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Cock-a-doodle-doo,

My dame has lost her shoe;
My master’s lost his fiddlestick,
And knows not what to do.

— Mother Goose
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Introduction

Coq is a proof assistant for higher-order logic, allowing the development of computer programs
consistent with their formal specification. It is the result of about ten years of research of the
Formel project. We shall briefly survey here three main aspects: the logical language in which
we write our axiomatizations and specifications, the proof assistant which allows the development
of verified mathematical proofs, and the program extractor which synthesizes computer programs
obeying their formal specifications, written as logical assertions in the language.

The logical language used by Coq is a variety of type theory, called the Calculus of Inductive
Constructions. Without going back to Leibniz and Boole, we can date the creation of what is
now called mathematical logic to the work of Frege and Peano at the turn of the century. The
discovery of antinomies in the free use of predicates or comprehension principles prompted Russell
to restrict predicate calculus with a stratification of types. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification
of this system along the lines of simply typed A-calculus occurred with Church’s Simple Theory
of Types. The A-calculus notation, originally used for expressing functionality, could also be used
as an encoding of natural deduction proofs. This Curry-Howard isomorphism was used by N. de
Bruijn in the Automath project, the first full-scale attempt to develop and mechanically verify
mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in
the 1970’s. Exploiting this Curry-Howard isomorphism, notable achievements in proof theory saw
the emergence of two type-theoretic frameworks; the first one, Martin-Lof’s Intuitionistic Theory
of Types, attempts a new foundation of mathematics on constructive principles. The second one,
Girard’s polymorphic A-calculus Fw, is a very strong functional system in which we may repre-
sent higher-order logic proof structures. Combining both systems in a higher-order extension of
the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of Con-
structions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional
encodings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989
by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus
of Inductive Constructions. This extended formalism is not rigorously defined here. Rather, nu-
merous concrete examples are discussed. We refer the interested reader to relevant research papers
for more information about the formalism, its meta-theoretic properties, and semantics. However,
it should not be necessary to understand this theoretical material in order to write specifications.
It is possible to understand the Calculus of Inductive Constructions at a higher level, as a mixture
of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive
function definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional
calculus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-
order logic was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called
resolution. Resolution relies on solving equations in free algebras (i.e. term structures), using
the unification algorithm. Many refinements of resolution were studied in the 1970’s, but few
convincing implementations were realized, except of course that PROLOG is in some sense issued
from this effort. A less ambitious approach to proof developement is computer-aided proof-checking.
The most notable proof-checkers developed in the 1970’s were LCF, designed by R. Milner and his
colleagues at U. Edinburgh, specialized in proving properties about denotational semantics recursion
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equations, and the Boyer and Moore theorem-prover, an automation of primitive recursion over
inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs by
a combination of automated methods, LCF constructed its proofs through the programming of
tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer
and Moore’s, is its possibility to extract programs from the constructive contents of proofs. This
computational interpretation of proof objets, in the tradition of Bishop’s constructive mathematics,
is based on a realisability interpretation, in the sense of Kleene, due to C. Paulin. The user
must just mark his intention by separating in the logical statements the assertions stating the
existence of a computational object from the logical assertions which specify its properties, but
which may be considered as just comments in the corresponding program. Given this information,
the system automatically extracts a functional term from a consistency proof of its specifications.
This functional term may be in turn compiled into an actual computer program. This methodology
of extracting programs from proofs is a revolutionary paradigm for software engineering. Program
synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger.
The Tablog system of Z. Manna and R. Waldinger allows the deductive synthesis of functional
programs from proofs in tableau form of their specifications, written in a variety of first-order logic.
Development of a systematic programming logic, based on extensions of Martin-L6f’s type theory,
was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The first actual program
extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical
formalisms of S. Feferman. Interest in this methodology is growing in the theoretical computer
science community. We can foresee the day when actual computer systems used in applications
will contain certified modules, automatically generated from a consistency proof of their formal
specifications. We are however still far from being able to use this methodology in a smooth
interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hope that Coq can be
of use to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its imple-
mentation language was CAML, a functional programming language from the ML family designed
at INRIA in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed
A-calculus, called the Constructive Engine. This engine was operated through a high-level notation
permitting the declaration of axioms and parameters, the definition of mathematical types and
objects, and the explicit construction of proof objects encoded as A-terms. A section mechanism,
designed and implemented by G. Dowek, allowed hierarchical developments of mathematical theo-
ries. This high-level language was called the Mathematical Vernacular. Furthermore, an interactive
Theorem Prover permitted the incremental construction of proof trees in a top-down manner, sub-
goaling recursively and backtracking from dead-alleys. The theorem prover executed tactics written
in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend
by his own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was
extended to deal with the new calculus with inductive types by C. Paulin, with corresponding new
tactics for proofs by induction. A new standard set of tactics was streamlined, and the vernacular
extended for tactics execution. A package to compile programs extracted from proofs to actual
computer programs in CAML or some other functional language was designed and implemented
by B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was
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designed and implemented by A. Felty. It allowed operation of the theorem-prover, through the
manipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system (Ver-
sion 5.6) was realeased in 1991. This new version 5.8 whose development has been coordinated by
C. Murthy is written in CAML-LIGHT (Version 0.5), a new implementation of CAML. It provides
new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to
program extraction) and a new user-interaction loop.

The first part of this manual is a user’s guide to the theorem-proving facilities. The second part
explains how to extract ML programs from Coq proofs and prove properties of ML programs. At
last an appendix contains the libraries initially loaded in the system.



Running the System

How to get Coq

The simplest way is to import it by FTP (File Transfer Program). If your site has access to FTP,
here is the sequence of commands to follow:

ftp ftp.inria.fr* '

Connected to ftp.inria.fr.

220 ftp FTP server ready.

Name (ftp.inria.fr:huet):f

Password: myself@mymachine.myinstitution.mycountry
331 Guest login ok, access restriction apply

ftp> cd INRIA/coq/V5.8

250 CWD command successful.

ftp> binary

ftp> get README

ftp> get coq.tar.Z

ftp> quit

If you do not have access to FTP, write us, preferably by e-mail to cog@margaux.inria.fr,
specifying your equipment and system.

The file coq.tar.Z, once uncompressed, must be de-archived by tar, which will give you a di-
rectory coq, with sub-directories DOC, SRC, RELEASED, THEORIES, LIB, DEMO, and a number of files:
README, coql. DOC contains the dvi format of this manual, SRC contains the CAML-Light source
files, THEORIES contains a selection of example vernacular files, comprising the mathematics and
programs developed in the system. RELEASED will contain entries for every machine architecture
you want to run Coq on. For instance, if you are on a sun4 machine, the installation of the system
as explained below will create an entry sun4/coq.out. '

Getting the system to run

In order to run the system, you need CAML-Light version 0.5. CAML-Light may also be obtained
by FTP. Do, similarly as above: ftp> cd /lang/caml-light

250 CWD command successful.

ftp> get README

*If your name server does not find £tp, you may access with absolute addressing: ftp 128.93.1.26
there you type in anonymous



ftp> get clbSunix.tar.Z
ftp> get rtS.tar.Z

The file c15unix.tar.Z is the CAML-Light 0.5 UNIX distribution, and the file rt5.tar.Z is
the X-windows runtime environment, used for the X interface to Coq.

We shall assume here that your computer or workstation is running the UNIX operating system,
with the X window interface, version 11, release 4, or an equivalent such as SUN OpenWindows.

Once you have CAML-Light, and the X runtime library installed, you have to install Coq.
In directory coq/LIB/libc, do make. In directory coq/LIB/stream-pp, do make. Finally, in
directory coq/SRC, do make to create the executable image. This will create three files: coq, xcoq,
and state.coq, which are, respectively, the character-based I/O executable, the X-windows-based
I/O executable, and the saved internal state after loading the standard prelude of mathematical
definitions. Finally, you will need to move these binaries to the RELEASED repository for your
architecture. Create the proper repository, mkdir RELEASED/‘arch‘, and then, from within SRC,
do: make install. If your system does not have an “arch” command, you will need to set the
Makefile variable ARCH by hand, to your architecture. This completes the installation.

Once Cogq is installed, you may run it by calling the command coql from the directory cogq.
You should get the banner:
Welcome to Coq V5.8 - Fri Jan 15 15:24:31 MET 1993
Coq <

The options of this command are :

¢ -x (boots version with X interface)

¢ -bw (only valid with -x, by default the color mode is used on color screens and the black
and white mode on black and white screens, this option is needed to use the black and white
mode on color screens)

e -gray (only valid with -x, if a gray scale screen is used)
e -is file (read initial state from file)
e -I dir (add dir to loadpath)

¢ -q (no autoload of ~/.cogrc)

Navigating in the system

Initially, you are in the Coq toplevel. From this toplevel, you may exit permanently in a graceful
manner by typing Quit., or by typing CTRL-D. The keyword Drop. drops you into a fake CAML
toplevel, which is used by system implementors for debugging. If you drop into it (the prompt is
comm #), you can get back to the Coq toplevel by typing go(); ;.

You may interrupt with the INT signal (usually bound to key CTRL C). You may escape to the
surrounding shell by sending the STOP signal (usually bound to key CTRL Z). In this last case,
you may reenter your Coq session with the shell command fg.

Interaction with the prover is usually done from the Vernacular toplevel, which is the default
toplevel, when you invoke Coq. A manual of the Constructions Vernacular is given below in
Section 1.1. This basic vernacular is a higher-level notation that compiles mathematical definitions,
variable and axiom declarations, and proofs into operations of the Constructive Engine.
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After a little practice with the use of the basic vernacular, the user may attempt to use the
Tactics Theorem Prover. This is a goal-directed inference engine, in the spirit of Prolog, but with
a proof-search mechanism driven by tactics in the spirit of the LCF proof assistant.

It is possible to record a proof development in a vernacular file. The command Open transcript
will open the file transcript.v, without truncating it. From then on, all vernacular commands
will be appended to this file. Recording ceases with executing command Close. The recording
of an interactive proof is not done step by step, but proof by proof, at the time when the Save
command is executed. This way, dead alleys backtracked from with Undo are not recorded. Using
the Tactics Theorem-Prover is described in Section 1.4.

It is possible to drive the theorem prover from a visual interface with the X window system. If
you have a color screen, button of the visual interface will be colored.

You enter the interface from the Coq loop with the Interface. command. This opens two
windows on your screen. One, labeled Coq, is used to drive the theorem prover. The other, labeled
Context, is used to print sections of the current context. You may exit from the interface by
pressing the Quit button in the Coq window, or by sending the INT signal. A complete manual of
the interface is provided below in Section 1.6.

It is possible to extract from a proof an algorithm, which corresponds to its constructive con-
tents. This algorithm may actually be constructed, in the form of a computer program in a dialect
of the ML language. This facility is explained in Section 2.4 below.

If you have difficulties in installing or operating the system, or if you discover an anomalous
behaviour, you may send electronic mail to cog@margaux.inria.fr, with a clear description of the
trouble, including the machine/system you are running, and the banner of the Coq system you are
running.

Users Contributions

We are encouraging users to contribute their development examples so that some sharing of effort
will be possible at the level of theory packages. These exemples will be included progressively in
the released examples.

The current structure of the theories is as follows. The main installation directory of Coq
V5.8 corresponds to an environment variable $COQTOP. The directory of theory packages corre-
sponds to an environment variable $COQTH, by default equal to $COQTOP/THEORIES. Various packages
are placed there, as subdirectories SETS, LISTS, ARITH, RELATIONS, STREAMS, etc. The directory
PROGRAMS contains the examples of program proofs developed by the implementation team, in Lyon
and in Rocquencourt. The directory SYSTEM contains the vernacular files initially loaded in the
system, i.e. Prelude, Specif, Peano (natural numbers) and Wf (ncetherian induction). as well as
certain other files of frequent use. The directory ARITH contains the beginning of integer arithmetic.
Initially, the system’s LoadPath is initialized to [$COQTH/SYSTEM; $COQTH/ARITH].

The directory CONTRIB is intended for user-contributed examples, partitioned by sites. Every
site will be responsible for his own sub-directory, but we propose a common format for consistency.
Let us take the example of a site Nancy, who contributes packages for unification and for constraints,
sharing a library of term structures. Typically, the directory $COQTH/SYSTEM/CONTRIB/Nancy will
contain 3 subdirectories, say Unify, Constraints, and Terms. We propose that each of these
directories contains a file paths.v, containing the proper LoadPath adjustements. Typically, the
file Unify/autoload.v may contain:
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AddPath "$COQTH/SYSTEM/LISTS".
AddPath "$COQTH/CONTRIB/Nancy/Terms".
AddPath "$COQTH/CONTRIB/Nancy/Unify".

There should also be a README file containing credits, disclaimers, confidentiality requests, origin
of the example, explanations on the axiomatisation style, need of special features, etc. Finally, a
file 1oad.v ought to contain the sequence of Require commands necessary to load the package.
Fach vernacular file ought to start with a comment header, indicating:

¢ A brief description of the nature of the theory

e Credits: authors, institutions, literature references used, etc.

e The version of the system in which the example was developed, e.g. Coq V5.8
e The date at which this theory was contributed

Each file should start with the minimum Require commands necessary to run this particular
file, in the proper order. There is no need to do the transitive closure of this operation, of course,
but redundancy is not problematic, since each module will be loaded only once. The file should end
with the proper Provide command. It is good practice to end each package with a postlude.v
file, which closes all opened sections and other global resettings.

We warn the contributing users to check carefully that their examples are executable with a
virgin system. In particular, initialisation commands which the user has put in his personal .coqrc
file ought to be copied in the proper autoload.v files.

If the development is documented in a research article or report, it may be useful to include in
the directory this document, in the form of a dvi or ps file, if it is not too big. The next paragraph
gives practical directions on how to contribute a Coq library.

The Coq librarian is Gerard.Huet@inria.fr. A first contact should be done with him by email
to discuss the opportunity of contributing a given library. When an agreement has been reached,
here are the steps to follow:

e Proceed with formatting the library according to the above directions

¢ Check carefully that the library loads without error in the current distribution version of Coq,
with empty .coqrec.

¢ Remove from the corresponding directories all spurious items, such as temporaries, old ver-
sions and editor checkpoints files, including ones whose names start with a dot.

e make a tar archive, compress it, and uuencode it

e send it by email, preceded by a warning message “the next mail contains bla bla” with
potential specific installation directions ‘

All contributing authors will be regularly informed of new contributions, by concise messages
sent on a coq-users-club distribution list. Please avoid mail pollution by global replies to such
messages.
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Chapter 1

The System Coq as a Proof-Checker

1.1 A Typed X-calculus

In the System Coq one can express and prove propositions (such as “two is even” or “even(two)”).
These propositions concern objects (here “two”). These objects are represented by terms of a typed
A-calculus: the Calculus of Inductive Constructions.

1.1.1 Parameters and Terms

Base objects are declared with the instructions Parameter and Inhabits.

Parameter nat.
Inhabits Set.

Parameter O.
Inhabits nat.

‘Parameter S.
Inhabits nat -> nat.

Remark that since the lexical conventions of the system Coq forbid the numeral 0 as an identifier
we have used the letter 0.
A shorter syntax for these declarations is:

Parameter nat:Set.
Parameter 0O:nat.
Parameter S:nat =-> nat.

In this calculus the types are terms. They all belong to a single predefined type Set.

Once base objects are declared, terms may be built with three constructions: application, A-
abstractions and product formation.

o Application is the application of a functional term to an argument. An example is (S 0).

e Abstraction permits the formation of functional terms. An example is [x:nat]J(S (S x))
which denotes the function which maps a natural number x to the successor of its successor.

¢ Product formation permits one to build types for functional terms. An example is nat -> nat.

All these products are of type Set.
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1.1.2 Contexts

A term in which parameters occur is well-formed only when these parameters have been declared.
For instance the term (plus x x) is well-formed only when the parameters plus and x are declared.

At any point in the use of the system Coq the list of the parameters already declared form the
current contezt. (Actually the current context is the list of all the parameters, definitions, axioms
and theorems already declared.) Remark that in the term [x:nat](plus x x) the parameter x
does not have to be declared because it is bound by A-abstraction. So the term [x:nat] (plus x x)
is well typed in the context [nat:Set; plus:nat -> nat -> nat].

1.1.3 Reduction

Let us consider the terms [x:nat](S (S x)) and (S 0). The first one is a function that maps
every natural number to the successor of its successor, the second is the natural “one”. When
we apply the first to the second, we get the term ([x:nat](S (S x)) (S 0)). This term can be
reduced to (S (S (S 0))) by the rule of replacement of formal parameters by actual arguments.
In the following, such equivalent terms will be identified.

1.1.4 Polymorphism, Type Constructors and Dependent Types

In this A-calculus types are terms and thus it is possible to abstract over the type Set and also to
abstract types. For instance the term [x:T]x can be abstracted over the type variable T to give
the term [T:Set] [x:T]x which is the polymorphic identity.

When we want to give a type to this term a problem occurs. This term is a function. The
domain of this function is the type Set. But the codomain of this function cannot be defined
simply since it depends on the value to which this function is applied. Thus the arrow notation is
not sufficient here and we have to give a richer syntax for such function types.

We let this term be of type (T:Set) (T -> T) where the notation (x:P)Q is an extension of the
arrow notation P -> Q.

In the previous example, when [T:Set][x:T]x is applied to the term nat we get the term
[x:nat]x whose type is (nat -> nat). More generally, the typing rule is that when a term t of
type (x:P)Q is applied to a term u of type P, the result has type Q[z — u].

When the type of the result does not depend on the value of the argument, (for instance
when [x:nat]x is applied to any natural number, the type of the result is always nat) we write
(nat -> nat) instead of (x:nat)nat. Thus (P -> Q) is really an abbreviation for (x:P)Q when
x has no occurrence in Q.

Remark that this function type construction is also a binding operator and thus x is not free in

(x:P)Q.

1.1.5 Abbreviations

In the process of constructing a term we may want to use definitions. A definition relates a name
to a term. Then this name can be used and everything proceeds as if all the occurrences of this
name were replaced by the abbreviated term.

This can be done with the Definition and Body instructions.

Definition plus_two.
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Body [x:nat](S (S x)).
A shorter syntax for this definition is:
Definition plus_two = [x:nat]J(S (S x)).

A more explicit syntax where the type is given with the term can also be used:

Definition plus_two = [x:nat](S (S x)):nat -> nat.
or:
Definition plus_two:nat -> nat = [x:nat](S (S x)).

Then the identifier (plus_two (S 0)) is equivalent to ([x:nat](S (S x)) (S 0)) i.e. is equiva-
lent to (S (S (S 0))). '

1.1.6 Local Declarations and Local Definitions

When we define a term representing a function, rather than writing it [x:nat]t, it is sometimes
easier to write it t under the local declaration x:nat. This can be done by inserting the declaration
x:nat between the two parts of the definition. In order to indicate that this declaration is local,
the keyword Parameter is replaced by the keyword Variable.

Definition plus_two.
Variable x.
Inhabits nat.

Body (S (S x)).

The scope of a variable x is restricted to the definition of plus_two. Out of this definition the
variable x is discharged, so that the term plus_two is bound to [x:nat] (S (S x)).

This can be compared with the usage in mathematics: “Let z be a natural number, (plus_two z)
is the successor of the successor of z” instead of: “Let plus_two be the function that maps every
natural to the successor of its successor”.

Local definitions can be stated in the same way, the keyword Definition being replaced by
Local. The scope of the defined symbol is also restricted to the definition. Outside the scope of
this definition the occurrences of the defined symbols are replaced by the term they abbreviate.

1.1.7 Sections

When we want a local declaration or definition to be shared by several definitions we may use the
paragraph mechanism. A paragraph is opened with the instruction Section name and closed with
the instruction Leave name. For instance:

Section Sums.
Variable x:nat.
Definition plus_two = (S (S x)).
Definition plus_three = (S (S (S x))).
Leave Sums.
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will define plus_two = [x:nat](S (S x)) and plus_three = [x:nat](S (S (S x))).
In some cases this section mechanism is too clumsy. For instance, assume we have a function
plus:nat -> nat -> nat:

Parameter plus:nat -> nat -> nat.

Assume that we want to define the two functions: £ = [x:nat] [y:nat](plus (plus x y) y) and
g = [x:nat](plus (plus x x) x) The commands:

Section two_functions.
Variable x,y:nat.
Definition f = (plus (plus x y) y).
Definition g = (plus (plus x x) x).
Leave two_functions.

will define the functions:

f = [x:nat][y:nat](plus (plus x y) y)andg = [x:nat][y:nat](plus (plus x x) x). An
undesired [y:nat] has been added to the definition of g. Indeed the section mechanism is not
supposed to remark that the variable y does not occur in the term g. When such a test is desired
you have to use the keyword End instead of Leave. For instance

Section two_functions.
Variable x,y:nat.
Definition f = (plus (plus x y) y).
Definition g = (plus (plus x x) x).
End two_functions.

will define £ = [x:nat][y:nat](plus (plus x y) y) and g = [x:nat](plus (plus x x) x).

