

HHHHRHH

ocooo

@10 b tauci,*,2 %, % % % % r 0
@11 b tau<0,*,1,%,% % % % % r 0
el12 b taudk,2,%,%,1,%,% %% r 0
e13 b taudk,1,%,%,0,%,% %% r 0
e14 b tauck,*,*,* %, *,2,%,1 r 0
e15 b tauck,*,*,* %, *,1,%,0 r 0
©16 b tauck,*,*,*,1,%,%,2,% r 0
e17 b tauck,*,*,%,0,%,%,1,% r 0

Figure 5: The 3 philosophers in FC2 format

Now we visualize back in ATG this result that we picture out in figure 6.

RT n"191

20 A.Bouali,A.Ressouche, V.Roy,R.de Simone

©

M) M) M) M) M) O
" tau " thinkd ~ ~ tau " thinkl N\

think2 tau

Figure 6: A deadlock path

The deadlock corresponds to the case where each philosopher takes a fork (the 7 action
after each think action): then no action can be further enabled from any of them.

Commands Info ﬂelpl Main Panel Qo piain Panel Close
Path Simulator —— '*Ita'“ behaws 2
i i (0 "take"
| <<BWD | sTART | END | FWD > - 1 rdrepr
I logic "initial":0
o] | hook "automaton"
4 halfbrain #8 vertice 2
vertexl g
~ edges 1 r
halfhrain #7 adgel. T
EEE). I hehaw [| Main Panel Clusel
= = s
Main Panel halfbrain #6 e ?ghﬁzgt‘} A
B6 edges 1 .1 "take
0 teatlt | philonet 0 fork #5 take edgel .2 "drop"
1 teatl behav 1 .3 »think"
0 tpa3n : -» 0 logic "initial"s0
:3 "thinkl" halfbrain #4 d hook "automaton"
4 "think2! wertice 4
E think3" halfbrain #3 vertex
edges 1
1"initial">0 h "automaton” edgel
V7 halfbrain #2 take behav 3
v os 0,00, =l
el b4 ¢ * wertexl
wl s 0,0, Tork #1 edges 1
el b tau < edgel
w2 s 0,00, behaw 1
el b5 ¢+, -3 2
w3 e 0,0, wertext
sl b tau ¢ adges 1
wl s 0,2, edgel |
el h 3 <+, hehaw O
w5 s ‘0,2, A =33
el b fau < *rh wvertexd
BT ‘1,1 h "deadlock" EO0 edges 1 £

Figure 7: Fc2VIEW display

Now if -debug option was added to the FC2IMPLICIT command, further annotations
were appended to the path example so as to allow source recovery. Then the path can be
simulated as a run on FC2 files using FC2VIEW, or even visualised graphically on an original
displayed network with AUTOGRAPH.In the former case, a graphical view of the network tree
is displayed with a control panel that allows the user simulate the path: active components
are highlighted on the way as well as the action label they perform. A specific zone is
dedicated for the path name and the global realised action name: FC2 textual description
of the path and components can be displayed by clicking on appropriate names. Active
component’s text is also highlighted as well as active source and target states (see figure 7).

INRIA

The FCTOOLS User Manual (Version 1.0) 21

In the latter case one needs only load the path in FC2 to AUTOGRAPH, and then selects the
Debug:Edge button from the menu bar. Then each selection of an edge will highlight the
source and target states at all components in their respective AUTOGRAPH windows, and
active communications at ports in the synchronisation network (see figure 8).

RT n°191

22 A.Bouali,A.Ressouche, V.Roy,R.de Simone

ObjectsEdit Label Globals Placing Debug Attributes Options AbstractPction

thinkl

drop thin| think

)

Lot sk ok S[Y K k6]
LU A B

halfbrain alfbrain

think34*, 53,13, % bk ok %

E T | N PR

thinke 1E* * % 03,5 03, % *

R R I
tamg® *E L

| £ — | .

