archives-ouvertes

Computing one million digits of racine de 2

Xavier Gourdon, Bruno Salvy

» To cite this version:

Xavier Gourdon, Bruno Salvy. Computing one million digits of racine de 2. RT-0155, INRIA. 1993,
pp.6. inria-00070013

HAL Id: inria-00070013
https://hal.inria.fr /inria-00070013
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00070013
https://hal.archives-ouvertes.fr

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computing one million

of V2

Xavier GOURDON
Bruno SALVY

N-°155
Mai 1993

PROGRAMME 2
Calcul symbolique

Programmation
Génie logiciel

Rapport technique

digits

Computing one million

digits of /2

Xavier Gourdon and Bruno Salvy

Abstract

We describe how the knowledge of Maple’s internal data structure can be used
to compute the first million digits of v/2 efficiently.

Calcul du premier million

de décimales de /2

Résumé

Nous montrons comment la connaissance des structures de données internes de
Maple peut étre utilisée pour calculer efficacement le premier million de décimales

de /2.

To appear in The Maple Technical Newsletter.

Computing one million digits of v2

Xavier Gourdon and Bruno Salvy !

Introduction

Maple can be used as a high precision calculator to effectively compute a large number of
digits of some constants. For example, an interesting survey of the computation of # with Maple
can be found in the 8th issue of this newsletter. The most natural way to proceed to compute
a constant €' is to call the function evalf (C,n) which returns the first n digits of C'. However,
when n becomes large (n around 100,000), evalf becomes very time-consuming. In this note,
we use the computation of the first million digits of v/2 as an incentive to the understanding
of Maple’s floating point numbers. Qur aim is to show that this understanding is profitable to
gain much efficiency in the computations. The program we describe computes the first million
digits of v/2 in about 3.5 c.p.u. hours on a Sparcl0. Here are some timings comparing the
speeds of our algorithm and of Maple’s evalf.

Nb digits || our time evalf | ratio
4096 1.1s 4.8s 4.3
8192 3.5s 19.2s 5.4

16384 11.3s 77.8s 6.9
32768 35.4s | 311.3s 8.8
65535 111.5s | 1266.6s | 11.3

In the second column, our time is multiplied by 3 each time the number of digits doubles,
hence a growth of O(n'°83/1°962) while evalf’s time grows in O(n?). The time needed by evalf
to compute one million digits of v/2 would thus be roughly 80 c.p.u. hours on this machine (to
be compared with our 3.5 hours).

Since all the computations of evalf are performed in the kernel, which is in compiled C,
they cannot be overtaken by mere Maple programming. Qur improvements over evalf thus
have to be algorithmic. These fall into two classes: improvement of the algorithm used for the
computation of v/2 itself and improvement of the underlying arithmetic. Also, Maple integers
(hence floats) are limited to 2'? = 524288 digits on a 32-bits machine. To overcome this
limitation, the final program will output two numbers whose concatenation yields the right
result.

Computation of /2
The most well known algorithm to compute v/2 consists in iterating the sequence
Upt1 = Un /2 + 1/ Uy, ug=3/2, (1)

! Algorithms Project, INRIA, 78153 Le Chesnay Cedex, France.
Xavier.Gourdon@inria.fr and Bruno.Salvy@inria.fr

Computing v/2

obtained by applying Newton’s method to the polynomial 22 —2. This sequence converges to v/2
quadratically, which means that the number of correct digits doubles at each iteration. This
follows from substituting u,, = v2+4£, in (1) and rewriting 1/u, as (V2—10,)/2+ 362 /(vV2+1,,),
which yields
g1 0
T2V 4,

From this one notes that this convergence is also stable, meaning that a small error at one
stage will not prevent the sequence from converging. This property can be used profitably by
computing only 2" digits of u,; or in Maple parlance by doubling Digits at each step.

A shortcoming of (1) is that it requires the computation of the inverse of numbers with a
large number of digits. This is not a necessity and we shall rather rely on the following sequence

ug = 0.7071067811865475, Upt1 = gun —ud, (2)
This sequence is obtained by applying Newton’s method to 2 — I% and by similar arguments as
above, it converges quadratically to \/2/2. More precisely, one can prove that |u, — v/2/2| <
102" for all non negative integer n. Hence the first million digits of 2 u16 (more precisely the
first 220 = 1,048,566 digits) are those of /2.
The advantage of (2) over (1) is that it requires only additions, products and divisions by
2. Addition and division by 2 of large numbers (numbers with thousands of digits) are not
expensive in Maple, but multiplication is. This is discussed in our next sections.