Remark that this keyword End cannot be used when one wants to define a function which does
not use all of its arguments. For instance if we want to define the function p = [x:nat][y:natlx.
The commands:

Section first_projection.
Variable x,y:nat.
Definition p = x.

End first_projection.

will define the function p = [x:nat]x. Here, the keyword Leave should have been used.

1.1.8 Inductive Types

If we look at the functions that can be represented by a term in this language we get a very poor
set of functions. It contains the constant functions, the projections, the successor function and it
is closed by composition. One important construction is missing: inductive definitions. In order to
get induction we must give a better definition of natural numbers: we shall define natural numbers
as an inductive type.
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Declaration of an inductive type

Coq provides the possibility to define inductive types like the type of natural numbers, of lists,
trees, ...An inductive type is specified by giving the signature of its constructors. The effect of the
declaration of an inductive type in Coq is quite similar to the effect of the declaration of a concrete
type in ML. A new type, terms for the constructors of this type and a destructive operation for an
element of the type using a match-like structure are added to the environment.:

For example, we may define the type of unary natural numbers built from 0 and successor as:

Inductive Set nat = 0 : nat | S : nat->nat. (* Beware: 0 stands for 0 *)

Since the scheme of inductive types in Coq is more general than the scheme in ML, the syntax of the
declaration is slightly more complicated. In ML only the type of the argument of the constructor
is indicated. For example, a similar structure of natural numbers will be declared in CAML as

type nat = 0 | S of nat;;

In Coq, we indicate the complete type of the constructor.
Remark. If you try to execute all the examples given in this manual in a sequential manner, the
above definition will fail with a message:

Error Clash with global variable nat

This is because nat was initially defined as an abstract type, represented as a global Set variable.
Coq forbids to hide such global variables, and thus you must execute the above type definition in
a fresh environment, obtainable by typing in:

Reset Initial.

Note that Coq allows redefinition of defined constants. Thus in the initial state of the system the
type nat is defined from the standard prelude, but we may hide it by such a redefinition. A further
remark is that in Coq inductive types are non-generative. The new type definition being isomorphic
to the Prelude’s one, these two types are internally equivalent, and thus arithmetic operators from
the prelude such as plus may be applied to terms built with the “new” constructors.

It is possible to define a constructor with more than one argument, so we do not need the
intermediate product constructor like in ML. For instance the type of lists of natural numbers is
defined with:

Inductive Set natlist = nil : natlist | cons : nat -> natlist -> natlist.

It is possible to introduce inductive types depending on parameters, for example polymorphic lists
by:

Inductive Set list [A:Set] = nil : (list A) | cons : A -> (1list A) -> (list A).

In this definition, 1ist will be a type constructor which associates to each type A an inductive type
with two constructors. The occurrences of 1list in the type of the constructors must appear only
in sub-expressions of the form (list A).

Inductive definitions are not necessarily recursive. The product is a special case of an inductive
definition with one constructor which takes two arguments:
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Inductive Set prod [A,B:Set] = pair : A->B->(Ax*B).

In Coq A*B (resp. <A,B>(a,b)) is an alternative syntax for (prod A B) (resp. (pair A’ B a b)).
Another example of a non-recursive inductive definition is the disjunct sum of two sets. This
set is generated by two constructors corresponding to the left and right injections.

Inductive Set sum [A,B:Set] = inl : A -> (A+B) | inr : B -> (A+B).

In Coq A+B is an alternative syntax for (sum A B).

Examples of programs using inductive types

We just showed how to declare an inductive definition. We now explain how to take apart an object
of an inductive type.

A closed element of an inductive type in reduced form is a term (¢; t; . . .1, ) with ¢; a constructor.
The principle of the destructive operation is the following one: to define a function on an inductive
type, it is sufficient to give the value of the function for terms starting with each constructor.

The basic idea is intuitive but the syntax is, at the moment, rather difficult. The general rule
is: if the type of the term t is an inductive type and if P is a type then <P>Match t with is a term
of the Calculus of Inductive Definitions. Its type depends on the type of t.

The match operation contains the usual destructuring operations on terms like in ML. The
patterns are restricted to the form of a constructor applied to variables. The match must check all
the cases in the order of the constructors as listed in the type declaration.

Let us give a few examples:

The product type. If we want to define a function f over the product type A*B, we can describe
the value of £ for a pair term <A,B>(a,b) with a and b new variables of type A and B.

If p has type A*B then <P>Match p with has type (A->B->P)->P. This term allows the access
to both components of an element of A¥B. The term (<P>Match <A,B>(a,b) with £) is reducible
to (f a b). For example the first projection can be written as:

Definition fst : (A,B:Set)(AxB)->A
= [A,B:Set][u:A*B] (<A>Match u with (* x,y *) [x:A][y:Blx).

Let t be a term possibly containing x and y as free variables. The construction
(<P>Match u with [x:A]J[y:B]t) is analogous to the ML scheme match u with (x,y)->t of-
ten written as let (x,y) = u in t.

The sum type. If we want to define a function £ over the disjunct sum type A+B, we can describe
the value of £ for terms (inl A B a), (inr A B b) (corresponding to the left and right injections)
with a and b new variables of type A and B respectively.

If p has type (sum A B) then <P>Match p with has type (A->P)->(B->P)->P. This term al-
lows a definition by cases on p. The term (<P>Match (inl A B a) with f1 £2) is reducible
to (f1 a) and the term (<P>Match (inr A B b) with f1 £2) is reducible to (f2 b). Let ti1
be a term possibly containing x as a free variable and t2 be a term possibly containing y as a
free variable. The construction (<P>Match u with [x:A]Jt1 [y:B]t2) is analogous to the ML
scheme match u with (inl x) -> t1 | (inr y) -> t2. To emphasize this analogy, we usually
add comments (inside (* *)) in the Coq concrete syntax and write:
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(<P>Match u with (* inl x *) [x:A]Jt1 (* inr y #*) [y:B]t2)

The type of natural numbers. If the inductive definition is really recursive like the one of
natural numbers, we want more than just the possibility to define a function by cases (whether
the argument is 0 or (S n)). The point is that the language does not provide a general recursion
scheme like in ML. It only allows a recursive definition of a function on natural numbers which
follows a primitive recursive scheme. This scheme is also expressed with the Match syntax.

Primitive recursion means that given two terms f and g, we may define a function H on natural
numbers which satisfies the following equations:

(HO0)=f (H (§n))=(gn(Hn))

If we want H to be a function from natural numbers to a type P, then f has to be of type P and
g a function which takes as arguments a natural number and a term of type P and glves a term of
type P. In Cogq, the function H will be represented by the following term:

Definition H : nat -> P = [n:nat](<P>Match n with (* 0 *) f (* S p *) g
For instance the definition of the addition of two natural numbers can be given as:

Definition plus : nat->nat->nat
= [n,m:nat](<nat>Match n with
(* 0 ) m
(* s p *) [p:nat] [pluspm:nat] (S pluspm))

Once more, the strings (* 0 *) and (* S p *) are just comments in this syntax.

If n has type nat, then the expression <P>Match n with denotes a term of the calculus whose
type is P=>(nat->P->P) ->P. If f has type P and g has type nat->P->P then the term H defined by
[n:nat] (<nat>Match n with f g) is such that (H 0) is convertible with (i.e. reduces to) f and
(H (S n)) is convertible with (g n (H n)). With nat for the type P, it is used to define primitive
recursive functions. In our example (plus 0 m) is convertible with m (the first argument of the
match operation) and (plus (S p) m) is convertible with (S (plus p m)) (the second argument
[p:nat] [pluspm:nat] (S pluspm) applied to p and to the recursive call (plus p m)).

Another example is the predecessor function which is specified by the equations:

(P0O)=0 (P(Sn))=n
It is represented in the Coq system as the term:

Definition pred : nat -> nat
= [n:nat](<nat>Match n with (* 0 *) 0 (* S p *) [p:nat][predp:nat]p)

This scheme is not restricted to the definition of an integer. It may also be used to define a
function. We can directly represent primitive recursive functionals of any order. This possibility
allows also a direct representation of functions. Assume that we want to define the difference minus
between two natural numbers. It may be specified as: (minus 0 m) is equal to 0, (minus (S p) 0)
is equal to (S p) and (minus (S p) (S q)) is equal to (minus p q). The most direct way to
represent minus following these equations is to remark that (minus (S p)) can be defined as a
term depending only on p and (minus p). Thus the definition of (minus n) follows a primitive
recursive scheme. If G is the term:
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[p:nat] [minusp:nat->nat] [m:nat]
(<nat>Match m with
(x 0 x) (S p)
(* S q *) [q:nat] [minusSpq:nat] (minusp q))

then (G p (minus p) 0) is equal to (S p) and (G p (minus p) (S q)) is equal to (minus p q).
So (G p (minus p)) has the expected behavior of (minus (S p)). Let us take for the definition
of minus:

[n:nat]
(<nat->nat>Match n with
(* 0 *) [m:nat]O
(* Sp %) G)

We then directly get, through the internal conversion rule, the expected equalities. The same kind
of analysis can be used for the definition of a non-primitive recursive function like the Ackermann
function. The expected equalities are (ack 0 m) is equal to (S m), (ack (S p) 0) is equal to
(ack p (S 0)) and (ack (S p) (S q)) is equal to (ack p (ack (S p) q)). We let the reader
check that these equalities are satisfied by the following term:

[n:nat]
(<nat->nat>Match n with
(» 0 %) S
(* S p *) [p:nat][ackp:nat->nat] [m:nat]
(<nat>Match m with (* 0 *) (ackp (S 0))
(* S q *) [q:nat] [ackSpq:nat] (ackp ackSpq)))

The type of lists. The case of lists as defined above is an extension of the case of natural numbers.
If p has type (1ist A) then <P>Match p with has type P->(A->(1ist A)->P->P)->P. This term
is analogous to the primitive recursive scheme for lists. We get: (<P>Match nil with f g) reduces
to £ and (<P>Match (cons A a 1) with f g) reducesto (g a 1 (<P>Match 1 with £ g)). For
instance the length of a list can easily be defined by:

length : (A:Set)(list A)->nat
= [A:Set][1:(1ist A)] (<nat>Match 1 with
(* nil *) 0
(* cons am *) [a:A][m:(list A)][1lgm:nat] (S lgm))

Primitive Constructions

In the initial prelude of the system, the types nat and bool are defined as inductive types. So are
the cartesian product and the disjoint sum of two sets. See the file Prelude.v at the beginning of
the appendix for more information.

1.2 Propositions

After having expressed objects we can express propositions concerning these ob jects.
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1.2.1 Atomic Propositions and Predicates

An atomic proposition is built by applying a predicate to some objects. For instance, if P is a one
place predicate over the type nat, and n a term of type nat, then (P n) is a proposition.
In Coq these propositions are terms, the type of propositions is a predefined sort: Prop.
Parameters of sort Prop can be declared in the usual way:

Parameter A:Prop.
Parameter B:Prop.

Predicates and relations are terms of a functional type. For instance, a one place predicate over
the type nat has type (nat -> Prop). Let us for instance declare a binary relation over type nat.

Parameter Lower_eq : nat -> nat -> Prop.

The term (Lower_eq 0 (S 0)) is a proposition. The term (Lower_eq (S 0) 0) is also a well-
formed proposition, and the distinction between true and false propositions will be made later.

Equality is a predicate of type: (T:Set)(T -> T -> Prop). So if @ and b are terms of type 4
then (eq A a b) is a proposition. A shorter syntax for this proposition is <A>a=b.

1.2.2 Connectives and Quantifiers

Propositions are built from atomic propositions with connectives and quantifiers.
o If P and Q are two propositions then P -> Q is the proposition “P implies Q”.
e If P and Q are two propositions, then P /\ Q is the proposition “P and Q.
e If P and Q are two propositions, then P \/ Q is the proposition “P or Q”.
o If P is a proposition then “P is the proposition “not P”.
¢ False is the absurd proposition.
e True is the tautological proposition.

e IfPis a proposition where a free variable x of type T' may occur then (x:T)P is the proposition
“for all xin T, P”.

e If P is a proposition where a free variable x of type T may occur then <T> Ex ([x:T]P) is
the proposition “there exists an @ in T such that P”.

For instance (Lower_eq 0 0) -> (Lower_eq 0 0) and (x:nat)(Lower_eq 0 x) are proposi-
tions. The latter is written in usual mathematical notation Yz € N 0 < z.

In Coq it is possible to quantify over any data type. For instance one can quantify over a
variable of type nat -> nat: (f:nat -> nat)(Lower_eq 0 (f 0)), one can also quantify over
predicates and propositions. For instance
- (P:nat -> Prop)(P 0) -> ((n:nat)(P n) -> (P (S n))) -> (x:nat)(P x)
is a proposition expressing the induction schema of arithmetic.

The symbol -> is overloaded, since it is used both for functional type formation and implication.
In the same way the notation (x:T)P is used both for functional type formation and universal
quantification. This overloading is in fact the sign of a deep isomorphism between types and
propositions: the Curry-Howard isomorphism.

21



1.3 Assuming Axioms and Proving Theorems

1.3.1 Assuming Axioms

Axioms can be assumed using the instructions Axiom and Assumes.

Axiom u.
Assumes A->B.

Axiom v.
Assumes A.
(* Lower_eq is antisymmetric *)

Axiom Antisym.
Assumes (x:nat)(y:nat)(Lower_eq x y) -> (Lower_eq y x) -> (eq nat x y).

(* Lower_eq is transitive *)

Axiom Trans.
Assumes (x:nat)(y:nat)(z:nat)(Lower_eq x y) -> (Lower_eq y 2)
-> (Lower_eq x z).

1.3.2 Proving Theorems

Theorems and their proofs are expressed with the instructions Theorem, Statement, Goal and Save.
For instance let us express and prove the theorem B.

Theorem b.
Statement B.
Goal.
Apply u.
Apply v.
Save.

With the lines Theorem b. and Statement B. we declare the name (b) of the theorem and
its statement (B). Then we need to prove this theorem. We begin the proof with the instruction
Goal. In this proof search phase we want to get as much help from the system as possible. In
the spirit of the system LCF we give to the system some commands (tactics) which transform the
initial problem into simpler problems (subgoals). In the previous example, the command Apply u
transforms the goal B into the goal A using the axiom u of statement A -> B. The system displays
the current status of the proof search as follows:

1 subgoal A

Then the command Apply v. proves this subgoal using the axiom v of statement A. The current
status of the proof search is displayed
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Goal proved!

Then we end the proof with the instruction Save.

The part of the system which provides assistance during proof search (by transforming the
current goal into derivated goals and displaying the status of the search) is called the Tactic Theorem
Prover. This Theorem Prover is described in the section 1.4.

1.3.3 Local Variables and Local Definitions in Axioms and Theorems

Variables can be declared and object can be defined with a scope restricted to an axiom or a
theorem. These local declaration are inserted between the Axiom and the Assumes lines or between
the Theorem and the Statement lines. Outside the scope of these declarations and definitions the
local variables are universally quantified in the statement of the axiom or the theorem and the
occurrences of the defined symbols are replaced by the term they abbreviate. For instance

Theorem thi.
Variable A:Prop.
Statement A -> A.
Goal.
Intro H.
Apply H.
Save.
defines the theorem thl : (A:Prop) (A -> A).
The keyword Lemma is synonymous with Theorem, and permits to reserve the terminology “The-
orem” to important properties one wants to emphasize.

1.3.4 Hypotheses and Remarks

In the process of proving a theorem we may want to use intermediate lemmas, which we do not
want to make available outside of the scope of the theorem. Such local lemmas can be defined,
using the keyword Remark instead of Theorem.

In the same way local axioms (hypotheses) can be assumed using the keyword Hypothesis
instead of Axiom. When an axiom or a theorem of statement P is declared with an hypothesis A,
when this hypothesis is out of scope the statement of this axiom or theorem is transformed into
A -> P. For instance

Theorem th2.
Variable A:Prop.
Hypothesis h.
Assumes A.
Statement A.
Goal.
Apply h.
Save.
defines the theorem th2 : (A:Prop)(A -> A).

As usual local variables, definitions, lemmas and theorems can be shared using the paragraph
mechanism.
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Summary of the Instructions

Declarations  Definitions Axioms Theorems
Global Parameter Definition  Axiom Theorem/Lemma
Inhabits Body Assumes Statement

Local

1.4

Goal ... Save

Variable Local Hypothesis Remark
Inhabits Body Assumes Statement
Goal ... Save

The Tactic Theorem Prover

The Tactic Theorem Prover is the part of the system which permit to develop a proof by trans-
forming the current goal into derivated goals. When a tactic is applied to a goal, either it fails and
an error message is displayed, or the new state of the Theorem Prover with the remaining subgoals
is displayed.

In a given state of the search, several subgoals may remain to be proved. To each of them
is associated a local context. The essential steps of a proof search are the application of lemmas,
theorems or axioms, reasoning by induction, and reduction of a constant to its definition. Moreover,

some

automatic proof search is provided. Thus the tactics can be organized in several categories.

Introduction tactics. These are the tactics which discharge the hypotheses and variables of
the goal into the local context.

Exact tactics. These are the tactics which are used when a goal is exactly an already proved
theorem, an axiom or an hypothesis.

Resolution tactics. These are the tactics which reduce the proof to more elementary proofs
by applying an already proved theorem or an axiom.

Elimination tactics. These are tactics which reduce inductive constants to their constructors.
They correspond to reasoning by cases, as well as reasoning by induction.

Convertibility tactics. These are the tactics which change a goal by replacing a constant
by its definition, by computing some subexpressions of the goal in order to simplify it, or
by abstracting a parameter in order to reason by induction on it. In A-calculus terms, they
correspond to tactics which change a goal into an equivalent one, modulo 36é-conversion and
modulo inductive constant elimination rules.

Context convertibility tactics. These are the tactics which change, not the goal, but the
hypotheses or parameters of its context. Currently they corresponds only to tactics which
replace constants in hypotheses by their definitions.

Compound tactics.

These high-level tactics try automatic proof-search by combining more elementary tactics.
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e Tacticals.

1.4.1 An interactive session of the Tactics Theorem Prover

Here, we will explain by means of interactively developed examples how to work with the Coq
Theorem Prover. For more examples of use of the Tactics Theorem Prover, we recommend to the
reader to consult the examples files Prelude.v, Specif.v and Peano.v (those which define the
initial state of Coq) as well as the report presenting the proof of Gilbreath Trick (see file Shuffle.v).
These files are listed in the appendix of this document.

Let us start a proof development

Theorem S.
Statement (A,B,C:Prop)(4 -> B -> C) -> (A -> B) -> A -> C.
Goal.

The command Show displays the current status of the proof.

Coq < Show.
1 subgoal
(A:Prop) (B:Prop) (C:Prop) (A->B->C)->(A->B)->A->C

Discharge of universally quantified variables and premises: Intros

The Intros tactic discharges universally quantified variables and hypotheses of the goal in the local
context. This allows easy access of these variables and hypotheses, simply by designating them by
their name when need be.

Let us apply this tactic:
Coq < Intros.

After the use of a tactic, the system shows you what remains to be proved. In our case, we have
to prove C under the hypotheses A, A->B and A->B->C, where A, B and C are propositional variables.

1 subgoal
c .
H1 : A
HO : A->B
H : A->B->C
C : Prop
B : Prop
A : Prop
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Refinement by application of an axiom, a theorem, or an assumption: Apply

It is possible now to use another tactic. It appears that applying the hypothesis H may be fruitful.
This is done by Apply followed by the name of the hypothesis:

Coq < Apply H.

2 subgoals
A
H1 : A
HO : A->B
H : A->B->C
C : Prop
B : Prop
A : Prop
subgoal 2 is:
B

Exact resolution by an hypothesis: Assumption

The first one, to which the tactics apply by default, is directly provable by the hypothesis H1. Since
H1 is an hypothesis of the local context, it is possible to use the Assumption tactic. In fact, this
tactic looks for an hypothesis of the local context which can complete the goal, modulo replacements
of constants by their definition, or computing of certain subexpressions.

Coq < Assumption.

1 subgoal
B

H1 : A
HO : A->B
H : A->B->C
C : Prop
B : Prop
A . Prop

Backtracking: Undo

Backtracking is done by Undo.

Coq < Undo.
2 subgoals
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C : Prop

B : Prop
A : Prop
subgoal 2 is:

B
Now, we have two subgoals again to solve. Let us continue the proof.

Coq < Assumption.