Figure 8: AUTOGRAPH display

3 The Graphical Editor AUTOGRAPH

AUTOGRAPH (invoked under the UNIX command atg under X-windows) is a graphical dis-
play system for both labeled transition graphs and networks of communicating systems.
Lay-out is very much in the tradition of process algebra graphical depiction, as shown in
figure 8. Objects in AUTOGRAPH can also be extensively annotated so as to match the
FC2 format standards. In section 2.4, figure 2 was produced from AUTOGRAPH graphical
displays.

AUTOGRAPH can be used to graphically edit systems but also to visualise automata
that were produced elsewhere, typically as an output of verification. Then when reading
an FC2 file AUTOGRAPH prompts the user for interactive unfolding and positioning of suc-
cessive states. An automaton can also be automatically drawn (using a spring-like attrac-
tion/repulsion algorithm between states). Visualisation of networks is under construction,
as is visualisation of counterexample runs on existing networks.

INRIA

The FCTOOLS User Manual (Version 1.0) 23

3.1 General Features

In practice AUTOGRAPH is a multi-window, unstructured editor: system descriptions are
checked for structural coherency only at translation into FC2 format, and subsystem parts
contained in different windows are translated independently in separate files and not linked
together. This allows the user freedom to work temporarily with incomplete descriptions,
and to reuse system parts in various compositions. Therefore AUTOGRAPH is based on two
file representation formats: FC2 for structured objects, and ATG for possibly inconsistent
drawing descriptions, containing additional graphical positioning data.

3.1.1 Menu Bar

AUTOGRAPH fronts the user with a single menu bar, from which all editing functions appli-
cable to all graphical windows are selected. As a result some functions may need an extra
mouse click in the window(s) to be concerned (like in the Save to File function). The Files,
Windows, ObjectsEdit and Labels menus deal with management of the respective types of
objects. While rather self-explanatory they are described in more details in the sequel. The
Globals menu deals basically with cut-and-paste and miscellaneous functions to be applied
undistinctively on all editable objects. Placing deals with positioning of folded objects, and
Attributes allows to play with fonts and colors. The Abstract Action menu deals with edi-
tion of an automaton representing an abstract criterion. The Help menu contains useful
information on how to use ATG.

3.1.2 Mouse Buttons

The three mouse buttons are different bindings: the functions selected from menus have to
be applied using the left mouse button, while the middle button moves any kind of objects,
and the right button (pre)selects a number of objects, or all objects in a given rectangular
zone, typically to be applied the next function as a whole.

3.1.3 Editable objects

Consisting of graphical editable objects AUTOGRAPH offers vertices for states, bozes for sub-
systems, ports for signal interface, edges for both automata transitions and port connections,
and “webs” for multipoint extended connections. All such objects can be annotated with
semantic informations as allowed in the FC2 format. Behavioural labeling of automata tran-
sitions form their action abilities as usual. The only structural requirement of autograph is
that ports only occur on boxes and edges in between vertices, ports and webs altogether (no
free end to an edge).

3.2 File Management

This menu contains in addition the quit menu button.

RT n°191

24 A.Bouali,A.Ressouche, V.Roy,R.de Simone

AUTOGRAPH saves files in .atg, .fc2 or .ps formats. Postscript format is not scaled to
fit (a given page size).

AUTOGRAPH reloads files from .atg format, and reads from .fc2 format in case the file
contains a single automaton (in the current version). In the second case the user must unfold
successive states to provide the actual lay-out. At first only the initial state is pictured.
Then, by dragging a phantom line to any point in the drawing zone the user indicates both
a main direction and a minimal distance from which to place new vertices.

3.3 Window management

Windows can be created and deleted from the corresponding menu. In addition they can be
resized to fit the actual drawing, or given a title name. Such names are important as they
will become the FC2 name of the window content (network or automaton).