Large integers and floats in Maple

Floating point numbers are stored by Maple as
Float(a,b),

where @ and b are integers. This represents a - 10°. Then, except when Digits is smaller than
evalhf(Digits), all the operations performed on floating point numbers are reduced internally
to operations on integers.

Consider now the division by 2 which is needed in (2), and suppose Digits = 20000. What
happens is that 1/2 is first computed to 20000 digits, and then Maple computes the product of
two 20000 digits integers. To avoid this waste of time, it is therefore desirable to transform (2)
into a recurrence over integers:

3u,L, ul

_ (3)

up = 7071067811865475, Untl = — I

where L, = 102""", and the divisions in (3) are considered as Euclidean divisions computed
by iquo. Division and multiplication by L, are not difficult to compute because Maple stores
its integers in base 10000 (on a 32-bit machine). Therefore these operations reduce to shifts.
We show in our next section how this can be done efficiently.

To conclude this section, this is the procedure we use to compute /2 with a large number
of digits:

Computing v/2

n is the number of digits. This procedure works for n < 2'% = 262144 digits.
sqrt2 := proc(n)
local u, [;
u:=7071067811865475;
l:=4;
while 8*] < n do
w:=iquo(3*shift(u,l),2)—trunccube(u,l);

L:=2*1;
od;
RETURN (evalf(Float(3*shift(u,l)—2*trunccube(u,l),—8*1),n))
end:

The procedures shift and trunccube are detailed below.

Shifting integers in Maple

Although Maple stores its integers in base 10000 (on a 32-bit machine), the product of an
integer by 104" takes the same time as the product by any 4n-digits integer. It turns out that
using Maple’s internal data structure, the cost of such operations can be considerably reduced.
This is achieved thanks to Maple’s “hackware package” commands: assemble, disassemble,
pointto, addressof.

We illustrate these commands on an example. We take the integer n:=123456789. Calling
the function ptrn:=addressof (n) returns the internal address of the Maple integer n. The
disassemble function, applied to the address ptrn, disassembles the Maple integer n into its
components and returns the sequence of their addresses:
> n:=123456789:
> ptrn:=addressof(n):
> addrseqn:=disassemble(ptrn);

addrseqn := 2, 6789, 2345, 1

The first integer in addrseqn represents the type of the object n (here a positive integer),
the following ones are the 4-digits blocs of n in reverse order. Suppose we want to calculate
m=n*10000. The Maple representation of m being

2, 0, 6789, 2345, 1
we compute
> m:=pointto(assemble(2, 0, subsop(1=NULL,addrseqn)));
m := 1234567890000

The assemble function assembles the sequence of integers into a Maple object and returns
the address of this object. Calling then the function pointto returns the Maple expression to
which it points, here m. Thus multiplying or dividing an integer by 10%" is reduced to shift
operations on the n 4-digits blocs of this integer, and these are very fast.

The code that does it is the following:

If a macro could have an argument, this would be a macro.

inttolist:=proc(n) RETURN([disassemble(addressof(n))]) end:

Computing v/2

This returns a - 10%*

shift:=proc(a,k)
if a=0 then RETURN(0) fi;
RETURN(pointto(assemble(op(subsop(1=(2,08k),inttolist(a))))))

end:

Fast multiplication

We now concentrate on the product of two large integers, which is the most expensive
operation in this algorithm. Maple computes the product of two n-digits integers like one does
by hand (except that it does it in base 10000). This requires O(n?) elementary operations. This
cost can be reduced to O(nlog3/log2) operations using Karatsuba’s algorithm. To multiply two
2n-digits integers A and B, Karatsuba’s algorithm consists in cutting A and B into two parts,

A:alL—I—ao, BIblL—|-b0

where L = 10", aq, ag, by and by being n-digits numbers, and then to compute the product AB
as

AB = (albl)L2 —|— [(a1 —|— ao)(b1 —|— bo) — a1b1 — aobo]L —|— aobo. (4)

Only three products of n-digits numbers have to be computed instead of four with the usual
formula AB = (a1b1)L? + (agby + a1bo)L + agbo. A recursive application of (4) leads to the
bound O(n'o83/1082),

As seen in the previous section, cutting integers and multiplying them by L = 10" can
be efficiently achieved using Maple’s internal data structures. Some care is required though,
since the representation of an integer cannot end by a zero. Consider for instance the integer
n:=1234500006789 and suppose we want to compute m, the last 8 digits of n. We compute
> 11:=disassemble(addressof(n));