1 subgoal
B

Hi1 : A
HO : A->B
H : A->B->C
C :
B : Prop
A : Prop

Composition of tactics: “;”

Next we want to solve the second subgoal by using the hypothesis HO. It will remain to prove A,
which is one of the hypotheses of the context and thus provable by Assumption. It is possible to
apply a sequence of tactics one after the other by separating them by semi-colons. In this case, the
second tactic will be applied to each subgoal generated by the first, and so on for the remaining
tactics after the second semi-colon. For instance, in our case:

Coq < Apply HO; Assumption.
Goal proved!
Restarting a proof search: Restart

For illustration purposes, we will now restart the proof:

Coq < Restart.
Current goal restarted

Coq < Show.
1 subgoal
(A:Prop) (B:Prop) (C:Prop) (A->B->C)->(A->B)->A->C

Composition of tactics (continued)

We will now see what happens if we had given the tactics Intros, Apply H and Assumptionin a
row.
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Coq < Intros; Apply H; Assumption.
Error No such assumption

An error is generated because Assumption is applied to the two subgoals resulting from the
application of Apply H, and one of them is not provable by assumption.

Let us note also that the sequence Intros; Apply H; Assumption. is considered as a unique
command, in such a way that if one tactic fails, the complete command fails and the subgoal is not
modified. In fact:

Coq < Show.
1 subgoal

(A:Prop) (B:Prop) (C:Prop) (A->B->C)->(A->B)->A->C
Capture of a possible failure: Try

One way to avoid that failure is to use Try which catches the failure of a tactic if it occurs. We
invoke now the command line:

Coq < Intros; Apply H; Try Assumption.

1 subgoal
B

H1 : A
HO : A->B
H : A->B->C
C : Prop
B : Prop
A : Prop

We now finish the proof:

Coq < Apply HO; Assumption.
Goal proved!

Coq < Save.

Elimination of inductive constants: Elim

The Elim tactic is used to prove a goal by induction over structure of a term of inductive type.
For instance, let us consider an inductive type

Inductive Set Color = blue:Color | red:Color.

and let x be a variable of type Color. We want to prove by cases the goal:
(<Color>x = blue) \/ (<Color>x = red).
The tactic E1im permits to prove this statement by cases.
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Coq < Elim x.

2 subgoals
(<Color>blue=blue)\/(<Color>blue=red)

subgoal 2 is:
(<Color>red=blue)\/(<Color>red=red)

The goal has been transformed in two subgoals, the first corresponding to the case blue and the
second to the case red.

When some of the constructors have arguments (as for instance the type of natural numbers
which has two constructors 0:nat and S:nat -> nat) the subgoals are more complicated. The
elimination of n in the goal (P n) leads to two subgoals: the case where n has the form 0 leads to

“the subgoal (P 0), but the case where n has the form (S m) leads to the goal (P (S m)) under
the hypothesis (P m), i.e. to the goal (m:nat)(P m)->(P (S m)). So we need to prove that the
property P is verified by 0 and is hereditary. Induction on natural numbers appears here as a
particular case of elimination.

Displaying of a secondary subgoal: Show

Let us profit of this example to point out that the context of local hypotheses printed by the
theorem prover is just the one pertaining to the first subgoal. In this example, the second subgoal
has the same local context as the first one, but it is not displayed. In general, each subgoal has its
own local context. If you want to see the local context of some subgoal, just give Show its number
as explicit parameter. For instance, here,we can show the second subgoal with its context using
the command Show 2.:

Coq < Show 2.
subgoal 2 is:
B->(B\/4)

Dealing with a secondary subgoal: “n :”

It is also possible to apply a tactic to a subgoal other than the first one, by typing n : before the
tactic.

Coq < 2:Intro; Apply or_introl; Assumption.
1 subgoal
A->(B\/A)

B R

Coq < Intro; Apply or_intror; Assumption.
Goal proved!
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1.4.2 Focusing on a subgoal

The command Focus permits to have only one goal printed at a time, in Verbose mode:
Focus 2.

will print only the second goal. The command Unfocus disables focusing.

Reasoning by induction on an inductive predicate: Induction

Another way to reduce an inductively defined hypothesis to its primitive components is by using
the tactic Induction. In our example the argument 1 of Induction means that all quantified
variables of the goal up to the first non dependent hypothesis are introduced in the local context
and that this last hypothesis must be eliminated.

Coq < Restart.
Current goal restarted

Coq < Induction 1.
2 subgoals
A->(B\/A)

A : Prop
subgoal 2 is:
B->(B\/A)

We have now obtained the same state as the one we got by doing Intros, then Elim H.

Dealing with connectors and quantifiers

We can now finish the proof by using the predefined tactics of \/ introduction doing automatically
introductions instead of using the names generated by the introduction theorems.

Coq < 2:Left; Assumption.
1 subgoal
A->(B\/A)

Coq < Right; Assumption.
Goal proved!

Let us also mention the existence of the tactic Split which introduces logical “and” as well as
products.
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Automatic proof search: Hint, Auto

Auto is a tactic which tries automatic search from a list of hints.
Let us restart the proof of the commutativity of or and let us declare the theorems or_introl
and or_intror as hints. This is done by Hint:

Coq < Restart.
Current goal restarted

Coq < Hint or_introl or_intror.

Remark: this Hint declaration is not necessary because or_introl and or_intror are declared
as hints in the initial prelude of the system.
We can now finish it in one step:

Coq < Induction 1; Auto.

Use : Intro ; Apply or_intror ; Assumption
Use : Intro ; Apply or_introl ; Assumption
Goal proved!

Remark that Coq gives you a trace of the execution of the Auto tactic with the Use comments.
From this trace, you may see that Auto combines Intro with Assumption in addition to applying
the current hints.

Since we shall not restart the proof again, let us save it:

Coq < Save.
or_commut is defined

Dealing with equality

Leibniz’ equality is a constant which is defined by means of the file Prelude.v in the initial context
of the system. It is defined as an inductive predicate in such a way that doing substitution by
equals is possible by means of inductive constant elimination tactics. More precisely Elim H.where
H is a term if type t = u rewrites in the current goal occurrences of u in t. The choice of the
occurrences to be rewritten is described in the paragraph Abstraction of Terms below.

Coq < Theorem S_equal.
Coq < Statement (n,p:nat)(<nat>p=n)->(<nat>(S p)=(S n)).
Coq < Goal.
Coq < Intros.
1 subgoal
<nat>(S p)=(S n)

H : <nat>p=n
P : nat
n : nat
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Coq < Elim H.
1 subgoal
<nat>(S p)=(S p)

And n is replaced by p everywhere.

Coq < Apply refl_equal.
Goal proved!

Automatic resolution of trivialities: Trivial

Trivial works with the same list of specified tactics or theorems as Auto but deals only with those
which generate no subgoals, such as Assumption or Apply refl_equal. For instance, if we come
back to the previous example:

Cogq < Undo.
1 subgoal
<nat>(S p)=(S p)

H : <nat>p=n p : nat n : nat
Coq < Hint refl_equal.

Coq < Trivial.
Use : Apply refl_equal Goal proved!

Coq < Save.
S_equal is defined

Dealing with symmetry of equality

Consider the following closely related problem:

Coq < Theorem sym_equal_elim.
Coq < Statement (A:Set)(x,y:A)(<A>x=y)->(P:A->Prop) (P y)->(P x).
Coq < Goal.
Coq < Intros.
1 subgoal
(P x)
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Elimination of H would replace y by x but not x by y. The tactic Rewrite is what is needed
here:

Coq < Rewrite H; Assumption.
Goal proved!

A more explicit syntax is Rewrite -> H, and the dual syntax Rewrite <- H gives a more
readable reverse rewriting than its equivalent Elim H.
Another natural solution is to use the tactic Replace as follows:

Coq < Undo.
1 subgoal
(P x)

HO : (P y)
P : A->Prop
H : <A>x=y
y : A
x : A
A : Set

Coq < Replace x with y; Assumption.
Goal proved!

Elimination of a not yet proved statement: ElimType

A still less direct way would be to use ElimType:

Coq < Undo.
1 subgoal
(P x)

HO : (P y)
P : A->Prop
H : <A>x=y
y : A
X : A
A : Set

Coq < ElimType (<A>y=x); Trivial.
Use : Assumption

Use : Idtac

1 subgoal
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HO : (P y)
P : A->Prop
H : <A>x=y
y : A

x : A

A : Set

The remaining subgoal may then be proven by explicit appeal to the symmetry of equality:
Coq < Apply sym_equal; Assumption.
Goal proved!
Automatic proof search (continued): Immediate

Some theorems when applied several times do not generate simpler subgoals. It is the case, for
instance, for symmetry of equality. To avoid that the automatic search tactic Auto does unnecessary
search, it is possible to add this theorem to the hint list by means of Immediate. This means that
Auto will apply it only if the remaining subgoals are immediately provable by the Trivial tactic,
i.e. by an hypothesis, an axiom or a theorem which generates no subgoals.

Coq < Restart.
Current goal restarted

Coq < Immediate sym_equal.
Coq < Intros; ElimType (<A>y=x); Auto.
Use : Assumption Use :

Assumption Use : Apply sym_equal ; Trivial
Goal proved!

Coq < Savs.
sym_equal_elim is defined

Reasoning by induction on data types: Induction

Elimination of inductive Set is like other induction theorems. This gives an elegant way to do
induction proofs. First. here again is the definition of nat:

Coq < Inductive Set nat = 0 : nat | S : nat -> nat.

Coq < Theorem 0_or_Successor.
Coq < Statement (n:nat)(<nat>n=0)\/(<nat>Ex([n’:nat](<nat>n=(S n’)))).

Coq < Goal.
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Coq < Induction n.
2 subgoals
(<nat>0=0)\/<nat>Ex([n’:nat]) (<nat>0=(S n’)))

n : nat
subgoal 2 is:
(y:nat)
((<nat>y=0)\/<nat>Ex([n’:nat](<nat>y=(S n’))))->
((<nat>(S y)=0)\/<nat>Ex([n’:nat](<nat>(S y)=(S n’))))

Two subgoals have been generated, one for the base case (n = 0) and one for the induction
step. The base case is done by left or-introduction then reflexivity of equality. Auto can prove it
alone:

Coq < Auto.
Use : Apply or_introl ; Apply refl_equal
1 subgoal
(y:nat)
((<nat>y=0)\/<nat>Ex([n’:nat] (<nat>y=(S n’))))->
((<nat>(S y)=0)\/<nat>Ex([n’:nat](<nat>(S y)=(S n’))))

The induction step is more readable after discharging all hypotheses:

Coq < Intros.
1 subgoal
(<nat>(S y)=0)\/<nat>Ex([n’:nat](<nat>(S y)=(S n’)))

H : (<nat>y=0)\/<nat>Ex([n’:nat](<nat>y=(S n’)))
y : nat
n : nat

In fact for this proof, the induction hypothesis is not used. As expected Induction also allows
pattern matching.

Coq < Right.
1 subgoal
<nat>Ex([n’:nat] (<nat>(S y)=(S n’)))

H :(<nat>y=0)\/<nat>Ex([n’:nat](<nat>y=(S n’)))
y : nat
n : nat
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Resolution tactics with parameters: Apply with, Exists

Introduction of the existential quantifier needs a “witness”. A way to give this witness is to use
the with option of Apply, which provides the instantiation:

Coq < Apply ex_intro with y.
1 subgoal
<nat>(S y)=(S y)

H : (<nat>y=0)\/<nat>Ex([n’:nat](<nat>y=(S n’)))
y : nat
n : nat

The reflexivity of equality is given as a hint in the prelude, so Trivial completes the proof:

Coq < Trivial.
Use : Apply refl_equal
Goal proved!

Coq < Save.
O_or_Successor is defined

We could have used the predefined tactic “Exists y” instead of Apply ex_intro with y.

Abstraction of terms: Pattern

Apply only does first-order matching, and thus fails in the following example:

Coq < Axiom induction :
Coq < (P:nat->Prop) (P 0)->((m:nat)(P m)->(P (S m)))->(n:nat)(P n).

induction is assumed

Coq < Definition plus = [n,m:nat](<nat>Match n with m [n’,q:nat](S q)).
plus is defined

Coq < Theorem plus_0_commut.
Coq < Statement (n:nat)(<nat>(plus n 0)=(plus 0 n)).
Coq < Goal.

Coq < Intro.
1 subgoal
<nat>(plus n 0)=(plus 0 n)

Remark that Apply induction would in fact succeed here, but not with the expected result.
To make apparent the intended structure (P n) in this goal, one can use Pattern:
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Coq < Pattern n.
1 subgoal
([n:nat] (<nat>(plus n 0)=(plus 0 n)) n)

Then, application of the induction principle generates the right subgoals:

Coq < Apply induction.
2 subgoals
<nat>(plus 0 0)=(plus 0 0)

n : nat
subgoal 2 is:
(m:nat) (<nat>(plus m 0)=(plus 0 m))->(<nat>(plus (S m) 0)=(plus 0 (S m)))

The base case is trivial:

Coq < Trivial.
Use : Apply refl_equal
1 subgoal
(m:nat) (<nat>(plus m 0)=(plus 0 m))->(<nat>(plus (S m) 0)=(plus 0 (S m)))

Simplification and computing: Simpl

Some expressions of the induction step can be simplified. For instance (plus (S m) n) reduces to
(S (plus m n)). The tactic Simpl performs such a reduction.

Coq < Simpl.
1 subgoal
(m:nat) (<nat>(plus m 0)=m)->(<nat>(S (plus m 0))=(S m))

Abstraction of terms (continued)

The proof can now be finished by a substitution of m with (plus m 0). But only the second
occurrence of m needs to be replaced. This is not directly allowed by Elim since this tactic would
abstract all the occurrences of m.

Coq < Intros.
1 subgoal
<nat>(S (plus m 0))=(S m)

SESSSSSSS=SSSSSSSSSSSSSSs=sSsS

H : <nat>(plus m 0)=m
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m : nat
n : nat

Coq < Elim H.
1 subgoal
<nat>(S (plus (plus m 0) 0))=(S (plus m 0))

H : <nat>(plus m 0)=m
m : nat
n : nat

This leads nowhere !

The term m occurs (several times) in the goal. We want to use the elimination of equality to
replace the term m by the term (plus m 0), but we only want to replace one occurrence of m and
not all of its occurrences. In order to use the elimination of equality we have to write the goal as
(P m) and then the tactic Elim will transform it into (P (plus m 0)) but by default the tactic
Elim will take P = [m:nat]G (where G is the goal) and substitute all the occurrences of m. So we
use the tactic Pattern to put the second occurrence of m in evidence and write G = (P m) such
that (P (plus m 0)) is the goal G in which only the second occurrence of m is substituted by
(plus m 0).

Coq < Undo.
1 subgoal
<nat>(S (plus m 0))=(S m)

H : <nat>(plus m 0)=m
m : nat
n : nat

Coq < Pattern 2 m.
1 subgoal
(In:nat] (<nat>(s (plus m 0))=(S n)) m)

H : <nat>(plus m 0)=m
m : nat
n : nat

Coq < Elim H.
1 subgoal
<nat>(S (plus m 0))=(S (plus m 0))
H : <nat>(plus m 0)=m
m : nat
n : nat

This is now trivial and we can save the proof:
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Coq < Trivial.

Use

¢ Apply refl_equal

Goal proved!

Cog < Save.
plus_O_commut is defined

1.4.3 Description of the tactics

Introduction tactics

e Intro

This tactic is the basic introduction tactic.
It assumes that the subgoal is not an atomic proposition and fails if it is atomic.

If the subgoal is a quantified proposition, then it discharges the quantified variable into the
local context associated to the subgoal.

If the name, say x of the variable is already used either in the current context of Coq, or in
the local context, it chooses a name xn where n is the first number such that xn is a new
name.

If the subgoal is an implication, i.e. of the form P->Q, it introduces an hypothesm H:P into
the local context and the subgoal becomes Q.

If the hypothesis name H is already used either in the current context of Coq, or in the local
context, it chooses a name Hn where n is the first number such that Hn is a new name.

Intro name

This tactic works like Intro except that it forces the name of the variable or the hypothesis
to be name. It fails if the name name is already used.

Intros
This tactics repeats Intro as often as it is possible. It never fails.

It is a synonym of Repeat Intro.

Intros name; ...name,

This tactics repeats Intro name successively with the names name; ...name,. It fails if
there are more names than variables or hypotheses to introduce in the local context.

Intros until name

This tactics repeats Intro until it introduces the variable named name. It fails if name does
not exist.
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Exact tactics

Exact term

This tactic is to give directly a proof-term of the goal. If the goal is an already proved theorem,
an already proved remark, an axiom or an hypothesis the name of this item is a proof-term
for the goal. More generally, the syntax for proof-terms is exaplained in the section 1.8.

Assumption

This tactic looks for a proof by an assumption in the local context. It fails if no hypothesis
of the local context proves the goal.

The special case of Instantiate

Instantiate term

This command, in fact, is not a tactic: in contrast with tactics, it applies to all the sub-
goals simultaneously. It is the only way to proceed when variables, so called “meta”-variables
(standing for incomplete proof terms) are left in the subgoals. Effectively it is the only
command which can solve subgoals with “meta”-variables and which can propagate the in-
stantiation of them through the other subgoals.

Its use is as follows. When the current goal is reduced to a meta-variable, we may solve it by
giving an explicit term M as solution, by the command:
Instantiate M.

This will replace the corresponding meta-variable by M in every other goal. See Apply below
for some examples of its use.

Resolution tactics

Apply term

This tactic is the basic resolution tactic. The goal must not be a product. Let statement
be the type of term. Usually term is a proof or an hypothesis and its type statement is the
statement it proves or assumes. Be careful that if statement is just an atomic proposition,
then its head constant is unfolded, and this unfolding is repeated as long as the statement
stays atomic.

For instance let us define a symbol not_not_not

Coq < Definition not_not_not = [A:Prop] (" ("A)).
not_not_not is defined

and consider the goal (A:Prop) (not_not_not A)->A->False.

Coq < Intros.
1 subgoal
False

40



HO : A
H : (not_not_not A)
A : Prop

Coq < Apply H.
1 subgoal
“(TA)

H : (not_not_not A)
A : Prop

The symbol not_not_not has been unfolded in H before resolution with False.

Apply tries a first-order matching of the goal with the conclusion of statement. The tactic fails
if the matching fails. If the matching is successful, then Apply generates as many subgoals
as the number of premises in statement. When the head term of the conclusion of statement
is not a constant but a variable then the good way to use Apply is to “prepare” the subgoal
first with Pattern (cf the description of Pattern).

The Theorem Prover appears to be dealing with proofs and theorems, but in fact, because of
the identification of proofs and A-terms, propositions and types, it also deals with types from
which an inhabitant is searched.

Of course, proving that a type is inhabited is usually trivial in practical examples since the
types used in practical examples (nat, bool, nat -> nat, etc.) have well-known inhabitants
(as 0, true, [x:nat]o, etc.) and we do not need a tactic theorem prover to construct these
objects. But these goals may be generated as subgoals by the tactic theorem prover itself. For
instance when we want to prove the proposition (Lower_eq 0 (S (S 0))) using the axiom:

Trans:(x:nat) (y:nat)(z:nat) (Lower_eq x y) -> (Lower_eq y z)
-> (Lower_eq x 2)

then the term used substituted to y in this proof cannot be synthetized by the matching of

(Lower_eq 0 (S (5 0))) with (Lower_eq x z), and nat appears as a subgoal. In these

cases the “proof” of this subgoal appears in the other generated subgoals (Lower_eq a y)

and (Lower_eq y c). These dependencies are represented by Meta(n) where n is a number.
In our cases the subgoals are (Lower_eq a (Meta(1))) and (Lower_eq (Meta(1l)) c).

In this case, the “philosophy” of tactics is lost, since subgoals are no longer mutually inde-
pendent. If such subgoals with “meta”-variables occur, the only safe way to solve them is
by using the command Instantiate which is not a tactic and which applies to all subgoals
at the same time as opposed to only applying to one particular goal as a tactic does (cf the
description of Instantiate above).

To preserve the philosophy of tactics it is recommended to use Apply term with termy
...term, which is described below, and which avoids the generation of interdependent sub-
goals.

Consider for instance the goal <nat> Ex ([x:nat](<nat>x=0))).
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Coq < Apply ex_intro.
2 subgoals
nat
subgoal 2 is:
<nat>Meta(3)=0

Coq < Instantiate O.
1 subgoal
<nat>0=0

and similarly we can chose to instanciate the second subgoal first.

Coq < Undo.

2 subgoals
nat

subgoal 2 is:
<nat>Meta(3)=0

Coq < 2:Instantiate (refl_equal nat 0).
Goal proved!

Apply term with termy ...term,

When variables from a theorem are not deducible by matching with the goal, this tactic
permits them to be given explicitly.

term must be a theorem or an axiom (or an hypothesis). Let statement be its statement.

The number n of arguments of this tactic must be exactly the number of variables really used
in statement but not present in its conclusion.

Moreover, the terms must be given in the order of their quantification in statement.

For instance with the goal:
(<nat> Ex ([x:nat](<nat>x=0))).

instead of using the tactic Apply ex_intro and then the command Instantiate 0 we can
use the tactic Apply ex_intro with O which will also produce the subgoal <nat>0=0.

Unlike Apply, this tactic does not unfold the statement if it is just an atomic proposition.