In general drawings may exceed the window size (with usual scrollbar facilities). The
Window:See/Hide Global menu button allows to pop up a global view spanning the whole
object. Such windows cannot be edited, but unexplored vertices can easily be spotted from
their highlighting, and the regular view from the editable window can be repositioned by its
phantom.

Each window keeps the memory of its last operation, which can be undone by the Win-
dow:Undo button.

3.4 Edition

Objects can be edited from general functions in the ObjectsEdit menu. Shorthands key-
board bindings allow fast selection of editing functions. All types of objects can be created,
moved, deleted. In addition boxes can be resized, edges can be added or removed inter-
mediate points (called “nails”) for broken arrows, states can be declared initial and can be
explored /unexplored (folded /unfolded).

There is no structural consistency requirement on edited objects. Only at translation
into FC2 are such consistency rules checked.

3.5 Labeling and Annotating

All object types can be labeled. Following the FC2 syntactic conventions these labels are
split in four distinct fields: behav, struct, logic and hook according to intention. Of
course labeling is mostly optional. The Label:Create/Edit All menu button selects the full
editor which is popped at each further mouse click on objects. There are four edition areas,
corresponding to the four labeling fields above. As a shorthand the Label: Create/Edit Default
menu button allows one-field edition, of behav labels for edges, webs and ports, of struct
labels for vertices and boxes. This simpler function covers 90

Labels are displayed on the same drawing area as objects, which can be overwhelming
sometimes. Other buttons from the Label: menu allow to hide or unmask labels globally or
individually (or as a selection set), from specific labeling fields or indistinctly.

INRIA

The FCTOOLS User Manual (Version 1.0) 25

Finally the Label:Show Label/Object highlights the bindings from labels and objects to
one another.

3.6 Automatic Placing

The Placing:Ezxplore button allows to start or resume unfolding on states/vertices. States
with incomplete display of outgoing transitions are identified by a smaller circle inside them.
Placing:Unezplore allows to fold back states or transitions out of sight.

From the Placing:Align submenu sets of selected objects (right mouse button, remem-
ber?) can be aligned horizontally or vertically, from their centers, their left, right, upper or
lower corners. They can also be projected on a circle: drag the mouse from the intended
center to any point to lay on the circle itself.

Placing:Align:Spring calls an automatic layout algorithm called SPRING (courtesy of
Michel Baudoin-Lafond, from LRI/Université d’Orsay), based on minimisation of a certain
attraction /repulsion function amongst states.

3.7 Debug (diagnostic recovery)

Provided a diagnostic information (a path usually) was obtained in FC2 using the -debug
option of FC2EXPLICIT or FC2IMPLICIT, it can be explored and mapped on the original
distributed network representation. To do this, first load the .fc2 file and explore it. Notice
behaviours are now vectors of references. Then by selecting the Debug:Edge/Vertex mode,
any click on an edge or vertex in this path will highlight corresponding elements in other
windows containing the original network.

Warning: A number of assumptions are made here, for proper use. These are not
checked by AUTOGRAPH and may result in error. First, it is supposed that all files comprised
in the network are present, even if iconified windows. Second, AUTOGRAPH windows should
not have been changed by edition (other than harmless small moves) since last translated
into FC2 files. Third, the basename of the basename.fc2 file should be identical to the
basename.atg file in which the graphical description was stored.

In the current version the path is displayed both on transitions of individual automata ,
and on ports of boxes containing them. Vertices, edges, ports and the corresponding labels
are highlighted. As the same component can occur several times in the description, boxes
are assigned integer references and these integer are used everywhere to record to which box
the behavioural element is tied. While this requires information deciphering to get used to,
it was found preferable to the other option where windows were duplicated (to the point of
submerging the screen ability for display).

3.8 Abstract Action

With this menu one can add annotation on an automaton to provide relevant informations
so that it can be interpreted and translated as an abstract action.
The AbstractAction:begin menu button selects the abstract action initial state.