1 :=2, 6789, 0, 2345, 1
> 12:= 2, op(2..3,[11]);
12 := 2, 6789, O
> m:=pointto(assemble(12));
m := 0

This means that we have to test the last 4-digits blocs of the representation of m and delete
them if they are zero, before calling the function pointto(assemble()). Taking this into
account, we write the following procedure:

Relurns both the first and last part, assigning them to the last arguments
firstlastpart:=proc(n,k,first,last)
local 1, i;
l:=inttolist(n); # this is slightly non-linear (hence expensive)
if k+2>nops(l) then first:=0;last:=n;RETURN() fi;
first:=pointto(assemble(op(1,1),0p(k+2..n0ps(1),1)));
l:=[op(2..k+1,1)];
for i from k by —1 to 1 while op(i,])=0 do od;

Computing v/2

if i = 0 then last:=0 else last:=pointto(assemble(2,0p(1..i,1))) fi;
RETURN()

end:
Using this and our previous routines, Karatsuba’s algorithm fits in five lines:

n x m by Karatsuba’s algorithm (n > m)

karaprod:=proc(n,m)

local k, k2, a, b, ¢, d, ac, bd;
if length(n)<6000 or length(m)<2000 then RETURN(n*m) fi;
k:=ceil(length(n)/4); k2:=iquo(k,2);
firstlastpart(n,k2,a,b); firstlastpart(m,k2,c,d);
ac:=karaprod(a,c); bd:=karaprod(b,d);
RETURN(shift(ac,2*k2)+shift(karaprod(a+b,c+d)—ac—bd,k2)+bd)

end:

Note that the practical efficiency of this algorithm depends on the value of the thresholds
where we let the underlying arithmetic (here Maple’s internal multiplication) compute the
products. In practice, this program is more efficient than Maple’s product as soon as the
integers have more than about ten thousand digits.

Computation of v’

Now that we have an efficient multiplication, it is a simple matter to compute u> with two
multiplications. However, a few shortcuts can be used to make this computation even faster.

First, when n = m, the splitting firstlastpart in karaprod can be done once instead
of twice. One can use this to write a second procedure karasqr which is slightly faster than
karaprod in this special case.

Second, in our algorithm w2 /L, is close to L,/2. This can be taken into account to spare
one long multiplication (u2 by u,): once we have computed z = u2, we cut z into two blocs
z =u? = AL, + B, and rewrite it as 2 = (A — L, /2)L,, + B+ L,1+1/2. We now have three
products to examine

(1) (A—1L,/2)X u,, (i) BXu, and () Lpp1/2X uy.

Product (i) is quickly achieved, because A — L,,/2 is a short integer; product (iii) is not costly
since we only have to shift and divide by 2 the integer u,. This way, there is only one large
product (ii) to calculate instead of two (A X u, and B X uy,).

This leads us to the following program:

Compule the first 2k blocs of n, using the facl that n? is close to 1/2.
k is the number of blocs of n (it is a power of 2)
trunccube:=proc(n,k)
local u, v;
firstlastpart(karasqr(n),k,u,v);
RETURN (iquo(shift(n,k),2)+firstpart(karaprod(n,v),k)+(u—shift(5000,k—1))*n)

end:

Computing v/2

In this procedure, firstpart is an analogous to firstlastpart which returns only the first
half of the number.

Huge numbers

Because of the limit size of the integers in Maple, we have to avoid creation of integers with
more than 524288 digits. Thus, in the actual program, we use two extra procedures to compute
the last two terms of the sequence. These procedure are rather long and unilluminating and we
omit them here. Basically, one has to cut the numbers into several pieces, perform the “small”
products avoiding numbers with more than 524288 digits in the intermediate computations,
propagate the carry and reuse the local variables to spare memory. These procedures can be
obtained by e-mail from the authors.

Conclusion

We expect that this experience convinces the reader that being an interpreted language is
not an obstacle to the speed of such computations in Maple. A program written in C would
not have been really more efficient than ours; moreover, it would have required big numbers
packages and would have been more tedious to write. Nevertheless, some fast product algorithm
should be implemented in Maple’s kernel. The program would have been 10 lines long. While
an FFT-based product will be efficient only for very large numbers of digits (about one million)
and thus is not absolutely necessary, Karatsuba’s algorithm, if implemented in the kernel, would
be faster than the existing product for numbers of about 300 digits, which is a common size for
coeflicients appearing in large computations.