Apply term with name; :=term; ...namey:=term,

This is a variant of Apply term with, where variables are designed by their name (as it appears
on the screen) instead of being given in the order of their quantification. In this case, the
variables may be any variable occurring in the statement of the theorem, not necessary all
non deductible ones, and not necessary all non dependent ones in the conclusion, as opposed
to the previous syntax of Apply term with.

Example:
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1 subgoal
<nat>z=0

z : nat
H : (x:nat)(y:nat)(P:nat->Prop) (P x)->(P y)

Coq < Apply H with y:=z x:=0.
1 subgoal

e o o o o T S T e o e e
B3 P 2

Z : nat
H : (x:nat)(y:nat)(P:nat->Prop) (P x)->(P y)

Cut statement

When an unproved statement statement must be used to solve a subgoal, this tactic generates
a new subgoal of statement statement, and replaces the current subgoal by the same subgoal
with the additional premise statement.

For example consider the goal (<nat>(S 0)=(S (S 0)))

Coq < Cut (<nat>0=(S 0)).
2 subgoals

(<nat>0=(S 0))->(<nat>(s 0)=(S (S 0)))
subgoal 2 is:

<nat>0=(S 0)

Generalize term

There are two cases. When term is an identifier name, corersponding to a variable of the
context (local or global) on which depends the current subgoal G, it replaces it by the same
subgoal but quantified by the variable of name name.

For example consider the goal (x,y:nat) (<nat>x=y).

Coq < Intros.
1 subgoal
<nat>x=y

Coq < Generalize x.
1 subgoal
(x0:nat) (<nat>x0=y)
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When term is not an identifier, and is a term of type T, the generated subgoal is T->G.
Coq < Generalize x1 x2 ... xn.

is equivalent to Generalize xn; ..; Generalize x2; Generalize x1. For instance, it
generates the subgoal (x1:T1)..(xn:Tn)G if the xi’s are variables.

Specialize term

Here is a common situation. Assume you enter the following sequence of commands:

Parameter A:Prop.

Parameter R:nat->nat->Prop.

Parameters a,b:nat.

Goal ((x,y:nat)(R x y)->(R y x))->(R a b)->A.
Intros H HO.

We are now in the situation:

Coq < 1 subgoal

HO : (R a b)
H : (x:nat)(y:nat)(R x y)->(R y x)

We may now change the current goal A into (R b a) -> A using any of the three following
invocations of tactic Specialize:

Specialize (H a b HO).
Specialize H with x:=a y:=b 1:=HO.
Specialize H with 1:=HO.

In the first case, Specialize acts like Generalize. In the second case, arguments are given
by name, like in the Apply command, with numbers naming the anonymous assumptions of
H, similarly to the Induction notation (remember that implication and quantification are
both products, respectively non-dependent and dependent). Finally, in the third case, the
arguments x and y are synthesised from the type of HO.

It is also possible to specify with an optional argument the number of products which are
instanciated in the specialized hypothesis. For instance, assume we are in the following
situation:

1 sﬁbgoal
<nat>x=z

H1 : <natd>y=z
HO : <nat>x=y
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: nat
: nat
: nat
(x:nat) (y:nat) (z:nat) (<nat>x=y)->(<nat>y=z)->(<nat>x=z)

oM < N

If we want to instanciate H only in x and y, we may invoque:

Coq < Specialize 2 H with 1:=HO.
1 subgoal

((z:nat) (<nat>x=y)->(<nat>y=2z)->(<nat>x=2z))->(<nat>x=z)

H1 : <natdy=z
HO : <nat>x=y
: nat
! nat
! nat
(x:nat) (y:nat) (z:nat) (<nat>x=y)->(<nat>y=z)->(<nat>x=2)

T oM< N

Tactics for connectors, quantifiers and equality

Split
This tactic transforms the goal A /\ B into the two goals A and B.

Elim H when H is an axiom, an hypothesis or an already proved theorem of the forms A /\ B
transforms the goal C into the subgoals A -> B -> C. Combined with Intro, this tactic
permit to use an know statement of the form A /\ B to deduce the hypotheses A and B.

Left 8
This tactic transforms the goal A \/ B into A.
Right

This tactic transforms the goal A \/ B into B.

Elim H when H is an axiom, an hypothesis or an already proved theorem of the forms A \/ B
transforms the goal C into the two subgoals A -> Cand B -> C. In other words knowing that

“A \/ B is true, this tactic permits to prove a goal C by considering the two cases in which A

and B are true.

Exists term

This tactic provides a way to prove an existential statement by giving the witness element.

Elim H when H is an axiom, an hypothesis or an already proved theorem of the forms
<T> Ex [x:T]P transforms the goal C into the two subgoals (x:T)P -> C. Combined with
the tactic Intro, this tactic permits to give a name to an object whose existence has been
proved.
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e Reflexivity

This tactic proves a statement of the form <T>x=x.

e Symmetry
This tactic reduces a goal <T>x=y to the goal <T>y=x.

o Transitivity term
This tactic reduces a goal <T>x=y to the goals <T>x=term and <T>terms=y.

Remark. These tactics also apply for variants of connectors, quantifiers and equality which
will be presented in the cahapter 2 (as *, +, etc.).

Elimination tactics

e Elim term

This tactic is the basic elimination tactic. term must prove or assume a statement statement.
The conclusion ind of this statement must be an inductively defined term. Elim tries to apply
the elimination theorem of ind on the goal. It fails if this is not possible or not allowed. (see
the section about inductive definitions for more on the automatically generated elimination
theorems).

When the elimination theorem is dependent, statement must not be a product. Otherwise, it
generates as many subgoals as the number of premises of statement, as Apply does.

Elim first tries a first-order matching with the goal, (allowing the use of Pattern before
applying this tactic). If this matching fails, it tries second order matching. If the conclusion
of the elimination theorem of indis (P t1 ... tn) (see the section about inductive definitions
for further explanation), then it abstracts all the occurrences of t1,... ,tn in the goal, in order
to put the goal in the form (Q t1 ... tn) in order to do first order matching. In this case,
it works as if E1im does Pattern t1 ... tn first.

e Elim term with termy ...term,
This tactic allows the user to explicitly give the quantified variables of the statement stated
by term, when they are not deducible by matching with the goal.

e ElimType statement

When an unproved statement statement must be used to be eliminated, this tactic generates
a new subgoal of statement statement and statement is eliminated on the subgoal to which
ElimType applies.

It has the same effect as Cut statement ; Intro Hyp; Elim Hyp except that it does not make
visible the hypothesis Hyp in the local context.

e Induction name

This is a short name for Intros until name ; Pattern name ; Elim name.

e Induction n

does the same but induction is done on the nth non dependent premiss of the goal.
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Dealing with equality Predicates of equality are inductively predefined. Here follow special
tactics dealing with them.

e Rewrite <- ferm _
If term proves a statement whose conclusion is an equality <T>x=y then Rewrite works as
Elim term does, i.e. it replaces y by x everywhere in the goal.

o Rewrite -> lerm
Similar to the previous one, but rewrites in a left to right manner. The indication -> is
optional in this case.

e Replace term; with term;,

This tactic replaces the occurrences of term; in the goal by term;. It then generates a new
subgoal <T>termy=termsy, where T is the common type of term; and terms. This subgoal is
solved, if possible, by Assumption or by symmetry of equality then Assumption. Otherwise
it is left as an unproven subgoal.

Remark: If the subgoal is of the form (P term;), then only this occurrence of term; will
be replaced, even if there are other occurrences. This allows the user to use Pattern before
applying this tactic (see Elim).

Absurd and Contradiction

e The tactic Absurd permits to prove a statement by contradiction.
Absurd statement

The current goal is proved by elimination of False, and False itself comes from proofs of
both statement and ~statement. Therefore this tactic generates the subgoals statement and
“statement.

It has the same effect as E1imType False; Cut statement

o The tactic Contradiction attempts to find in the current hypotheses (after all Intros) one
which is equivalent to False. It permits to prune irrelevant cases. A typical use is:

Induction H; Simpl; Try Contradiction.

Convertibility tactics

There are three forms of convertibility between goals:

Convertibility w.r.t. expansion of a constant.

Convertibility w.r.t. instantiation of the parameters of a function by its arguments (for
instance ([x:nat](S x) 0) is convertible to (S 0)).

Convertibility w.r.t. the recursion schemes associated to inductive definitions (for in-
stance, if pred is the predecessor defined in the file Peano.v, then (pred (S n)) is
convertible to n).
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All the tactics described here are concerned with one or more of these forms of convertibility.

1 Pq
q..-nq

This tactic replaces successively the occurrences nj ... n;, in the goal of each constant name;
by its definition.

e Unfold nj ...nt" name; ...n name,

By default, if no occurrence is given, then all the occurrences will be unfolded.

For instance (recall that ~ is the way we write not, that refl stands for “to be a reflexive
relation” and gt stands for “to be greater than”). Consider the goal
(*("("(refl nat gt))))-> ~(refl nat gt).

Coq < Unfold 2 4 not gt 1 refl.
1 subgoal
("(("((x:nat) (1t x x)))->False))->(refl nat [n:nat] [m:nat](lt m n))->False

But be careful in which order the constants are given:

Coq < Undo.
1 subgoal
(7 (" (" (refl nat gt))))->("(refl nat gt))

Coq < Unfold gt 2 4 not 1 refl.
1 subgoal
(" (" ({x:nat) (1t x x)))->False))->(refl nat [n:nat][m:nat](lt m n))->False

e Change statement
This tactic replaces the goal by statement. statement and the goal have to be convertible
following the f-rule, é-rule and elimination rules for inductive terms, it fails otherwise.

e Red
This tactic replaces the head constant of the conclusion of the goal by its definition.

e Simpl

This tactic simplifies the goal by instantiating the formal parameters of functions by the
corresponding arguments and by applying the recursion schemes for inductive constants as
much as possible. It never fails.

For example consider the goal (n:nat) ([p:nat] (<nat>n=(pred (S p))) n).
Coq < Simpl.

1 subgoal
(n:nat) (<nat>n=n)

¢ Hnf

This tactic reduces the head of the goal (by expansion of the head constant, or by simplification
if the goal is of the form ([x:AlP y)) until it becomes either universally quantified, an
implication, or the application of a predicate variable to its arguments.
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L]

Pattern n} ...n}' termy coond ...nh? term,

This tactic abstracts termy ...term, in the goal. The numbers nj ...nJ" ...n} ...mh% are

given to specify exactly which occurrences of term; ...term, have to be taken into account.
By default, if no occurrence is given, then all the occurrences are taken into account.

For instance consider a variable x of type nat and a goal (<nat>x=x)->(<nat>x=x).

Coq < Pattern 1 3 x 0 x 4 x.
1 subgoal
([n:nat] [n0:nat] [n1:nat] (<nat>n=x)->(<nat>n=ni) x x x)

This tactic is helpful for putting a subgoal into the form (Q t; ...¢,). It is useful when a
theorem or an axiom is applied whose statement has a conclusion of the form (P z; ...z,),
where P and x; are all variables. This makes the matching done by Apply between the
statement and the goal trivial.

Context convertibility tactics

Unfold n} ...n}" term, ... n; ...ny? term, name in namehyp
Change statement in namehyp

Red in namehyp

Simpl in namehyp

Hnf in namehyp

These tactics have similar behavior as the one described in the previous section, but they apply
to the hypothesis of name namehyp instead of applying to the current subgoal.
Remark: Be careful not to use in as a name: this is a reserved keyword !

Another tactic applying on hypotheses

Clear name; ...name, This clears successively the hypotheses name; ...name, in the local
context of the current subgoal.

A cleared hypothesis cannot be used any more in the rest of the proof, so this tactic should
not be used to simplify the display, but only when an hypothesis is really irrelevant.

Automatic search tactics

These tactics use a hint list built by means of the commands Hint or Immediate. Hints are theorems
or axioms which these tactics try to apply. Each hint has a priority: the number of subgoals it
generates.
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e Auto

This tactic tries to apply successively, by order of priority, the theorems or axioms of the hint
list. If successful, it recursively tries to apply the hints once again to the generated subgoals
until a complete proof is found. It has a maximal search depth of 5.

It leaves the goal unchanged if the search fails.

e Auto n

This tactic is the same as the previous one except that the depth of the search is forced to n.

e Trivial

This tactic tries to apply the hints of priority 0, i.e. the theorems generating no subgoals. It
also tries to solve by Assumption.

It leaves the goal unchanged if no proof is found.

In Verbose mode, the Auto and Trivial tactics provide a trace mechanism. They print a
message explaining the sequence of elementary tactics that were used. An elementary tactics
corresponds to what was stored in the search table using the Hint or Immediate commands.

The message start with Use : . It continues with what we call a printed message which is one
of the following sentences: “Idtac” if the auto tactics did not succeed and consequently did not
change the goal. “tactic” if it corresponds to the elementary tactic used. “tactic; printed messages
list” if the Auto tactics combined several levels. A printed messages list is either a printed message
or has the following syntax:

“[printed message 1}...|printed message n]”

It means that the tactic tactic generates n subgoals, the :th subgoal was solved using the tactic
corresponding to the message “printed message 1”.

If you use a compound tactic “tactic; Auto.”, the tactic Auto will be applied to each subgoal
generated by “tactic”. You will get a message for each application of the tactic.

Handling the hint list

e Hint name, ...name,

This command adds tactics Apply name;, ..., (or Exact name; when the type of name; is not
a product) to the hint list. A priority is assigned to each hint: the number of subgoals it
generates.

Beware: Hint declarations may be lost at the closing of a section. Redeclare them if they

need to.
e Immediate name; ...name,
This command adds the theorems or axioms name; ...name, to the hint list, with the

indication to use them only if the subgoals it generates are immediately provable by an
hypothesis or a theorem that does not generate subgoals.

Be careful: Immediate declarations may be lost at the closing of a section. Redeclare them
if need be.

Immediate declarations have priority 1.
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e Hint Unfold name; ...name,

This adds the hints name,; ...name, to the hint list. Here, the hints are not for resolution
with a theorem or an axiom, but used to unfold all the occurrences of the constants named
name; ...name, (when the subgoal has the form ( name; ...)).

The priority of these hints is arbitrarily fixed to 4.

e Erase name; ...name,

This removes the theorems or axioms name; ...name, from the hint list.

e Print Hint

This displays the list of theorems used for the automatic search tactics, sorted by their head
constant. The associated tactic and priority are also displayed. If a theorem has been entered
several times in the list, it appears only once.

For instance, typing Print Hint just after entering the system will give the list of theorems
declared as hints in the initial context of Coq:

Coq < Print Hint.
For sumbool -> Apply right,1 Apply left,1
For le -> Apply le_n,0 Apply le_S,1
For 1t -> Unfold * 1t,4
For prod -> Apply pair,2
For and -> Apply conj,2
For sumor -> Apply inright,1 Apply inleft,1
For or -> Apply or_intror,1 Apply or_introl,1
For eq -> Apply plus_.n_Sm,0 Apply plus_n_0,0 Apply refl_equal,O
Apply eq_add_S ; Trivial,1 Apply eq_S,1 Apply sym_equal ; Trivial,l
For True -> Exact I,0
For not -> Apply n_Sn,0 Apply 0.S,0 Apply not_eq_S,1
Apply sym_not_equal ; Trivial,1l
For ge -> Unfold * ge,4
For sum -> Apply inr,1 Apply inl,1
For gt -> Unfold * gt,4

e Program: see section 2.3.

Tacticals: constructors of tactics

e tactic; ; tacticy

This construction applies tacticy to all the subgoals generated by tactic,. It associates to the

left.
o tactic ; [ tactic; | ...\ tactic, ]
This construction applies tactic; to the first subgoal generated by tactic, ..., tactic, to the

nt" subgoal generated by tactic. It requires that the number of subgoals generated by the
application of tactic is exactly the number of tactics in brackets.
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e tactic; Orelse tacticy
This compound tactic tries to apply tactic; and, in case of failure, applies tactic; without
catching a possible failure. It associates to the left.

o Try tactic

This tactical catches a possible failure of tactic.

e Repeat tactic

This tactical repeats the tactic tactic as long as it does not fail.

¢ Do n tactic »
This allows to repeat n times the tactic tactic. It fails if it is not possible to repeat tactic n

times without failure.

e Idtac is the identity tactic.

1.4.4 Handling the goal environment

e n: tactic

This applies the tactic tactic to the nth subgoal. If the tactic fails, an error message is
displayed. Otherwise, the newly generated and remaining subgoals are displayed.

tactic may be any tactic built from tacticals and basic tactics.

n: Instantiate term is also allowed, but we remind that Instantiate is not a tactic: it
can only be used alone, and not in composition with other tactics by means of tacticals.

By default, if n: is omitted, it is the first subgoal that is considered.

e Show
This displays the principal subgoal with its local context and the statement of the secondary
subgoals. Subgoals are numbered from the principal one.

e Show n

This displays the nth subgoal with its local context.

¢ Undo

This causes the Theorem Prover to return to the previous step of the proof. The Theorem
Prover keeps a memory of at most 12 states. Therefore, it is not possible to undo more than
12 times.

Axioms, theorems, constants and hints declarations are not concerned with Undo.

Remark that sometimes a tactic (as for instance Auto) may do nothing and keep the set of

goals unchanged. Undoing such a “transformation” will also keep the set of goals unchanged.
¢ Undo n

This does the same as Undo, but n times.
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Restart

This restarts the proof at the beginning. Axioms, theorems, constants and hints declarations
introduced since the beginning of the proof search session are kept.

Abort

This aborts the current goal. Axioms, theorems, constants and hints declarations introduced
since the beginning of the proof search session are kept. One must use the command Reset
below in order to erase them.

The command Clear permits to erase useless hypotheses. For instance

Clear H1 y H3.

erases the hypotheses H1, y and H3.

The command Focus permits to have only one goal printed at a time, in Verbose mode:
Focus 2.

will print only the second goal. This is specially useful for big proofs, when there are numerous
subgoals, each with a lengthy list of local hypotheses. In such cases the X interface usually
becomes too slow, and the standard interface must be used, focusing on one subgoal at a time,
and pruning the local hypotheses with the above Clear command. Typically, one adjusts an
inductive statement on the inductive case with Focus 2, and on the base case with Focus 1.

Finally, the following command disables focusing.
Unfocus.

Caution: Focus 2 does not dispense from the initial 2: for attacking the second goal. The
user must also be conscious of the fact that this absolute naming of goals does not reflect the
structure of goals that is, when subgoal 2 and all its generated subgoals will be solved, the
original third subgoal will then be the second one.

Silent mode

The silent mode turns off displaying of the state after a tactic has been applied successfully. It is
very useful for speeding up the loading of files containing tactics.

e Begin Silent
This command turns off the displaying.
¢ End Silent

This command turns the normal displaying mode on.
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1.5 Miscellaneous commands of the Coq system

1.5.1 Printing the state of the context

The current context can be printed with the following commands:

e Print

This prints all the axioms or parameters and then all the theorems and definitions declared
after the last axiom or parameter. If there is no axiom or parameter in the context, then all
declarations are displayed. Proofs of theorems and bodies of definitions are displayed as well
as theorem statements and definition types.

e Info name: is equivalent to Print name except if name is an inductive definition in which
case it displays also its constructors and the allowed eliminations.

e Print All

This prints the entire context. Proofs of theorems and bodies of definitions are not displayed.
Only axiom or theorem statements and parameter or definition types are displayed.

¢ Print Section name
This prints the entire context like Print All, but only from the beginning of the open section
name.

e Print name

This prints the body of the constant name with its type (which may be the proof of the
theorem name with its statement). If name is a parameter, its type is printed. (If name is an
axiom, its statement is printed.)

e Check name

This prints the statement of the axiom or theorem name (or the type of the parameter or
definition name).

This command can also be used as Check term. In this case it takes a term and displays its
type or a proof-term and displays the proved statement (see 1.8).

e Search name

This prints all the theorems with head constant name.

e Inspect num

Like Print A1l this prints the context but only includes the num last items.

1.5.2 Resetting the context

These commands are used to reset the system to a previous state, in order to correct mistakes, for
instance.

e Reset name

This resets the system to the state it was in before writing the item name.
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e Reset After name

This resets the system to the state it was in after writing name.

e Reset Section name

This resets the system to the state it was in before opening the section name.

e Reset Empty

This resets the system to the state where only logical connectives, equality, booleans, natural
numbers and standard operations on data types are defined (i.e. the basic notions defined in
the file Prelude.v).

e Reset Initial

This resets the system to its initial state where logical connectives, equality, booleans, natural
numbers, standard operations on data types and specifications and elementary results about
natural numbers are available (i.e. the basic notions defined in the files Prelude.v, Specif.v,
Peano.v and Wf.v).

1.5.3 Term evaluation

e Eval term

This command evaluates term by instantiating the formal parameters of functional subterms
by the corresponding arguments.

For instance:

Coq < Eval ([x:nat](pred x) (S 0)).
= (pred (S 0))
: nat.

e Compute lerm

This command evaluates term by instantiating the formal parameters of functional subterms
by the corresponding arguments and by applying recursion schemes.