RT n"191

26 A.Bouali,A.Ressouche, V.Roy,R.de Simone

The AbstractAction:end menu opens a vertex as successful terminal state of an abstract
action, whose name has to be provided then in a textual editor.

The AbstractAction:save translates the window content in fc2 format as an abstract
action. The net contains a hook "abstract action", the begin state have a logic "initial"
and the end state have a behav giving the name of the abstract action.

3.9 Translation into FC2

Translation from graphical representations to FC2 files is quite straightforward, specially on
automata. There is a number of consistency checks to insure safe interpretation (in fact just
common sense considerations):

e Automata must have an initial state;
e Boxes may not overlap (proper nesting);

e Innermost boxes must have all their ports labeled, and contain either a struct name
(the subcomponent to be instantiated later from another source description) or an
automaton;

e Edges should not link a vertex to a port/web, and not two ports apart from neighbou-
ring boxes (siblings or “mother/daughter” in the containment tree).

e Connections should not contain more than one external port (without external port,
the connection is called internal to the subnetwork represented by the mother box,
and correspond to an action hidden at this level).

Connections here are sets of ports bound together by being linked to the same webs (so the
FC2 format allows multipoint synchronisation). As a shorthand two ports can be directly
linked by an edge for a binary synchronisation. Each connection will produce a synchronisa-
tion vector describing a possible behaviour of the (subnetwork translated from their) mother
box. Synchronisation vectors will be labeled (or internal) according to the external port of
the connections.

Globally visible actions are formed by outermost webs, ports and edges bearing an explicit
label (a box is said to be outermost if not nested inside another one, outermost ports are
ports on outermost boxes, and outermost webs/edges are tied only to outermost ports).

The previous example from section 2.4 already showed ATG drawings and their FC2
counterpart.

INRIA

The FCTOOLS User Manual (Version 1.0) 27

4 The FC2 file linker FC2LINK

A complete network description may be split amongst several actual files, possibly originated
from different sources, textual or graphical. This allows components reuse and modularity.
On the other hand most verification tools will only accept a single file input. Linking files
together consists mainly in ensuring a proper correspondence in label references, between
the locations where subcomponents are defined and their invocation in a larger network.
Example of this is provided in figure 5, where the fork description in figure 3 is substituted
to its reference inside previous network of figure 4. Tabular references must be merged, and
so usually shifted to avoid conflicts.

FC2LINK requires a -main filename, whose topmost network (net0) will be taken to
become the global network. Hierarchical subcomponents are only selected from the set of
FC2 files provided as arguments as they are needed, through dependency analysis. Ambiguity
results in errors.

5 Global System Generation

The global model construction/expansion is a main part of model-based verification tools.
States in such a model are vectors of component (local) states, and behavioural transitions
are obtained by interleaving or synchronization of local behaviours. Of course this means
potential combinatorial explosion, and methods for compact representation of global state
spaces are at the core of all approaches to model-based verification techniques.

FCTOOLS offers two alternative implementations of the product construction: f£c2glob,
classically based on enumerated representation of states and transitions; fc2iglob, a symbo-
lic version based on Binary Decision Diagrams for implicit representation of (sets of) states.
Both are embedded in the respective commands fc2explicit and fc2implicit.

While the explicit product construction yields naturally a full automaton (with transi-
tions), the implicit BDD implementation produces rather a symbolic version of the global
reachable state space, so that producing a full global FC2 automaton requires more effort to
list transitions for file printing. On the other hand many subsequent analysis do not require
the actual automaton at this stage.

5.1 The Explicit Global System Generator FC2GLOB

The construction algorithm is rather straightforward. Hash tables are used to keep the set
of already reached states represented as bit vectors, and new discovered states are given an
integer reference and stored in a list of “states to explore”. Target states are stored as part
of the source state description together with the labeled transition reaching them.