For instance:

Coq < Compute ([x:nat](pred x) (5 0)).
= 0 : nat.

1.5.4 Loading a file

e Load filename

This loads the file filename.v in the current working directory. A system error occurs if the
file does not exist.

filename can contain ", “userid, and also environment variables, using, for instance, $C0Q
(in this case the path must be written between double-quotes).

55



1.5.5 Current path

The following commands are mostly self-explanatory:
e Pwd prints the current directory.

e Cd dirname changes the current directory.

1.5.6 Packages

A “Packages” facility, modeled after the similar notion in Gnu Emacs, is provided. It allows the
user to divide his development in a modular way, to look for libraries in a user-controllable search
path. and to describe dependencies among modules, while sharing common ancestors.

There is a global list of directories, the “load path”, containing a list of all the system directories
currently known by the system.

To add directories to this list from the command line of “coq”, you use -I <dir>, like for camlc.

Now, there are several commands which manipulate this list:

Coq < AddPath dir.

Adds dir to the list. Remark that the current working directory is not present by default, but may
be added by the command AddPath ".". The notations ”..” and ” ” are similarly interpreted in
their standard Unix way.

Coq < DelPath dir.
If dir is on the list, it is deleted.
Coq < Print LoadPath.

Prints out the load path.

There is also a component of the machine environment, which records the list of the “packages”
which have been loaded into the environment previous to the declaration. You can think of this as
a global variable, which is retracted by undo’s and reset’s.

When we do:

Coq < Require id [optional filename].

The system will search for id.v or filename.v in the loadpath, and if it finds it, it will do a Load
of the file. In the file, there should be, as the last line, a command:

Coq < Provide id.

This will inform the system that the loaded file provided that “package”’s functionality.
So, for instance, I could do:

Coq < Require Prelude.
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and if the file Prelude.v contained as a last line, Provide Prelude, then the fact that Prelude
was loaded would be registered in the machine state. Then, if I do Require Prelude again, nothing
happens, since it is already loaded.

If I do a Reset All, then the machine entry saying that Prelude is loaded will be popped, and
I will have to load it again.

This means that instead of writing Load Arith in every file which uses Arith, and then having

to comment it out, you can just write Require Arith, and then the system will take care of having
Arith loaded only once.

Coq < Print Packages.

Prints out a list of the currently loaded packages.
1.5.7 State Manipulation Primitives.
Coq < Save State ident [optional string].

This saves the current machine state under the identifier. The optional string is a description of
the state.

Coq < Print States.

This prints a list of the currently available states.

Coq < Remove State ident.

Removes the named state from the saved list. You cannot remove Prelude nor Initial.
Coq < Restore State ident.

Restores the named state to the machine.

Coq < Write States filename.

Writes out all the states in the save-list into the named file. The filename is appended with .coq
automatically.

Coq < Read States filename.

Reads in the states from filename.coq, or if that doesn’t exist, filename, and adds them to
the current saved-list. If there are states with names which are the same as ones in the current
saved-list, then the new ones are dropped on the floor. Hence, you can never overwrite the states
Initial and Prelude, once they have been loaded into the image.

1.5.8 Quitting Cogq
¢ Quit

This command permits to quit Coq.



1.5.9 Recording mode: Open, Close

The commands given to the system Coq can be recorded in a file. For instance, if we give the
command Open demo at the beginning of a sequence of commands and Close at the end, the file
demo.v contains a recording of this sequence of commands.

Of course, no trace of displaying or backtracking by means of Undo, Restart, Abort, is recorded.
Only “clean” proofs are recorded. Such a clean proof may be read successfully with the command
Load.

It is also possible to open a recording file in the middle of a proof, but with no guarantee that
the corresponding file will load successfully. Also, if you Close the recording file before completion
of a proof and successful Saving, the partial proof steps will be recorded in the file.

Note: the argument of the Open command is the name of the recording file in the current
working directory (with suffix .v). If the file does not exist, it is created; if it exists, it is appended
to. If you want to address a file with an explicit absolute or relative path, use the CAML command
open_vernacular.

1.5.10 Transcripts

Transcript mode and commands. The command, Verify, which takes a list of sequents, as printed
by the Show command, and checks that the current goal-list is identical to them.
The command

Coq < Begin Transcript.

enables a mode in which whenever a “log” (via the Open command) is being kept, after each
refining step, a Verify command is emitted, so that on reloading of the “log”, the state of the
machine is checked after every tactic step.

Coq < End Transcript.

turns off this mode.

Since this mode is only useful when you are logging commands to a file, obviously, if you do
simply Load foo, then you don’t get the logging, and hence no verify commands are inserted,
either. So there is now a command:

Coq < Load Verbose filename.
which loads a file as if it were typed in from the keyboard. So if you do

Coq < Open "VERIF/Ack".
Coq < Load Verbose Ack.

lots of output ... (Oh, BOY, lots of output)
Coq < Close.

then the file VERIF/Ack.v will contain the “log” of “Ack.v”, with Verify commands inserted.

This facility is extremely useful in two kinds of situations. First, when you are porting theory
developments from one version of Coq to another one, which may contain slight incompatibilities.
Print a transcript file of the development using the old version, and verify it with the new one.
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The incompatibilities will emit an error message exactly at the place where the system response
will differ, as opposed to sometimes many lines after, since a tactic may succeed locally. This will
ease the portability problem in the future.

Second, you may find this facility useful when you add or subtract Hints commands from your
development script, since the Trivial and Auto tactics may now have a different behavior.

1.6 The Coq Interface

A multi-window interface for the X-window system is included. In this section we assume you are
running Coq with option “-x” in a Unix environment with the X11 library properly installed. The
current implementation provides a flexible mechanism for goal-directed proof development. Most of
the operations available correspond directly to the application of tactics or to other Coq commands
that operate on goals.

In describing interface operations, we will always mention the corresponding Coq command. For
a complete description of any command, we refer the reader to the corresponding section elsewhere
in this document.

1.6.1 Starting Up The Interface

The interface works on black and white, grayscale and color screens. To start up the interface,
type:

Coq < Interface.

In order to specify a screen on which the interface should appear, the function “Interface” can take
a string as argument corresponding to the machine name:

Coq < Interface '"machine.domain.fr:0.0".

causes the interface windows to appear on the screen of the corresponding machine.

By typing either of these commands, two windows will appear on the screen: the top level
or main window, and a context window. These windows (as well as all others that may appear
later) can be moved, made smaller or larger, iconified, etc. according to the specifications of the
X-window manager. '

1.6.2 The Context Window

The context window is originally empty. It contains three buttons corresponding to three kinds of
operations: Print, Inspect, and Reset. By clicking and holding down the mouse button, a menu will
appear with the list of operations. To apply an operation, while holding down the mouse button,
move the mouse to the desired operation and release the button. The operations are listed and
some description is given below. Those that are not explained correspond directly to the command
of the same name. Many operations take additional arguments (indicated by an underscore in the
menu entry). An input window will appear, prompting for these arguments. Click on 0K or type
return to end the input and execute the operation.
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The Print Menu.

Print

Print _

Print Hint
Print All
Print Section
Check _
Search _

The Print button applies the Print command, while the Print _ button opens the input window
allowing the user to enter the name of an item in the context. The Print All operation is different
from the others in that the context window will be cleared before the Print A1l command is
executed displaying the entire context.

The Inspect Menu. This menu contains entries for the Inspect command with various specified
arguments. It also allows the user to enter an arbitrary argument.

The Reset Menu.

Reset _

Reset After _
Reset Section _
Reset Empty
Reset Initial

Scrolling Text. In addition, the context window contains a scroll bar. Scroll backward one line
at a time by placing the mouse anywhere in the scroll region and clicking on the left button, and
forward one line at a time by clicking on the right button. To move the text to a particular location,
position the mouse at the desired place in the scroll region and click on the middle button. Hold
this button down and move the mouse up and down for finer control. Several other text windows
of the interface contain scroll bars which all work similarly.

1.6.3 The Main Window

The top level window contains several buttons and menus corresponding to various system com-
mands, and an output window where output from the system is printed.

The Goal Button. The Goal button corresponds to the Goal command and prompts the user
for a goal. The windows for tactic-driven proof synthesis are then opened. See Section 1.6.4 for a
description of goal-directed proof synthesis.

The TacProver Button. This button opens the windows for tactic-driven proof synthesis on
the current goal or goals. If there is more than one subgoal, one of them is chosen as the current
goal. The user can freely change the current goal by clicking on the appropriate goal in the subgoal
window. See Section 1.6.4.
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The window interface is independent of the tty interface in the sense that it is possible to go
back and forth between the two. For example, a user may begin proof synthesis using the window
interface, and then continue using the tty interface. If the user then returns to the window interface,
the list of subgoals will be those that remained at the end of the tty session.

The Open and Close Buttons. The Open button corresponds to the Open command and will
prompt the user for the file name. The Close button closes the currently opened file, if there is
one.

The Hint Menu. The following operations for adding and removing items to be used by the
automatic tactics are included in this menu.

Hint
Immediate _
Hint Unfold
Erase _
Print Hint

The Vernac Button. The main window is incomplete. The intent is to eventually include all
commands that do not operate on a goal in this window. For example, a flexible way to introduce
definitions, hypotheses, etc., should be provided at this level. In the meantime, a button Vernac is
provided, which prompts the user for input corresponding to an arbitrary command.

The Abort Button. This button corresponds to the Abort command which aborts the current
goal.

The Quit Button. The Quit button closes all windows and returns to the Coq top level.

Using the interface or not does not change the internal state of the Coq engine. Parts of
developments done under the X interface may be freely intermixed with parts done under the
standart interation-loop.

If the window interface is started up again, it will return to the state it was in just before
exiting.

1.6.4 The Proof Synthesis Windows

Two windows will appear when proof synthesis is started by either the Goal or TacProver but-
tons in the main window. The first is the Current Goal Window which displays the current goal
along with its local hypotheses. It also contains buttons for applying tactics to the current goal
and other operations. Five of these buttons contain menus for the different categories of tactics:
Introduction, Resolution, Induction, Convertibility, and Automatic/Exact. The tactics are listed
and some description is given below. A sixth button is provided for entering more complex tactic
expressions.

The second window is the Subgoal Window which contains the list of all subgoals. The current
subgoal is marked by X. To change the current subgoal, simply click on the button marked with the
number of the desired subgoal. This goal and its local hypotheses will be displayed in the Current
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Goal Window. All tactics will be applied to this newly chosen goal until it is completed or until
the user chooses to replace it by another subgoal from the subgoal list. In the case when a tactic
is applied to the current goal resulting in multiple subgoals, the user must choose which one will
be the next current goal before proof synthesis can proceed.

Introduction Tactics.

Intro

Intro _

Intros

Intros _
Intros until _

The Intro button applies the Intro command, while the Intros button applies Intros. The
corresponding Intro _ and Intros _ prompt the user for the names of the hypotheses. Similarly,
Intros until prompts the user for its argument.

Resolution Tactics.

Apply -

Cut _
Specialize _
Generalize _
Left

Right

Split

Exists _
Reflexivity
Symmetry
Transitivity _

The input to tactic Apply is a term, or a term followed by with followed by additional arguments.
The input to Exists and Transitivity are terms. The input to Replace is a term followed by
with followed by another term.

Induction Tactics.

Elim _
ElimType .
Induction _
Rewrite -> _
Rewrite <- _
Replace _
Absurd _

Elimis similar to Apply above. The user is prompted for input. The first argument can be followed
by with and additional input. The input to Induction can be either a number or variable name.
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Convertibility Tactics.

Unfold _
Change .
Red |
Simpl |
Hnf

Pattern

The Unfold tactic prompts for input, which like Apply and Elim can take several forms: in this
case, an optional occurrence number, followed by a constant, optionally followed by in and the
name of a hypothesis.

Automatic/Exact Tactics.

Auto
Auto _
Trivial
Exact _

Assumption
Instantiate

Finally, two buttons control the facilities described in the section 2.3.

Realizer

Realizer
Realizer

Program

|
Program
Program_all |
Show Program

Tactic Expressions. This button provides a menu of high level operations that allow tactics to
be composed in various ways.

_ Orelse _
Try _
Repeat _
Do
Other

Selecting any of these buttons will cause an input window to appear. Selecting Do, Try, or Repeat
will cause the corresponding initial string to appear in the input window, while Other will open
the input window with no initial string. Choose the desired tactics one at a time by selecting
them from the five tactic menus. Enter any required arguments by typing them directly in this
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input window. Use the button marked ; to enter a semi-colon between tactics. Alternatively, a
semi-colon as well as any other input can be typed in directly by hand. Only click on Orelse after
the first argument has been entered. This can be done, for example, by clicking on Other, entering
the first argument, and then clicking on Orelse before entering the second argument. Finally, click
on OK or type return to execute the tactic expression.

For example, it is possible to apply the expression:

Do 2 Intro ; Repeat Split ; Auto.
by the following series of operations.

o Select Do from the Tactic Expression menu. Note that in addition to Do, the initial string
appearing in the window will contain the goal number corresponding to the current goal
(calculated automatically) followed by a colon.

¢ Enter 2 from the keyboard.

e Select Intro from the menu of Introduction tactics.
e Click on ; in the input window.

o Select Repeat from the Tactic Expression menu.

e Select Split from the menu of Resolution tactics.

e Again, click on ; in the input window.

e Select Auto from menu of Automatic tactics.

e Click on 0K in the input window.

Alternatively, the entire command can be entered by selecting Other to open the input window
and then typing this expression by hand, or entering it using cut and paste. (See Section 1.6.5.)
The Other button is also useful, for example, to apply expressions such as:

Split ; Auto.

where an expression containing several tactics begins with a tactic that takes no arguments. In this
case, clicking on Split without first opening the input window would apply Split directly. Here,
as is always the case when the input window is open, the complete expression will not be applied
until the user selects 0K or types return.

The Undo Button. The Undo button corresponds to the Undo command. It will undo the proof
to the point before the last tactic expression was applied.

It is important to note that this undo facility is somewhat limited. It is linear with respect
to time. Thus for example, if a tactic is applied to one subgoal, and then another is applied to a
different and independent subgoal, there is no way to undo the operation on the former without
first undoing the operation on the latter, even though the two subgoals may be on independent
branches of the search tree.
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The Restart Button. This button corresponds to the Restart command which restarts the
current goal.

1.6.5 Miscellaneous Operations

Cut and Paste. It is possible to cut and paste text from arbitrary windows to the Coq interface,
and from the Coq interface to arbitrary windows. To cut text from any one of the interface windows,
position the mouse at the beginning of the text and click on the left mouse button. Release the
button, go to the end of the text and click on the right button. Alternatively, click with the left
button at the beginning of the text, hold the button down and move to the end of the text, then
release. Note: the text will not be highlighted. To paste the current contents of the cut buffer to
an input window, click on the middle button.

Using this facility, input to tactics that take arguments can be entered by cutting text from the
Context Window, an emacs window, or any other window, and pasting this text in the tactic input
window.

It is also possible to use this facility to execute existing example files using the Coq interface.
To execute tactic expressions from an emacs file, it suffices to open the tactic expression window
by clicking on Tactic Expression and selecting Other, to cut the text from the emacs file, and to
paste it to the input window.

Known limitation: when cutting text from a Coq window, it is not possible to exceed one line.
On the other hand, if a section of text containing more than one line is cut from another window
(such as emacs), the entire text can be pasted to a Coq input window.

1.7 More on inductive definitions

In part 1.1.8 we saw how to use inductive types to get a direct representation of natural numbers,
lists or products. Inductive definitions also allow an internal representation of other notions like
inductive predicates and even logical connectives.

This part contains examples of inductive definitions. It also contains more technical information
on these definitions like the general syntax of an inductive declaration. We shall also present some
difficulties that can arise when using inductive definitions.

1.7.1 Inductive definitions of predicates and relations

During the development of a theory, it is useful to introduce notions like 7 is even or n is less
than m. Because they often correspond to primitive recursive predicates it is possible to represent
them as <nat>(C n)=1 with C the characteristic function of the predicate. But such definitions,
if theoretically sufficient, do not lead to very simple proofs. In Coq, the general mechanism of
inductive definitions can also be used for the definition of inductive predicates leading to very
elegant proofs.

Order on the natural numbers

The inductive definition of the order on natural numbers corresponds to the mathematical definition:
“< is the smallest relation such that 0 < n and if n < m then (S n) < (5 m)”. When we introduce
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such a definition, we expect two properties. First the predicate satisfies the specification clauses:
Vri<n VYVeV¥m.n<m=(Sn)<(5Sm)
Secondly it is the smallest one to satisfy these properties. This means that if R is such that:
Vn.R(0,n) Vn.¥m.R(n,m)= R((S n),(S m))

then n < m = R(n,m).
The effect of the following inductive definition will be similar:

Inductive Definition LE : nat->nat->Prop
= LE_O : (n:nat)(LE O n)
| LE_SS : (n,m:nat)(LE n m)->(LE (S n) (S m)).

It declares in the environment the two terms LE_O0 and LE_SS whose types are respectively
(n:nat)(LE 0 n) and (n,m:nat)(LE n m)->(LE (S n) (S m)). It also introduces a constant
LE_ind corresponding to the minimality property (or elimination theorem) whose type is:

(R:nat->nat->Prop)
((n:nat)(R 0 n))
=->((n,m:nat)(LEn m)->(R n m)->(R (S n) (S m)))
=>(n,m:nat) (LEn m)->(R n m)

This presentation looks slightly stronger than our informal presentation because we only need to
prove

(n,m:nat)(LE n m)->(R n m)->(R (S n) (S m)) instead of the stronger condition:
(n,m:nat)(R n m)->(R (S n) (S m)) but the two schemes actually may be shown to be equiva-
lent.

In general the user will not directly use the combinator LE_ind but the elimination tactic.
For example assume that we want to prove the goal (n,m:nat) (LE n m)->(LE n (S m)). Using
the introduction tactic we get an hypothesis H of type (LE n m), while the current goal becomes
(LE n (S m)). We may use the elimination tactic ELim H. It will first infer a relation R to which it
will apply the minimality principle. In this case R will be [n,m:nat] (LE n (S m)). Two subgoals
are generated corresponding to the two clauses to verify, namely:

(n:nat)(LE 0 (S n))
(n,m:nat)(LE n m)->(LE n (S m))->(LE (S n) (S (S m)))

Both are solved trivially using introduction and applying respectively LE_0 and LE_SS.

1.7.2 Various inductive definitions of the same notion

One difficulty with inductive definitions is the fact that in general the same notion admits several
possible inductive definitions. To each inductive definition corresponds naturally an induction
principle (the minimality property). Different proofs may require the use of different induction
principles.

For example, a natural property to prove is the transitivity of the order relation on natural
numbers LE, (n,m,p:nat)(LE n m)->(LE m p)->(LE n p). The natural step to take is to do an
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elimination on the proof of (LE n m) by Induction 1. We shall then need to prove the clause:
(LE n m)->((LE m p)->(LE n p))->(LE (S m) p)->(LE (S n) p).
But there is no direct proof of this property. The reader may also check that an induction on n, m
or p does not lead to a direct proof.

There is another definition of the order corresponding to the informal definition of “to be greater
or equal to n.” It is the smallest property which is true for n and is true for (S m) when it is true
for m. It corresponds to the inductive definition.

Inductive Definition le [n:nat] : nat -> Prop
= le_n : (le n n)
| 1e_,S : (m:nat)(le n m)->(len (S m)).

Proving the transitivity of this relation is simple: (n,m,p:nat)(le n m)->(le m p)->(le n p).
It is done by an elimination on the proof of (1e m p), then using the assumption and apply-
ing le_S. Also the equivalence between the two definitions of the order is not hard to prove
(n,m:nat)(le n m)->(LE n m). After an elimination on the hypothesis (1e n m), we have to
check two clauses. The property (LE n n) is easy to prove by induction on n. The prop-
erty (LE n m)->(LE n (S m)) was proved before. We now have to prove the other direction
(n,m:nat) (LE n m)->(le n m). We use Induction 1. The property (le 0O m) is easy to prove
by induction on m. The property (le n m)->(le (S n) (S m)) is proved directly after an elimi-
nation on the proof of (1e n m).

We have shown two possible definitions of the same notion, and we cannot say that one is better
than the other. The best way to proceed is to use one or the other induction principle depending
on the proof to be done.

A good exercise is to try to show the following property, using the definitions of plus and minus
introduced in 1.1.8: (n,m:nat)(le n m)-><nat>m=(plus n (minus m n)). This is hard to prove
directly but if we replace le with LE, the proof becomes very simple.

The role of parameters

Sometimes between two apparently equivalent definitions, there is one which is definitely better
than the other. This problem is related to the role of parameters. In our previous definition of le,
we could have written:

Inductive Definition le’ : nat->nat->Prop
= le’_n : (n:nat)(le’ n n)
| 1e’_S : (n:nat)(m:nat)(le’ n m)->(le’ n (S m)).

What is the difference between le and le’? Both are binary relations on natural numbers, and
the type of 1le_n and le’_n are the same as the types of respectively 1le_S and le’_S. In the case
of 1le, we define for each n a binary inductive predicate. But le’ is an inductive relation. This
difference is reflected in the minimality properties le_ind and le’_ind.

le_ind : (n:nat)(P:nat->Prop)
(P n)->((m:nat)(le n m)->(P m)->(P (S m)))->(m:nat)(le n m)->(P m).
le’_ind : (R:nat->nat->Prop)
((n:nat)(R n n))->((n,m:nat)(le’ n m)->(R n m)->(Rn (S m)))
->(n,m:nat)(le’ n m)->(R n m). .
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Now assume that we want to prove a goal G(t,u) which depends on two natural numbers ¢ and u
and we want to use the fact that ¢t < u. If we know (le t u) we will only have to prove G(t,t)
and Vm.G(t,m) — G(t,(S m)). But if we use (le’ t u) we shall have to prove ¥n.G(n,n) and
Vn.Vm.G(n,m) — G(n,(S m)). These properties are always stronger than the ones required in the
le case.

Actually it is possible to do a simple proof of (n,m:nat)(le’ n m)->(le n m) using only an
elimination on the proof of (1e’ n m). Thus the two definitions are equivalent. But the first one
(le) is always the better.

The problem is to recognize that an argument of an inductive relation can be moved to a
parameter position. This can be done when in each type of a constructor and each occurrence of
the relation in the type the argument is the same bound variable (in our case n).

1.7.3 Definition of recursive propositions
Proving that 0 # 1

The elimination scheme on an inductive type is quite a powerful method for doing proofs. But it is
not always sufficient. For example some expected properties like “<nat>0=1 are not provable using
only these tools. A proof of 0=1 gives us a way to transform a proof of a property (P 0) into a
proof of (P 1) using elimination. In order to derive absurdity from 0=1 it is sufficient to be able
to find P such that (P 0) and “(P 1) are provable. For a restricted class of inductive definitions,
we introduce the possibility of defining propositions by structural recursion. The syntax is similar
to that used for the construction of a program by recursion on an inductive structure.

For natural numbers, we can define a predicate (function from natural numbers to Prop) which
is the true proposition for 0 and absurdity for (S p).

Definition P : nat->Prop
= [n:nat] (<Prop>Match n with (* 0 *) True (* S p *) [p:nat] [H:Prop]False).

We have that (P 0) is internally equivalent to the true proposition T and (P (S 0)) is internally
equivalent to the absurd proposition False.

Recursive definitions of relations

This possibility to recursively define a proposition gives an alternative way to define some relations.
A recursive version for the definition of the order LE can be given by:

LE’ = : nat->nat->Prop
[n:nat] (<nat->Prop>Match n with
(* 0 *) [m:nat]True
(* S k *) [k:nat] [LEk:nat->Prop] [m:nat]
(<Prop>Match m with (* 0 *) False
(* S 1 %) [1:nat][LESkl:Prop](LEk 1)))

LE’ is of type nat->nat->Prop. We have (LE’ 0 m) convertible with True, (LE’ n 0) convertible
with False and (LE’ (S n) (S m)) convertible with (LE’ n m). What is missing, as a basic
property, is the minimality of the relation for the defining clauses. This can be derived using the
appropriate induction on natural numbers.
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Not all inductive definitions can be rewritten using a recursive definition. This is the case for
our definition of 1e. The two conclusions of the constructors (le n n) and (le n (S m)) do not
correspond to exclusive cases of constructors of natural numbers.

Inverting an inductive definition

Very often inductive definitions lead to more elegant proofs because of the elimination constructions.
But sometimes an inversion property in an inductive definition is needed, for example the property
(LE (S n) (S m))->(LE n m) or “(LE (S n) 0). This inversion can be proved in a systematic
way using a definition by cases of a relation:

Definition LE_fun = [n:nat]
(<nat->Prop>Match n with
(* 0 *) [m:nat]True
(* S k *) [k:nat][LE_funk:nat->Prop] [m:nat]
(<Prop>Match m with (* 0 *) False
(* S 1 *) [1:nat][LE_funkl:Prop](LE k 1)))

We have (LE_fun 0 m) convertible with True, (LE_fun (S n) 0) convertible with False, and fi-
nally (LE_fun (S n) (S m)) convertible with (LE n m). Then, using an elimination on the proof
of (LE n m), we get a trivial proof of (n,m:nat)(LE n m)->(LE_fun n m). The expected inver-
sion properties are then convertible with instances of this theorem. For example, the proposition
(LE (S n) 0)->(LE_fun (S n) 0) is convertible with “(LE (S n) 0).

1.7.4 General rules for an inductive definition

This part contains a more precise definition of rules for inductive definitions. It is rather techni-
cal and may be skipped unless you are interested in the precise general mechanism of inductive
definitions.

In this section s is one of the sorts Set, Prop or Type. The sorts Set and Prop play a similar role.
Set is the sort associated to the types of the programming language (the type of natural numbers
for example). Prop is the type of the propositions of the logic. Type is the type of Prop. It can be
considered as part of the language in the Calculus of Constructions extended with universes. If we
use the original Calculus with only three levels, Type appears only at the meta level (to give a type
to Prop, A — Prop,...).

All terms we shall write in the following will be well-formed terms of the Calculus. We also call
a term whose type is a sort a type.

Declaration of the type

Let us give some definitions. An arity is either a sort or a term (2 : T)A with A an arity. In the
following A is an arity and X is a variable of type A. If M is of type A, we shall write (M al...an)
to denote a type obtained by application of the term M to the n terms «l,...,an.

Let P be a type. X is strictly positivein P if Pis (X al...an) or (z : T)P’' where X is strictly
positive in P’ and X does not occur in any of the az or in T.
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Let C be a type, C' is said to be a type of constructor of X if C is (X «l...an) or (z : T)C' or
P — C’ and C' is a type of constructor of X, X is strictly positive in P and X does not occur in
any of the az or in 7.

An inductive definition X is specified by an arity A and a list of type of constructors of X
[C1;...;Cp]. It may be written in the system as Ind(X : A){C1|...|Cp}. Each Ci should be a
term well-formed in the current environment plus the definition of the variable X : A.

The inductive type Ind(X : A){C1]|...|Cp} has type A.

The usual way to define an inductive type is to choose a name X for the type and ¢4, ..., ¢, for
the constructors and to use the following scheme:

Inductive Definition X : A = cl: C1

| ep: Chp.

Parameters

In the previous examples we have seen that it is possible to add parameters to the definition. They
appear as a list after X. The syntax is [pl : Al;...;pk : Ak] where each pi can be a single name or a
list of names of parameters separated by commas. In a definition with parameters there is an extra
condition. Let us write (X pl...pk) for the variable X applied to all the declared parameters. Let
X' be a variable of type A. There should exist for each C'i which is a type of constructors of X', a
Ci' such that Ci = C?[{X'/(X pl...pn)]. Then the definition with parameters is equivalent to first
adding the parameters pl : Al;...;pk : Ak to the environment, introducing an inductive definition
of C1’,...,Cp', and then abstracting all the propositions with respect to the parameters. Hence,
inductive definitions with parameters are always reducible to the case without parameters.

Constructors

Let M = Ind(X : A){C1]|...|Cp} be a well-formed inductive definition. Then for each integer ¢
less than or equal to p, Constr(i, M) is a well-formed term of type Ci[X/M].

The effect of a general inductive definition scheme is to declare ¢i as a constant whose value is
Constr(i, M).

Elimination schemes

The generic rules for the elimination schemes are quite hard to read, so we will not write them.
The examples given earlier give a better idea of this general scheme.

We will describe the kind of elimination which is allowed for a given inductive definition M =
Ind(X : AY{C1]|...|Cp}. The primitive notion for elimination is the term < P > Match t with
where t is of type (A al...an) and P is a term whose type is an arity B. First of all, the elimination
is distinguished by the arity of the predicate P with respect to the arity of the inductive definition A.
Let us decompose 4 as (z1: Al)...(an : An)s. The arity B may be either (z1: Al)...(zn : An)s’
or (al: Al)...(an : An)(M z1...an) — §'. In the first case, we shall call < P > Match t with
a non-dependent elimination of sort &' and in the second case, a dependent elimination of sort s’.
Obviously, because the arity A can be deduced from the type of ¢, only the dependency and the sort
s’ are necessary to characterize the elimination. Dependent elimination corresponds, for example,
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to the induction principle for natural numbers. Non-dependent elimination corresponds to the
construction of a primitive recursive function or the minimality property for inductive predicates.
In the dependent elimination case, the constructors of the inductive definition appear, while in the
non dependent case, they do not. Another trivial remark is that non-dependent elimination is a
particular case of dependent elimination. If P is of type (z1 : Al)...(zn : An)s’, we may see
< P > Match t with as a shorthand for < [z1: Al]...[zn: An][H : (M 21...zn)](P zl...2n) >
Match t with. But writing an arbitrary elimination for an arbitrary inductive type is not allowed.
We give the rules by case analysis on the sort s of the inductive type. In some sense, they correspond
to the rules in the presentation of the Calculus of Constructions as a Generalized Type System.

o s = Type: dependent elimination of sorts Prop and Type is allowed.

e s = Prop: non-dependent elimination of sort Prop is allowed. Dependent elimination does
not make sense because we are not considering a proof of a proposition as an object.

e s = Set: Dependent elimination of sorts Set and Prop is allowed. A dependent elimination
of sort Type is also allowed for the construction of a restricted set of recursive predicates.
The restriction is that the type of constructors of the inductive definition should be what we
call “small”. This means that all the types of arguments have the sort Prop or Set (but not
Type). Without this restriction it would be possible to define a strong sum 3X : Prop.P(X)
with two projections, and thus to get an inconsistency.

Limitation of the definitions

There is a restriction in our definitions on the type of a constructor. We should allow X to be
strictly positive in an inductive definition Ind(Y : B){C1|...|Cp} if X is strictly negative in the
C'i. This would allow an equivalent definition of lists by:
Inductive Set list’ = nil : list’ | cons : (A*list’)->1list’.

But in this general case, the elimination rules do not have a nice formulation (we need to introduce
product and projection to write them). In practical examples there is a way to express the inductive
definitions with our definition of strictly positive. The main drawback of this limitation is the
impossibility to represent mutually recursive types using a product in this framework.

Generativity

Inductive types are equal up to renaming of their constructors. Indeed:

Coq < Inductive Set bit = Zero : bit | One : bit.
bit is inductively defined

Coq < Inductive Set color = Black : color | White :color.
color is inductively defined

Coq < Lemma bit_color_same_same : <bit>Zero=Black.

Coq < Proof (refl_equal bit Zero).



This equality under isomorphism is not always desirable, and is actually contrary to the standard
convention of type equality in programming languages such as ML. One solution is to put “time-
stamps” into inductive type definitions, so that each time we type one in, we get a “fresh” inductive
type. This is the solution of most ML-like languages.

But we need something more flexible, since we can type in inductive types directly from the
kevboard, e.g. when the conversion routines of the tactics library unfold constants which hide
inductive types (e.g. when nat gets unfolded into Ind(X:Set){X|X->X}. Our solution is to put in
user-specified “stamps”.

Thus. if you want to “stamp” your inductive type bit to make it different from color, prefix
the inductive definition command with the keyword Generative. For instance, the data types of
bool and nat are declared in the prelude as being generative. Consequently:

Coq < Lemma ill_typed : <bool>true=Zero.
Illegal application : (eq bool true) cannot be applied to : Zero
Since the formal type : bool does not match the actual type : bit
Error Application would violate typings

For various purposes, though, one might want that two inductive types share the same “stamp”,
e.g. the inductive type sumor is generative, with definition:

Generative Inductive Set sumor [A:Set;B:Prop]
= inleft : A -> (A+{B}) | inright : B -> (A+{B}).

and if we wanted to define an inductive type sumorUV (for some Set U and some Prop V),
defining;:

Generative Inductive Set sumorUV
= inleft : U -> sumorUV | inright : V -> sumorUV.

would make a new generative inductive type, the members of which would not be convertible
with member of the old one. Likewise, if we did not make the second definition generative, the
same would hold (non-stamped types are always non-convertible with stamped types; otherwise,
by the medium of a non-stamped type, two differently-stamped, but isomorphic, types, would be
convertible). Thus, we need a way to say that the second definition has the same “stamp” as the
first. We do with with the keyword Upon, which takes as argument the stamp:

Inductive Upon sumor Set sumorUV
= inleft : U -> sumorUV | inright : V -> sumorUV.

And now, we will find that sumoxrUV is indeed convertible with (sumor U V).

1.8 Proof-terms

1.8.1 Proof-terms

In Coq proofs can be manipulated as objects. We describe here the syntax of these proof-terms.
These proofs-terms can be used by the tactic Exact when the proof of a subgoal is simple enough,
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that it can be directly written as a term. When the proof of the initial goal is simple enough,
instead of writing
Theorem name.
Statement statement.
Goal.

Exact proof.

Save.

we can write
Theorem name.
Statement statement.
Proof proof.

1.8.2 Syntax of proof-terms

Using an axiom

o If there is in the current context an already proved theorem, an already proved remark, an
axiom or an hypothesis u of statement P then the symbol u is a proof of P.

Implication
e If u and v are proofs of the statements P -> Q and P, then (u v) is a proof of Q.

e If uis a proof of the statement Q in the current context extended with the declaration of an
axiom x of statement P then [x:PJuis a proof of P -> Q in the current context.

Universal Quantification

e If u is a proof of the statement (x:T)P and t is a term of type T, then (u t) is a proof of
Plz —t].

o If uis a proof of the statement P in the current context extended with the declaration of a
variable x of type T then [z : T]u is a proof of (x:T)P in the current context.

Conjunction
e If u and v are proofs of the statements P and Q then (conj P Q u v) is a proof of P /\ Q.

e Ifuis aproof of the statement P /\ Q,then (proj1 P Q u)isaproofof P. and (proj2 P Q u)
is a proof of Q.

Disjunction
e If uis a proof of the statement P, then (or_introl P Q u) is a proof of P\/Q.
o If v is a proof of the statement Q, then (or_intror P Q v) is a proof of P\/Q.
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o If u, v and w are proofs of statements (P \/ Q), (P -> C) and (Q -> C) then
(or_ind P Q C u v w) is a proof of C.

Absurd and Negation

e If u is a proof of the statement False and P is any proposition then (False_ind P u) is a
proof of P.

e If u and v are proofs of P and “P then (v~u) is a proof of False.

e If uis a proof of False in the current context extended with the declaration of an axiom x of
statement P, then [x:PJu is a proof of “P.

Actually since we consider “P as an abbreviation for P -> False, these two rules are particular
cases of the rules for ->. So the way we write proofs constructed with these rules is just a
particular case of the way used for ->.

Existential quantification

o If t is a term of type T and u is a proof of P[z «— t] then (ex_intro T ([x:TJP) t u)isa
proof of <T> Ex ([x:T]P).

e If u and v are proofs of the statements <T> Ex ([x:T]JP) and (x:T)P->C where x does not
appear free in C then (ex_ind T ([x:T]P) C v u) is a proof of C.

Equality
e If ais a term of type T then (refl_equal T a) is a proof of <T>a = a.

e Ifu and v are proofs of the statements (<A> a = b) and (P a) then (eq_ind A a P v b u)
is a proof of (P b).

1.8.3 JA-terms as Proofs

In the previous section we have seen how to write proofs-terms. The notation given in each case
may look a bit mysterious. Moreover we have seen that some constructions were overloaded, for
instance the arrow -> was used both for functional types and for implication, and the application
(u v) was used both for function application and for the rule —-elim. We are now going to justify
the syntax of the proofs and the overloading of these symbols.

Heyting’s Semantics for Minimal Propositional Logic

Let us consider first the propositions only built from propositional variables and implication: —.

In order to prove theorems we have three natural deduction rules: the rule concerning the use
of an axiom and the rules concerning implication.

Heyting’s semantics proposes to associate to each propositional variable a set: the set of its
proofs (this set may be empty if the proposition cannot be proved) and to define recursively the
set of proofs of P — @ as the set of functions which map every proof of P to a proof of Q (here
also this set may be empty).



When we assume an axiom P, we postulate that there is an element in the set of proofs of P.
When we want to prove a theorem ¢ we try to exhibit, using the elements given with the axioms,
an element of the set of the proofs of this proposition.

For instance, if we have the two axioms A — B and A and we want to prove B, then we have
elements f in the set of proofs of A — B and a in the set of proofs of A. The function f maps
every proof of A to a proof of B, and so (f «) is a proof of B.

As a second example, we do not assume any axiom. The identity function [z]z maps every proof
of A to a proof of A, so it is a proof of the proposition A — A.

It is very easy to show by induction over the length of = that a proof = of a proposition P written
in natural deduction can always be translated into a A-term which is a proof of this proposition
and that if a proposition P is proved in a context I' then the free variables of its proof-term are
proofs of the axioms of I'.

Curry-Howard Isomorphism for Minimal Propositional Logic

Let us now consider the types of the proofs of some proposition P.

As we have in the previous section introduced for each propositional variable A the set of its
proofs, we now introduce the type of its proofs, this type is also written A.

Since the set of proofs of P — @ is the set of functions from P to @, we let P — @ be the type
of the proofs of P — Q. So we may unify a proposition and the type of its proofs, by unifying the
functional arrow and the implicational arrow.

Then it is easy to prove that all the proof-terms introduced in the previous section are well-typed
in simply typed A-calculus and that their types are the propositions they prove.

For instance if f is a proof of A — B and a is a proof of A then f has type A — B and a has
type A. So the proof of B, (f a) has type B.

Moreover every term of type P can be translated to a proof of P. Terms and proofs can therefore
be identified.

Hence we have defined an isomorphism between propositions and types, proofs and terms,
variable declarations and axiom assumptions, definitions and theorems. This isomorphism is called
the Curry-Howard isomorphism.

Universal Quantification

Heyting’s semantics suggests the representation of a proof of Vz : T - P by a function which maps
every term of type T to a proof of Pla « i].

These proofs look like proofs of @ — P. The main difference is that when f is a proof of @ — P
and t a proof of @, ¢t occurs in the proof (f t) of P, but not in the proposition P itself, and when
f is a proof of Va : T - P the term t occurs in the proof (f t) and may also occur in the proposition
Plz —t].

Thus these terms are not well-typed in the simply typed A-calculus. Fortunately we have seen
that the Calculus of Constructions is an extension of simply typed A-calculus allowing dependent
types, polymorphism and type constructors, and in which such terms may be typed.

Thus in the Calculus of Constructions each natural deduction proof can be represented and
each term can be seen as a proof of its type.

In order not to confuse the proof terms of the underlying logic with the elements of the math-
ematical structures which we axiomatize, we shall use two distinct sorts: Prop is the type of
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propositions of the logic, whereas Set is the type of data type specifications. Thus there are two
sorts of (first-order) quantification: (x:T)P, with T of type Set, is of type Prop (resp. Set) if P is of
type Prop (resp. Set) in a context where x is of type T. This second possibility corresponds to the
usual notion of an indexed family of sets. It is also permitted to form (x:Q)P, with Q of type Prop,
but this construction is natural only when x does not occur in P, in which case it is equivalent to
the arrow Q->P of implication.

It is also possible to write higher-order quantifications, quantifying over types such as Prop,
Set, Prop->Prop, etc. We shall see an example in the next section.

Connectors and Quantifiers

Since it is possible in Coq to form products and to quantify over any type, we can give types to the
connectives and quantifiers and express the natural deduction rules as propositions. For instance
for conjunction we have:

and : Prop — Prop — Prop

The A-introduction rule is:
(P : Prop)(Q : Prop)(P — Q — (and P Q)
and the A-elimination rules are:
(P : Prop)(Q : Prop)((and P Q) — P)

and:
(P: Prop)(Q : Prop)((and P Q) — Q)

Notice that these rules are expressed in minimal logic. So it is sufficient to find four terms:
and : Prop — Prop — Prop
conj : (P : Prop)(Q : Prop)(P — Q — (and P Q))
projl: (P : Prop)(Q : Prop)((end P Q) — P)

and:
proj2: (P : Prop)(Q : Prop)((and P Q) — Q)

to get conjunction for free.
We could for instance declare parameters of these types, but it is easy to show that they contain
closed terms, using either inductive types or polymorphism.
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Chapter 2

The System Coq as a Programming
Language

In the first chapter, we showed how to write in Coq simple programs and prove their properties.
In this chapter we adopt another point of view and use Coq as a language for the development of
certified programs.

2.1 Introduction

This paradigm can be explained in two different ways.

First, we can think that we have a programming language in which we can express and prove
logical properties. The programs are enriched with non-computational informations which justify
the correctness of constructions. In the first part, we built a set of natural numbers, represented by
structural properties. We can also, given a predicate P on natural numbers, which is represented
as a term with type nat->Prop, build the set of natural numbers which satisfy P. In Coq it will be
written {x:nat| (P x)}.