When invoked recursively on a multi-level hierarchical network the explicit implemen-
tation can be alternated with reduction functions at intermediate stages with the -comp
option. One recovers then the compositional model reduction approach popularized through
the original AUTO tool.

RT n" 191

28 A.Bouali,A.Ressouche, V.Roy,R.de Simone

Synchronisation vectors can be applied in any of two ways. When the -bitset flag is on,
a bitvector mask selects applicability on any (bitvector) state, and other bitvector functions
then actually compute the target state. The other way is more traditional. It was found
experimentally that the bitset approach works better for large vectors with components
of few states (the uncompositional, flat approach), while traditional transition application
retains efficiency when components put in parallel were themselves large automata.

5.2 The Implicit Global System Generator FC2IGLOB

FC2IGLOB (or fc2implicit -reach) computes the (BDD characteristic formula given an
ordered boolean encoding of) the set of global reachable states of the system. No com-
positional speed-up method is foreseen, so that the network is flattened to a single-level
vector of individual automata. The reachable state space is of course evaluated in a breadth
first search strategy, applying event synchronisation vectors individually until fixpoint. This
gains efficiency as the symbolic representation of a given synchronisation vector does not
deal with idle components.

Fixpoint reachable state computation can be refined to allow for on-line deadlock de-
tection (states without behaviours), and followed by livelock or divergent states detection
on the result (a divergent state may perform infinite sequences of hidden “tau” actions, a
livelock state can exhibit only such behaviours).

The tool only enumerates states if asked to produce the FC2 automaton on file with
the -fc2 option (otherwise it provides size figures). If deadlock/livelock/divergent states
were queried and found, it provides a diagnostic path. If -debug option is used, additional
information is inserted about the origin of transitions in terms of network components.

6 Bisimulation minimisation and equivalence checking

These functionalities are implemented both with implicit and explicit representation tech-
nologies. In the former case the algorithm assumes a network description as argument (and
not a single automaton, so as to benefit from cleaver encoding using boolean variables); in
the latter case a global automaton is built prior to minimisation, but compositional reduc-
tions can be applied on hierarchical network descriptions. Experience showed that explicit
methods can run substantially faster when the size of the considered automaton is still ma-
nageable for them. On the other hand symbolic methods are sometimes applicable on large
systems, provided the number of classes remain low (for instance in weak bisimulation when
only a few signals are left visible to distinguish between states). Also they have a clear use
when only comparing two distinct networks (the equivalence checking problem).

The tools deal with all three standard variants, namely strong, weak and branching
bisimulation. The Relational Coarsest Partitioning Algorithm of Kanellakis and Smolka [2]
is used to refine a partition of the states, until fixpoint. In case of equivalence checking of
two distinct automata the refinement can possibly be aborted before fixpoint, when it is
found that some state has no match left from the other automaton.

INRIA

The FCTOOLS User Manual (Version 1.0) 29

6.1 The Implicit Algorithm

Symbolic algorithms for the computation of (strong, weak or branching) bisimulation equi-
valence classes were described in [1].

The quotient automaton can be produced in FC2 through symbolic projection functions,
to the effect of replacing any (symbolic) state by a uniquely determined representative, and
then providing integer representations of such representative to be used as new target states.

When checking for equivalence between two distinct networks the synchronous product
is built so that only couple of states reached in some common behavioural path are tried
for bisimulation. This instills some “on-the-fly” flavor to the approach. A path leading to a
matchless state with minimal splitting iteration index is produced when debug flag is on.

See section 2.3 for UNIX command syntax.

6.2 The Explicit Algorithm

Can be iteratively applied on automata resulting from subprocesses for compositional reduc-
tions (using the -comp flag). Builds a global automaton,then reduces it into another explicit
automaton, minimal in states and with only transitions explicit in the former ones (no 7
transitive closure in case of observational bisimulation).