Second, we can think that we are doing constructive proofs. An intuitionistic proof admits a
direct functional interpretation. It means that a proof of V2.P(z) = Jy.Q(z,y) can be translated
into a function which takes as arguments an object @ and a proof p of P(z) and gives as value
an object y and a proof of Q(z,y). However, we want to be able to specify for instance that the
expected program will only take @ as input and gives y as output and that the proof of P(z) is only
needed to build a proof of Q(z,y). For this purpose, Coq provides two sorts for propositions. The
judgement A:Prop means that A is a logical property and that a proof a of A will not be used in a
computational way. The judgement A:Set means that A is a computational proposition, also called
specification. If a is a proof of A, then it represents the development of a program. Propositions
and sets can be mixed.

From a proof of a specification, the system Coq extracts an “algorithm”. More precisely, it
removes the comments (proofs of logical propositions) from the proof. It produces typed programs
but with no more dependent types. The section 2.2 gives definitions for useful specifications and
develops examples of program development.

The extracted program is a skeleton of the proof of the specification. Consequentely, the proof
and the extracted program share the same structure. When the expected extracted program is
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known, it can be used as a guide for the development of a proof of a specification. A tactic has been
written to automatize this process. A program can be associated to goal which is a specification.
A tactic called Program develops the proof following this program and associate subprograms to
generated subgoals. At the end, only subgoals corresponding to logical properties of programs are
left to the user.

The language to express this program is called Real. Its syntax is analogous to the Coq syntax of
terms. It contains abbreviations for useful constructions plus a mechanism to include annotations
which are just Coq properties associated to subparts of the program. This functionality is explained
in section 2.3. Finally, we want to really execute the programs developed in Coq and test them on
consequent examples. The reductions involved in these programs are beta-reduction and pattern-
matching, it is natural to see them as programs of a ML-like language. A small ML-language called
Fml is integrated to the system Coq. In this language, we can define concrete types and write
functions using general recursion and pattern-matching. In the Fmlenvironment, only closed terms
can be manipulated. They can be directly written or obtained by a translation of the programs
extracted in the Coq proof environment. There is no compiler for Fml programs, instead, Coq
provides various translators from Fml to existing ML compilers. The Fmllanguage and toplevel is
explained in section 2.4.

2.2 Development of programs with logical information

2.2.1 Motivations

Instead of having proofs which tell us about programs, we shall introduce proofs inside our programs.
Usually in a programming language it is possible to include comments which explain properties of
the program or why these properties are satisfied. In the Coq formalism, these comments can be
part of the language and thus be mechanically checked.

2.2.2 Examples of specifications

Instead of developing a program as a term of type nat->nat, for instance, we shall be able to
express more informative types, including logical information on programs. These types will also
be called specifications in the following.

Let P be a predicate on the natural numbers. P is a term of type nat->Prop. A typical
specification will be {x:natl(P x)}. This expression specifies all the natural numbers n such
that there exists a proof of (P n). More precisely an element of this specification will have two
components. The first is a natural number n and the second a proof of (P n). If A and B are two
propositions, another typical specification is {A}+{B}. This expression specifies a boolean value
which is true if there exists a proof of A and false if there exists a proof of B. Actually an element
of this specification is either a left injection of a proof of A or a right injection of a proof of B.

Let Q be a relation on natural numbers (of type nat->nat->Prop). The specification (x:nat) (P
x)->{y:natl(Q x y)} specifies a program which associates to each input n of type nat such that
there exists a proof of (P n), an output m of type nat such that there exists a proof of (Q n m).

In the same spirit. (x:nat) ({(P x)}+{ (P x)}) specifies the characteristic function of the
predicate P.

These are the most frequently used specifications but it is also possible to write more sophisti-
cated combinations. For example, let us specify a program for division by two.
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Using twice = [m:nat](plus m m), we may write its specification as:
(n:nat){m:nat & {<nat>n=(twice m)}+{<nat>n=(S (twice m))}}

An element of {m:nat & (§ m)} is a natural number m plus an element of (Q m) which is a
specification. This expression specifies a program to transform a natural number n into a nat-
ural number m plus a boolean information which is true if <nat>n=(twice m) and false if
<nat>n=(S (twice m)). This is different from the specification:

(n:nat){m:nat| (<nat>n=(twice m))\/(<nat>n=(S (twice m)))}.

where the boolean information does not appear (the disjunction property is a comment).

Specifications as inductive sets

Our definitions of specifications are just particular cases of inductive sets taking propositions as
arguments. They are defined by the following declarations in the Specif.v file.

Inductive Set sumbool [A,B:Propl
= left : A ->({A}+{B}) | right : B->({A}+{B}).

{A}+{B} is an abbreviation for (sumbool A B).

Inductive Set sig [A:Set;P:A->Prop]
= exist : (x:A)(P x)->{x:A|(P x)}

{x:Al(P x)} is an abbreviation for (sig A P).

Inductive Set sigS [A:Set;P:A->Set]
= existS : (x:A)(P x)->{x:A & (P x)}

{x:A & (P x)} is an abbreviation for (sigS A P). Another useful specification is the type of
programs which either return an object which satisfies the specification A or indicates that some
proposition B is true.

Syntax sumor "_+{_}".
Inductive Set sumor [A:Set;B:Prop]
= inleft : A -> (A+{B}) | inright : B -> (A+{B}).

We also have predefined inductive sets for an existential with two predicates:

Inductive Set sig2 [A:Set;P,Q:A->Prop]
= exist2 : (x:A)(P x)->(Q@ x)->{x:A | (P x) & (@ x)}

Inductive Set sigS2 [A:Set;P,Q:A->Set]
= existS2 : (x:A)Y(P x)->(Q x)->{x:A & (P x) & (Q x)}

{x:A | (P x) & (Q x)} and {x:4 & (P x) & (Q x)} are abbreviations for respectively
(sig2 A P Q) and (sigS2 A P Q).
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2.2.3 Examples of developments

It has been known for a long time that in order to write a correct program, we need to develop
the program in a rigorous way. In particular we need to specify it and introduce some invariant
properties. The system Coq is a good tool for the formalisation of such rigorous developments of
programs and will allow complete verification of the various proofs encountered.

Let us present a few steps of the development of the “division by two” specification. We start
from the specification below containing extra boolean information:

(n:nat){m:nat & {<natd>n=(twice m)}+{<nat>n=(S (twice m))}}

The proof is by induction on n (we can use Induction n). In the base case we have to prove:
{m:nat & {<nat>0=(twice m)}+{<nat>0=(S (twice m))}}

With instance 0 for m (tactic Exists 0), we generate the subgoal:

{<nat>0=(twice 0)}+{<nat>0=(S (twice 0))}

Using the Simpl tactic, the subgoal is rewritten to:

{<nat>0=0}+{<nat>0=(S 0)}

which is solved by indicating that we are in the left case plus a trivial proof of <nat>0=0 (or directly
with Auto). In the inductive case, we have to prove:

(n:nat){m:nat & {<nat>n=(twice m)}+{<nat>n=(S (twice m))}}
-> {m:nat & {<nat>(S n)=(twice m)}+{<nat>(S n)=(S (twice m))}}

We eliminate the induction hypothesis (Induction 1). From a mathematical point of view, this
corresponds to the following reasoning. We know the property:

“there exists some m such that {<nat>n=(twice m)}+{<nat>n=(S (twice m))}”.
We introduce an object m such that {<nat>n=(twice m)}+{<nat>n=(S (twice m))}. From the
computational point of view we do the recursive call that gives us a natural number m plus an object
which satisfies the specification {<nat>n=(twice m)}+{<nat>n=(S (twice m))}. This generates
the subgoal:

(m:nat) ({<nat>n=(twice m)}+{<nat>n=(S (twice m))})
-> {p:nat & {<nat>(S n)=(twice p)}+{<nat>(S n)=(S (twice p))}}

An elimination on {<nat>n=(twice m)}+{<nat>n=(S (twice m))} (using Induction 1) leads us
to two subgoals:

(<nat>n=(twice m))->{p:nat & {<nat>(S n)=(twice p)}+{<nat>(S n)=(S (twice p))}}
(<nat>n=(S (twice m)))->{p:nat & {<nat>(S n)=(twice p)}+{<nat>(S n)=(S (twice p))}}

The first subgoal is solved by giving the explicit witness m, then indicating that we are in the right
case, then applying arithmetical properties. The second subgoal is solved by giving the explicit
witness (S m), then indicating that we are in the left case, then applying arithmetical properties.
At each step the specifications help to find the program. We can get the intended program in pure
form by removing the comments. We write it in an ML-like language.
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let rec div2 = function 0 => (0,true)
| (Sn) -> let (m,p) = div2 n in
match p with true -> (m,false)
| false => ((S m),true)

We may specify another program for the division by two which will not use the boolean information.
The specification of such a program is:

(n:nat){m:nat | (<nat>n=(twice m))\/(<nat>n=(S (twice m)))}

A proof of this specification can just be obtained by using the previous developed proof which
introduces a boolean and then forgetting this boolean. But we can also build a proof which does
not use this boolean.

One may use an induction principle which says that if P(0) and P(1) are true and if V2.P(2) =
P(z + 2) is true then Vn.P(n) is true. First of all we have to justify this induction principle. To
do so, we must prove:

(P:nat->Set)(P 0)->(P (S 0))->((n:nat)(P n)->(P (S (S n))))->(n:nat)(P n).

In order to apply this induction principle to our goal we first (after the introduction of n) write the
goal {m:nat| (<nat>n=(twice m))\/(<nat>n=(S (twice m)))} as an application (P n). This is
done with the tactic Pattern n. Then we apply the proof of the induction principle. We get three
subgoals:

{m:nat|(<nat>0=(twice m))\/(<nat>0=(S (twice m)))}
{m:nat|(<nat>(S 0)=(twice m))\/(<nat>(S 0)=(S (twice m)))}
(n:nat){m:nat| (<nat>n=(twice m))\/(<nat>n=(S (twice m)))}
->{m:nat| (<nat>(S (S n))=(twice m))\/(<nat>(S (S n))=(S (twice m)))}

The first two goals are solved by giving the witness 0. For the last goal we first eliminate the
induction hypothesis and get an object m and an hypothesis :

H: (<nat>n=(twice m))\/(<nat>n=(S (twice m)))).
The goal to prove is:
{p:nat|(<nat>(S (S n))=(twice p))\/(<nat>(S (S n))=(S (twice p)))}

The hypothesis H is a logical proposition (of type Prop) and the goal to prove is an informative
specification. Consequentely, it is forbidden to do an elimination on the hypothesis H. The log-
ical statement (<nat>n=(twice m))\/(<nat>n=(S (twice m)))) should just be considered as a
comment and cannot be used to build a computational object.

This is unlike the previous development where the corresponding hypothesis
{<nat>n=(twice m)}+{<nat>n=(S (twice m))} was an informative property, corresponding to
the construction of a boolean value. The elimination was allowed and indeed, corresponded to a
test on this boolean.

Actually, we do not need any test in order to provide a witness (S m) for the proof of the goal.
Then, we have to prove:

(<nat>(S (S n))=(twice (S m)))\/(<nat>(S (S n))=(S (twice (S (S m)))))

81




from the hypothesis (<nat>n=(twice m))\/(<nat>n=(S (twice m)))). This is done by an elim-
ination on this hypothesis (now the goal is a proposition of type Prop, and the elimination is
possible) plus arithmetical properties. This part of the development is now inside a comment. The
pure program obtained by removing all comments is:

let rec quo2 = function 0 ->0
| (s 0) -> 0
| (8 (Sn)) ->letm=quo2n in (S m);;

2.2.4 The role of dependent types

One way to introduce logical information into a type is, as we have seen before, to mix propositions
and types. Another way is to introduce directly a dependent type. A typical example is the type
of lists of a given length n. Let us call A the type of the elements in the list. We may represent this
notion as the specification {1:(1ist A)|<nat>n=(length A 1)}. An element in this type is built
from a list 1 and a proof of <nat>n=(length A 1). Another way is to directly represent a type of
lists of some length as an inductive function from nat to Set as follows :

Inductive Definition 1list [A:Set] : nat->Set
= nil : (1list A 0)
| cons : (n:nat)A->(1list A n)->(11list A (S n)).

The append function on such lists may be defined as:

Definition append = [A:Set][n,m:nat]{1:(11ist A n)J[1’:(11list A m)]
(<[n:nat] (1list A (plus n m))> Match 1 with
(* nil *) 1°
(* cons k a 1k *) [k:nat][a:A][1k:(1list A k)] [appk:(1llist A (plus k m))]
(cons A (plus k m) a appk))
(A:Set)(n,m:nat)(1llist A n)->(1list A m)->(1list A (plus n m)).

The use of such definitions is interesting because the append function is directly typable as an el-
ement of (A:Set)(n,m:nat)(1list A n)->(1list A m)->(1llist A (plus n m)). We do not
have to write both the program of append and the proof that the length of the concatena-
tion of two lists is the sum of the lengths. But this may also lead to unexpected problems.
For example two lists with different lengths have different types. If these lengths are provably
equal but not internally convertible the types are different. This raises a problem when we
want to write equality on such lists. For example we may want to prove associativity of the
append function. Then the term (append A n1 (plus n2 n3) 11 (append A n2 n3 12 13))
admits for type the term (1list A (plus n1 (plus n2 n3))), but (append A (plus nl1 n2)
n3 (append A n1 n2 11 12) 13) admits for type (11ist A (plus (plus ni1 n2) n3)). These
two types are not convertible to each other. A solution is to introduce a new notion of equal-
ity which compares 1:(1list A n) and 1°:(11ist A n’). This can be done with an inductive
predicate:

Inductive Definition eqllist [A:Set; n:nat; 1:(1list A n)]
(m:nat)(1list A m)->Prop
= eql_refl : (eqllist An 1l n 1).
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With this definition we may express the associativity of the append function as follows.

(eqllist A (plus n1 (plus n2 n3))

(append A nt (plus n2 n3) 11 (append A n2 n3 12 13))
(plus (plus ni1 n2) n3)

(append A (plus n1 n2) n3 (append A ni1 n2 11 12) 13)).

The proof is as usual by induction on the list 11.

2.2.5 Relationships between Prop and Set

In the system Coq, every correct term has a type, and this type itself has a type called a sort,
following the presentation of Generalized Type Systems. Here, we have distinguished two sorts Set
and Prop. An object whose type is Prop is called a proposition and an object whose type is Set is
called a specification. A term whose type is a proposition represents a logical proof. A term whose
type is a specification represents a program or a program development. These are not separate
worlds. A proposition may express properties of programs (or even of program development) so
that it is possible to do proofs of programs. Conversely a program may contain logical information.

The obvious restriction in this interpretation of proofs and program developments is that a proof
of a logical information may never be used for constructing a computational part of a program.
This distinction is made by type-checking. If a term has type (C:Set)P then it is not possible to
apply this term to a proposition. Conversely if the term has type (C:Prop)P, it is not possible to
apply it to a Set.

An advantage of this distinction is the possibility to introduce new axioms which apply only to
the logical part of the proofs. For example whereas intuitionistic reasoning is needed for a proof of
a specification in order to get a direct functional interpretation of the term, we may use classical
reasoning for comments. We just need to introduce the postulate:

Axiom classic : (A:Prop)(~~A)->A.

There is also a restriction on elimination of inductive types. If a term has type I with I an
inductive definition whose sort is Prop, an elimination on this object can only be done in order to
build other propositions. Thus, if the goal is a specification, it is not possible to apply the tactic
Elim to a term whose type is a proposition. The converse is possible. If the goal is a proposition and
if the term you want to eliminate has a specification for type, it is possible to apply the elimination.

Self-realizing propositions

Although in general we cannot eliminate a proof object to obtain a specification, there are particular
cases where it is consistent with our interpretation to do so. For example from a proof of the absurd
proposition it is possible to justify that every specification is correct (every program in this case
is correct !). If we know the property <A>a=b and we have a program correct with respect to the
specification (P a) then it is also correct with respect to the specification (P b). This justifies the
introduction of the following two axioms.

False_rec :(P:Set)False->P.
eq_rec :(A:Set)(a:A)(P:A->Set) (P a)->(b:A)(<A>a=b)->(P b)
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There are other examples of such propositions. For example an inductive proposition with only
one constructor whose arguments are non-informative propositions is a self realizing proposition.
In this case we may build a proof of the elimination property on specifications:

and_rec = [A,B:Prop][C:Set][F:A->B->C] [AB:A/\B]
(F <A,B>Fst{AB} <A,B>Snd{AB})
(A,B:Prop) (C:Set) (A->B->C)->(A/\B)->C

For an inductive predicate like LE, which is invertible, we may find a proof of the elimination on
specifications whose type is:

(P:nat->nat->Set)
((n:nat)(P 0 n))->
((n:nat)(m:nat)(LEn m)->(P n m)->(P (S n) (S m)))->
(n,m:nat)(LE n m)->(P n m)

For this we prove (n,m:nat) (LE n m)->(P n m) first by induction on n and then by induction on
m using the properties “(LE (S n) 0) and (LE (S n) (S m))->(LE n m).

2.2.6 Correctness of the extracted programs

The extraction procedure is part of the Coq engine. Each time a term is introduced in the machine,
its type is computed as well as its algorithmic contents. The algorithmic part of a program devel-
opment is what is obtained after removing the logical part (proofs which are part of the programs).
In this part of extraction, the types are kept but dependencies on terms in types are removed. We
get terms correctly typed in the system F, with inductive types.

We have to relate the extracted program to the original specification. This is done at the
theoretical level by a realisability interpretation which is not part of the Coq implementation. We
shall not describe it in this manual.

Roughly speaking we associate to each specification S a property which describes a set of
programs “correct with respect to 5”. The theory makes sure that the term extracted from a proof
of S satisfies this property.

The realisability interpretation corresponds to our intended meaning for a program to be correct
with respect to its specification. For example, the term extracted from a proof of Vz.P(z) =
Jy.Q(z,y) with P(z) and Q(z,y) of type Prop leads to a unary function f such that Vz.P(z) =
Q(z, f(z)) is satisfied. With P(z) of type Prop, the term extracted from a proof of Vz.(P(z) V
~P(z)) leads to a boolean function which is the characteristic function of the predicate P.

The interest of a realisability interpretation is not just to make sure that the extracted program
is correct but also to give the possibility of interpreting axioms. Assume that there is a program p
correct with respect to a specification P and that we develop a proof ¢ of a specification @ under
the assumption P. A priori the term t extracted from ¢ is not closed and cannot be executed, but
if we replace the occurrences of the assumption in the program ¢t by the program p then we get a
closed term which is still correct with respect to the specification . So we may use assumptions
which are not provable but for which a correct program can be found or we can use a justification
which cannot be derived from a proof in the Calculus of Constructions. This justifies, for example,
the introduction of the axioms False_rec and eq_rec in the theory.
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We have to say something about the termination property of the extracted programs. The ex-
tracted term is still a program correctly typed in the Calculus of Constructions. So we may deduce
that it is strongly normalizable. This will no longer be true if we introduce terms containing a fix-
point combinator for realizing axioms. In this case we may introduce termination conditions inside
the specification. Indeed some specifications imply the normalizability of the intended programs.
For example the set nat seen as a specification contains every normalizable term (written for ex-
ample in a ML-like language with non-terminating programs) that reduces to a natural number
(5™ 0) for some n. But of course we loose the strong normalisation property.

2.3 Developing certified programs

2.3.1 Motivatidns

We want to develop certified programs automatically proved by the system. That is to say, instead of
giving a specification, an interactive proof and then extracting a program, the user gives the program
he wants to prove and the corresponding specification. Using this information, an automatic proof
is developped which solves the “informative” goals without the help of the user. When the proof
is finished, the extracted program is guaranteed to be correct and corresponds to the one given by
the user. The tactic uses the fact that the extracted program is a skeleton of its corresponding
proof. ' '

2.3.2 Syntax for tactics

The user has to give two things: the specification (given as usual by. a goal) and the program
(see 2.3.3). Then, this program is associated to the current goal (to know which specification it
corresponds to) and the user can. use different tactics to develop an automatic proof.

Realizer

First, the program is associated to the current goal by using the Realizer command. With this
command, the program has to be given with the syntax indicated in part 2.3.3 and it is associated
to the current goal.

Show Program

The command Show Program shows the program associated to the current goal. Show Program n
shows the program associated to the nth subgoal.

Program’

Then, an automatic process may be started. A program is associated to a goal by the user (for
the initial goal) and by the tactic Program itself (for the subgoals). If not program is associated
to the current goal, the tactic Program fails. This tactic generates a sequence of Intro, Apply or
Elim tactics depending on the syntax of the program. For instance, if the program starts with a
A-abstraction, the Intro tactic is generated several times depending on the goal.

The Program tactic generates a list of subgoals which can be either logical or informative.
Subprograms are associated to the informative subgoals. '

85




Program_all

The Program_all tactic is equivalent to the following tactic: Repeat (Program OrElse Auto).
It repeats the Program tactic on every informative subgoal and try the Auto tactic on the logical
subgoals. Note that the work of the Program tactic is considered finished when all the informative
subgoals have been solved. This implies that logical lemmas can stay at the end of the automatic
proof which have to be solved by the user.