Warning: under development. When checking for equivalence between two distinct
networks the disjoint union of the two state spaces is built, and then partitioned as a
whole. The algorithm then possibly aborts because a class contains no states from one of
the automata, before reaching fixpoint. Then a list of states without match is provided as
counterexample.

See section 2.3 for UNIX command syntax.

7 The Model Abstraction

Abstract Actions allow to observe an automaton with a coarser atomicity level. So it ap-
pears as the opposite of refinement, and as such takes an important role in analysis, where
preservation of some prior less detailed version can be a useful check. The idea is to collapse
a number of sequences of concrete behaviours as “abstractly equivalent” and atomic, calling
such a set an abstract action. Any concrete behaviour sequence somehow “implements” the
abstract behaviour then. For finiteness reasons and efficient automatic verification we res-
trict to the case where abstract actions correspond to regular erpressions of (alternative)
concrete behaviours, and thus to finite automata.

Reducing a global system with respect to a set of abstract actions results in a system
conceptually simpler, where meaningful activities have been isolated as coarser-grain atoms
and named. A practical subcase arises when a single abstract action consisting of the
complement of the desired behavioural trace language is provided. Then finitary trace
inclusion is obtained by checking the non admission of the abstract action by the system. In
any case, determinism is a desirable property for abstract actions, concerning algorithmic

RT n°191

30 A.Bouali,A.Ressouche, V.Roy,R.de Simone

~enter tau

Figure 9: philosophers abstract-action

efficiency. In general abstraction is not compositional w.r.t. network operators such as
parallelism.

Abstract actions are gathered in a new alphabet, to be labels of new transitions. New
states are based on concrete ones (only that some may usually become unreachable). We
currently input abstract actions as automata in the FC2 format, using the following syntax
to represent sequence of concrete actions:

single — action = ID|?ID|#ID|'ID|*

abstract — action = ~ single — action|single — action.abstract — action

* is the “true” wildcard action and and represents any concrete action while the “false”
action is ~ x. To match any path that contains the concrete action ?a.#b.!c, we have to
provide in the abstract action automaton a transition labeled by 7a.#b.!c.x*.

For instance, in figure 9 we use the ATG abstract-action feature to describe an abstract
behaviour refuting mutual exclusion.

The fc2 description below corresponds to the translated form of the figure 9.

nets 1

hook"main" > 0
struct"AbstAct"
net 0

behavs 3

:0 "exit"

:1 "enter"

:2 "AbstAct"
logic "initial">0
hook "abstract_action"
vertice 3
vertex0

edges 2
edge0
behav ~1

-> 0
edgel

INRIA

The FCTOOLS User Manual (Version 1.0) 31

behav 1
> 1
vertexl
edges 3

edge0
behav tau
> 1
edgel
behav 1
-> 2
edge2
behav 0
>0
vertex2
behav 2

7.1 The Explicit Abstractor FC2ABST

From the description above each abstract action is in essence an automaton with transition
labeled by (expressions on) concrete behaviours, with a dedicated terminal state itself labeled
by the abstract name. Then a criterion is a collection of such automata, to be gathered in
a single one by classical union.

The abstracted automaton is built by constructing some synchronous product of the
network with this structure, and setting new states and transitions in the result only when
terminal criteria states are reached (bearing their name to become the new transition la-
bel, while the target state correspond to the one produced from the network alone). This
procedure has to be applied for each new created state facing the whole criterion.

7.2 The Implicit Abstractor FC2IABST

Warning: under development. From the transition relation of the global automaton and
the abstraction criterion, an abstract transition relation is built. Then, to get the abstract
model, we compute the reachable states from the initial state with the new transition rela-
tion. The command fc2iabst is actually a restricted use of the tool command fc2implicit.
One has in fact to give two FC2 files as input to the command, the first being the network
description and the second the abstract criterion. Result output option is automatically set.
See section 2.3 for UNIX command syntax.

8 Verification by Observers
A great deal of practical verification is usually conducted by compiling an automaton-like

structure from the property to establish, with possibly additional annotations on states
and transitions of various sorts (success, failure or recur states, don’t care transitions,...).

RT n° 191

32 A.Bouali,A.Ressouche, V.Roy,R.de Simone

Verification then starts by constructing a synchronised product of the (usually large) network
state space with the (usually smaller) state space of the observer structure. One can attempt
to introduce the actual verification algorithms in the middle of this construction, to get
potential negative results as early as possible (known as “on the fly” or “local” techniques).

Here again the distinction between implementations based on explicit and implicit state
representation are relevant. Symbolic techniques are usually a clear winner, specially when
no representation of subsets of transitions are required, and only forward search across
states is needed (since backward search may exit the reachable state space and needs to be
controled). This is the case for safety properties.

In the current version of FC2IMPLICIT one can only specify deadlocks, livelocks, and di-
vergent states as particular configurations. A dealock is a state without outgoing transitions,
a livelock is a state from which there will never eventually be produced any visible action,
a divergent state is one from which there is an infinite behavioural sequence without visible
label content. In practice what this means is that special recognizing states in observers
should be deadlocks, inducing deadlocks in product machines also, for safety properties. For
liveness properties the unwanted nonprogress loops should correspond to hidden behaviours.
In all case this is awkward and the current situation is not as expressive as should be. We
plan to extend this with far more flexible descriptions of particular states and transitions as
the FC2 format made special provision for that.

The combined construction poses little problem and can actually be described inside
the formalism, by setting the network and the observer in “regular” parallel. According
to flag options selecting which particular feature is looked for, one discovers symbolically
these states/loops from the network which can be coupled (in the synchronous product) to
particular states of the observers. Then a (shortest) path from initial state to one of the
state identified as such is produced. Finally, if ~-debug option is set, source recovery functions
query the state structural fields to uplift this diagnostic back to the original multifile network
description, and to AUTOGRAPH display.

INRIA

The FCTOOLS User Manual (Version 1.0) 33

9 Source Information Recovery

When invoked with -debug option, both FC2IMPLICIT and FC2EXPLICIT preserve a structural
correspondence between states: a global state obtained by product is a (comma separated)
list of local states in the innermost components of the network from which the global auto-
maton originated ;a reduced state in a quotient automaton is a union/sum of states in the
unreduced former automaton. In case of compositional alternated products and reductions
one gets corresponding alternation of parenthesized sum and list expressions. In addition
the FC2 files contains in its header a description of the current structure (in terms of files
where constitutive elements were found).

The previous elements allow at any time to retrieve how states distribute on the original
descriptions. No such information is kept for transition labels, but the mapping of global be-
haviours into local ones, once known the source and target states, is usually straightforward
(and if several cases apply, they are all valid anyway). Such a reconstruction is performed
after observational minimisation in the -debugcase. It should be noted that preservation of
debug information can be space and time consuming, which is why it is turned on only on
explicit flag option.

When -fc2and -debug option flags are set, potential counterexample paths are comple-
ted with transition behaviour label mapping down to components. In this way the counte-
rexample files can be loaded to AUTOGRAPH or FC2VIEW for display on distributed networks,
where local state changes and behaviours are highlighted. See further description in AUTO-
GRAPH and FC2VIEW sections.

RT n"191

34 A.Bouali,A.Ressouche, V.Roy,R.de Simone

References

[1] A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Fourth Workshop
on Computer-Aided Verification, volume 663 of LNCS, pages 96-108, Montreal, 1992.
Springer-Verlag.

[2] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86:43—68, 1990.

[3] E. Madelaine and R. De Simone. The FC2 Reference Manual. Technical report, INRIA,
1993. available by ftp from cma.cma.fr:pub/verif as file fc2refman.ps.gz.

[4] J.K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series. Addi-
son-Wesley, 1994.

INRIA

/<

Unité de recherche INRIA Lorraine, Technopodle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LESNANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