2.3.3 Syntax for programs
Pure programs

The language to express programs is called Real*. Programs are explicitely typed! like terms
extracted from proofs. Some extra expressions have been added to have a simpler syntax.

This is the raw form of what we call pure programs. But, in fact, it appeared that this simple
type of programs is not sufficient. Indeed, all the logical part useful for the proof is not contained
in these programs. That is why annotated programs are introduced.

Annotated programs

The notion of annotation introduces in a program a logical assertion that will be used for the
proof. The aim of the Program tactic is to start from a specification and a program and to generate
subgoals either logical or associated with programs. However, to find the good specification for
subprograms is not at all trivial in general. For instance, if we have to find an invariant for a loop,
or a well founded order in a recursive call.

So, annotations add in a program the logical part which is needed for the proof and which
cannot be automatically retrieved. This allows the system to do proofs it could not do otherwise.

For this, a particular syntax is needed which is the following: since they are specifications,
annotations follow the same internal syntax as Coq terms. We indicate they are annotations by
putting them between (: and :). Since annotations are Coq terms, they can involve abstractions
over logical propositions that have to be declared. Annotated-A have to be written between [{
and }]. Annotated-\ can be seen like usual A-bindings but concerning just annotations and not
Coq programs.

Recursive Programs

Programs can be recursively defined using the syntax: <type of the result> rec name of the induc-
tion hypothesis (: well-founded order of the recursion :) and then the body of the program (see
2.3.5) which must always begin with an abstraction [x:A] where A is the type of the arguments of
the fonction (also on which the ordering relation acts).

Abbreviations

Two abbreviations have been defined:
<P>let (p:X;q:Y)=Q in S is syntactic sugar for <P>Match Q with [p:X][q:Y]S

*It corresponds to F.. plus inductive definitions
'This information is not strictly needed but was useful for type checking in a first experiment.
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and :

<P>if B then Q else Rabb,reyiates matching on boolean expressions: <P>Match B with Q R.
Grammar

The grammar for programs is the following:

pg:= ident
| [x:pglpg
| (x:pg)pg
| pg->pg

| (P& P8 - - -p8)
| (<pg>Match pg with pg-list)

| pg (: coqterm :)

| [{x:coqterm}]pg

| <pg>let (xi,.. .,xf‘ Ay oxh, o xEeeAL) = Pg in pg
| <pg>if pg then pg else pg ‘ '

| <pg>rec identifier (: coqterm :) [x:pg]pg

The reference to an identifier of the Coq context (in particular a constant) inside a program of the
language Real is a reference to its extracted contents.

2.3.4 Using the Interface

The interface can be used for developping automatic proofs. The different tactics are in the Proof
Synthesis Windows. There are two buttons: Realizer and Program.

Realizer Tactic

Realizer_

The Realizer_ button applies the Realizer tactic.

Program Tactics

Program
Program_all
Show Program

The Program button applies the Program tactic and so on.

2.3.5 Examples
Ackermann Function

Let us give the specification of Ackermann’s function. We want to prove that for every n and m,
there exists a p such that ack(n,m) = p with:

ack(0,n) = n+1
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ack(n+1,0) = ack(n,1)
ack(n+1,m+1) = ack(n,ack(n+1,m))

An ML program following this specification can be:

let rec ack = function
0 -> (function m -> Sm)
| Sn -> (function 0 =-> ack n 1
| Sm -> ack n (ack Sn m))

Suppose we give the following definition in Coq of a ternary relation (Ack n m p) in a Prolog like
form representing p = ack(n, m):

Coq < Inductive Definition Ack : nat->nat->nat->Prop =
AckO : (n:nat)(Ack O n (S n))
| AcknO : (n,p:nat)(Ack n (S 0) p)->(Ack (S n) 0 p)
| AckSS : (n,m,p,q:nat)(Ack (S n) m q)->(Ack n q p)->(Ack (S n) (Sm) p).

Then the goal is to prove that Vn, m.3p.(Ack n m p), so the specification is:
(n,m:nat){p:nat|(Ack n m p). The associated Real program corresponding to the above ML
program will be:

Coq < Realizer [n:nat]
(<nat->nat>Match n with
(* 0 *) [m:nat](S m)
(¥ S *) [y:nat][H:nat->nat][m:nat]
(<nat>Match m with (* 0 *) (H (S 0))
(* S *) [m?’:nat]J[H’:nat] (H H’))).

With the Program_all tactic, three logical lemmas are generated and are easily solved by using
the properties Ack0, Ackn0 and AckSS.

3 subgoals
(Ack 0 m (S m))

n : nat
subgoal 2 is:
(Ack (5 y) 0 x)
subgoal 3 is:
(Ack (S y) (S y0) x0)

Euclidean Division

This example shows the use of recursive programs. Let us give the specification of the euclidean
division algorithm. We want to prove that for « and b (b > 0), there exist ¢ and 7 such that
a=b+qg+rand b>r.

An ML program following this specification can be:
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let div b a = divrec a where rec divrec = function
if (b<=a) then let (q,r) = divrec (a-b) in (Sq,r)
else (0,a)

Suppose we give the following definition in Coq which describes what has to be proved, i.e.,
dg3r.(a=bxqg+rA b>7):

Coq < Inductive Definition diveucl [a,b:nat] : Set
= divex : (q,r:nat)(<nat>a=(plus (mult q b) r))->(gt b r)->(diveucl a b).

We assume that we have loaded the proper arithmetic libraries, using:

Coq < Require Arith.
Coq < Require Compare_dec.
Coq < Require Wf_nat.

The decidability of the ordering relation has to be proved first, by giving the associated function
of type nat->nat->bool:

Coq < Theorem le_gt_dec : (n,m:nat){(le n m)}+{(gt n m)}.
Coq < Goal.
Coq < Realizer [n:nat](<nat->bool> Match n with
(* 0 *) [m:nat]true
(¥ S *) [n’:nat][H:nat->bool] [m:nat]
(<bool> Match m with
(* 0 %) false
(* S *) [m’:nat][H’:bool](H m’))).

A

Coq < Program_all.
Coq < Save.

Then the specification is (b:nat)(gt b 0)->(a:nat)(diveucl a b). The associated program
corresponding to the ML program will be:

Coq < Realizer
{b:nat] (<nat*nat>rec div (: 1t :)
[a:nat]
(<nat*nat>if (le_gt_dec b a)
then (* le b a *)
<nat*nat>let (q,r:nat) = (div (minus a b))
in <nat,nat>((S q),r)
else (* gt b a *) <nat,nat>(0,a))).

Where 1t is the well-founded ordering relation defined by:
Coq < Definition 1t = [n,m:nat](gt m n).

Note the syntax for recursive programs as explained before. The rec construction needs 4 argu-
ments: the type result of the function (nat*nat because it returns two natural numbers) between
< and >, the name of the induction hypothesis (which can be used for recursive calls), the ordering
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relation 1t (as an annotation because it is a specification), and the program itself which must be-
gin with a A-abstraction. The specification of le_gt_dec is known because it is a previous lemma.
The term (le_gt_dec b a) is seen by the Program tactic as a term of type bool which satisfies
the specification {(le a b)}+{(gt a b)}. The tactic Program_all can then be used, and the
following logical lemmas are obtained:

2 subgoals
(well_founded nat 1t)

a0 nat
H: (gt b 0)
b0 : nat

subgoal 2 is:
<nat>x=(plus (mult (S q) b0) r)

Insertion sort

This example shows the use of annotations. Let us give the specification of a sorting algorithm.
We want to prove that for a sorted list of natural numbers [ and a natural number a, we can build
another sorted list I/, containing all the elements of ! plus a.

An ML program implementing the insertion sort and following this specification can be:

let sort a 1 = sortrec 1 where rec sortrec = function
{1 -> [al

| b::1? -> if a<b then a::b::1’ else b::(sortrec 1’)

Suppose we give the following definitions in Coq:
First, the decidability of the ordering relation:

Coq < Definition inf_dec: nat->nat->bool =
[(n:nat] (<nat->bool> Match n with
fm:nat] true
[n’:nat] [H:nat->bool] [m:nat]
(<bool> Match m with
false
[m’ :nat] [H’ :bool](H m?))).

The definition of the type list_nat:
Coq < Inductive Set list_nat = nil : list_nat | coms : nat -> list_nat -> list_nat.

We define the property for an element x to be in a list 1 as the smallest relation such that:
VYaVl (In z 1) = (Inz (a:: 1)) and VI (In 2 (2 ::1)).

Coq < Inductive Definition In [x:nat] : list_nat->Prop
= Inl : (a:nat)(1l:list_nat)(In x 1) -> (In x (cons a 1))
| Ineq : (1:1list_nat){(In x (cons x 1)).
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A list £? is equivalent to a list t with one added element y iff: (Vo (Inz t) = (In.z t')) and
(Inyt')yand Vo (Inz t') = ((In z t)Vy = z). The following definition implements this ternary
conjonction.

Coq < Inductive Definition equiv [y:nat;t,t’:list_nat]: Prop =
equiv_cons :
((x:nat)(In x t) -> (In x t?’))
-> (Iny t’)
-> ((x:nat)(In x t’) -> ((In x t) \/ <nat>y=x))
-> (equiv y t t’).

Definition of the property of list to be sorted, still defined inductively:

Coq < Inductive Definition sorted : list_nat->Prop

= sorted_nil : (sorted nil)

| sorted_trans : (a:nat)(sorted (cons a nil))

| sorted_cons : (a,b:nat)(l:1list_nat)(sorted (cons b 1)) -> (le a b)
-> (sorted (cons a (cons b 1))).

Then the specification is:
(a:nat)(1l:1list_nat)(sorted 1)->{1’:1list_nat|(equiv a 1 1’)&(sorted 1’)}.
The associated Real program corresponding to the ML program will be:

Coq < Realizer [a:nmat][l:1list_nat](<list_nat>Match 1 with
(cons a nil)
[b:nat][m:1ist_nat][H:list_nat]
<list_nat>if (inf_dec b a) (: {(le b a)}+{(gt b a)} :)
then (cons b H)
else (cons a (cons b m))).

Note that we have defined inf_dec as the program realizing the decidability of the ordering re-
lation on natural numbers. But, it has no specification, so an annotation is needed to give this
specification. This specification is used and then the decidability of the ordering relation on natural
numbers has to be proved using the index program.

Suppose Program_all is used, a few logical lemmas are obtained (which have to be solved by
the user):

7 subgoals
(equiv a0 nil (cons a0 nil))

H : (sorted nil)
1 : list_nat
a0 : nat
subgoal 2 is:
(sorted (cons a0 nil))
subgoal 3 is:
(equiv a0 (cons n y) (cons n x))
subgoal 4 is:
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(sorted (cons n x))
subgoal 5 is:

(sorted y)
subgoal 6 is:

(equiv a0 (cons n y) (cons a0 (cons n y)))
subgoal 7 is:

(sorted (cons a0 (cons n y)))

Quicksort

This example shows the use of programs using previous programs. Let us give the specification
of Quicksort. We want to prove that for a list of natural numbers I/, we can build a sorted list /',
which is a permutation of the previous one.

An ML program following this specification can be:

let rec quicksort 1 = function
a ->0
| a::m -> let (11,12) = partition a m in
let m1 = quicksort 11 and
let m2 = quicksort 12 in mi@[a]l@m2

Where partition is defined by:

let rec partition a 1 = function
o -> @, m
| b::m -> let (11,12) = partition a m in
if a<b then (11,b::12)
else (b::11,12)

We now axiomatize lists over any ordered set A:
Declaration of the ordering relation:

Coq < Parameter A : Set.

Coq < Inductive Set list = nil : list | cons : A -> list -> list.
Coq < Inductive Definition In [x:A] : list->Prop

= Inl : (2:A)(1:1list)(In x 1) -> (In x (cons a 1))

| Ineq : (1:1ist)(In x (cons x 1)).

Coq < Variable inf : A -> A -> Prop.

Coq < Definition sup = [x,y:A]"(inf x y).

Coq < Hypothesis inf_sup : (x,y:A){(inf x y)}+{(sup x y)}.

Definition of the concatenation of two lists:

Definition app = [1,m:1list](<1list>Match 1 with
(* nil *) m
(*x cons *) [a:A][m:1list] (cons a))
: list->list->list.

The auxiliary function mil:
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Coq < Definition mil = [a:A]J[1,m:list](app 1 (cons a m)) : A->list->list->list.
Definition of the permutation of two lists:

Coq < Inductive Definition permut : list->list->Prop =
permut_refl : (1l:list)(permut 1 1)
| permut_tran : (1,m,n:list)(permut 1 m)->(permut m n)->(permut 1 n)

| permut_mil : (a:4)(l,m:list)
(permut (cons a (app 1 'm)) (app 1 (cons a m)))
| permut_app : (1,1’,m,m’:list)

(permut 1 1’)->(permut m m’)->(permut (app 1 m) (app 1’ m?’)).

The definitions inf_list and sup_list allow to know if an element is lower or greater than all
the elements of a list:

Coq < Definition Rlist [R:A->Prop][l:1list](a:4)(In a 1)->(R a).
Coq < Definition inf_list [x:A)(Rlist (inf x)).
Coq < Definition sup_list [x:A](Rlist (sup x)).

Definition of the property of a list to be sorted:

Coq < Inductive Definition sort : list->Prop =
sort_nil : (sort nil)
| sort_cons : (a:A)(l:list)(inf_list a 1)->(sort 1)->(sort (cons a 1)).

Then the goal to prove is: VI 3m (sort m) A (permut [ m) and the corresponding specification is:
(1:1ist){m:1list|(sort m)&(permut 1 m)}. The associated Real program corresponding to the
ML program will be:

Coq < Realizer
(<list>rec quick (: 1tl :)

[1:1ist]

(<list>Match 1 with

(* nil *) nil

(* cons *) [a:A][m:1list][t:1list]
<list>let (11,12:1ist) = (Partition a m) in
(mil a (quick 11) (quick 12)))).

Where 1tl is the well-founded ordering relation defined by:

Definition length = [1:1list](<nat>Match 1 with (* nil *) O

(x* cons am *) [a:A][m:1ist]S).
Definition 1tl = [1,m:1ist](gt (length m) (length 1)).

And Partition is the definition corresponding to 3l13l,. (suplist a ly) A (inflist a I3)
Al=HLQL)A L (¢ D)ANTLI2 (a::])):

Coq < Inductive Set Partition_spec [a:A; 1l:1list] =
Split_intro : (11,12:1ist)(sup_list a 11)->(inf_list a 12)
->(permut 1 (app 11 12))
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->(1tl 11 (cons a 1))->(1tl 12 (cons a 1))
->(Partition_spec a 1).

Coq < Theorem Partition : (a:A)(1l:list)(Partition_spec a 1).
Coq < Goal.
Coq < Realizer [a:A][1:list]

(<list*1ist> Match 1 with

(* nil %) <list,list>(nil,nil)

(* cons *) [b:A][m:1ist][11:1list*list]
(<list*list>let (11,12:1ist) = 11 in
(<list*1list>if (inf_sup a b)
then (* inf a b *) <list,list>(11,(cons b 12))
else (* sup a b *) <list,list>((cons b 11),12)))).

Program_all.
Simpl; Auto.
Save.

Then Program_all gives the following logical lemmas (they have to be resolved by the user):

3 subgoals
(well_founded list 1tl)

1 : list
subgoal 2 is:
(sort (mil a x1 x0))
subgoal 3 is:
(permut (cons a y) (mil a x1 x0))

2.4 The Program extraction facilities

We have explained why it is possible to use Coq to build certified and relatively efficient programs.
We now see how the extraction part is done in practice.

2.4.1 Sketching the extraction algorithm

The main ideas have already been exposed previously in section 2.2.2. Having in mind what the
extracted program should look like, we may see that the (say ML) compiler will need two kind
of informations: on one hand the description of the concrete (inductive) types, i.e. the number
of constructors and their respective arities; on the other hand, the actual program parts, i.e. the
A-terms which correspond to the computational parts of proofs.

This means the implemented algorithm scans the proof environement and takes care of two kind
of terms:

e The terms of Coq, whose type is of the form (z; : Ty)(22 : T3)...Set. These terms will be
mapped to types or type schemes of the extracted program. Basic examples are nat or list.
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¢ The Coq terms whose type has type Set. These terms will be mapped to terms of the extracted
program (for example add for addition, heapsort for the sorting routine, etc).

The other terms, those of type Prop or those whose type has type Prop won’t have any counter-
part in the program. They are what can be considered comments of the actual code (i.e. assertions
and their validations). : '

For readers familiar with higher-order types systems, let us mention that the terms which are
obtained through this algorithm are typed in Girard’s system F, enriched with inductive types.
(sometimes called Fi%).

2.4.2 The principles of the implementation

In this implementation, we chose to use existing compilers to execute the extracted programs. This
choice was made for various reasons:

¢ Generating code for existing compilers allows us to take advantage of all the technological
know-how used in these compilers in order to get efficient executable code.

¢ It allows some comparison with the corresponding hand-written code.

¢ It may suggest some new improvements, such as incorporating other features of the program-
ming language into the logical level.

In order to be able to use existing ML compilers, we defined our own extraction language called
Fml. Fml programs can be generated .from Coq proofs.of certain specifications.using the extraction
algorithm, and erasing the type information in the abstractions of the extracted F'% terms.

The extracted terms can be mixed with some hand-written Fml code. Execution is made
possible by a simple translation to ML code. There is one drawback to this approach: since the ML
type system is weaker than F,,, some extracted programs are not ML-typable. We describe this
phenomenon more precisely in section 2.4.10. Yet in practice, this happens very rarely, especially
in the case of proofs of actual program specifications.

2.4.3 The main features

Fml is the target language of the extraction. It can be viewed as a non-strongly-typed version
of the functional core of ML (i.e. A-calculus + concrete types and pattern-matching). As said
above, there is no specific Fm| compiler or interpreter. The execution of the extracted programs is
delegated to existing ML compilers. At present time, it is possible to generate code for the following
implementations:

e CAML itself, which has the advantage of extracting into the system’s implementation lan-
guage, but requires some code optimization since the CAML compiler performs strict (or
eager) evaluation. The code extracted for the CAML language can be compiled by CAML
Light compiler. '

e LML, The lazy ML implementation of Géteborg .

!The LML compiler is available for free by anonymous ftp at the Chalmers university in Géteborg.
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e GAML, a similar experimental implementation of lazy ML, also based on graph reduction,
due to Luc Maranget in INRIAS.

Therefore we shall describe three main kinds of features in this section:
e How to extract Fml programs out of proofs.
¢ How to manipulate these Fml programs, and how to write directly in Fml.
e How to produce executable ML code out of Fml.

We will end up by showing how to use some existing programs of the proof library, and try to
illustrate the proof style needed for program extraction.

2.4.4 Using Fml

Fmi has its own toplevel, which is obtained by typing Fml from the vernacular toplevel. The Fml
prompt is Fml <. Let us illustrate the main features through examples.

Basic features and syntax

Fml commands end with a period. One can define constants as in ML, and integer expressions are
Fml terms:

Coq < Fml.

Fml < let a = 1.

a is defined:

1

Fml < let B = (1%a)-3.
B is defined:

((1*a)-3)
Fml < Print B.
B = ((1*a)-3)

Fml < let ¢ = d.
The constant d is undefined.

A-abstraction is denoted by square brackets, like in Coq, but without the type information.

Fml < let f = [x,y,z]x+2%(y-2).
f is defined:

[x] [yl [2] (x+(2*(y-2)))

We provide the boolean constants, two comparison tests over integers and the classical if ... then
... else.

$This implementation is still under development. Interested readers may contact maranget@margauz.inria.fr
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Fml < let tr = true.

tr is defined:

true

Fml < let test = if B<a then 2 else (f 1 3 9).
test is defined:

if (B<a) then 2 else (f 13 9)

Finally recursion and local definitions are allowed:

Fml < let rec F = [x]if x=0 then 1 else 2*(F x).

F is defined:

REC [x]if (x=0) then 1 else (2%(F x))

Fml < let G = [x,y](let rec g = [2](if 2=0 then 1 else (g (z-1))*y) in g x).
G is defined:

[x][yl(let rec g = [z]if (2=0) then 1 else ((g (z-1))*y) in g x)

As the reader will have noticed, no evaluation of the constants is performed interactively, as this
job will be left to the target ML-compiler. Note also that no type-checking is performed, and thus
the user should be careful when defining his own terms.

As we have seen, the command Print followed by some identifier prints the term to which this
identifier is bound in the current Fml environment. In the same way, the command Env. displays
the whole environment on the screen.

Concrete types and pattern matching

Similarly to ML, one can define concrete types. Here is the well-known definition of unary integers:

Fml < Inductive NAT = 0 | S NAT.
type NAT is defined:
== inductive
0 | S NAT

which means that the type NAT has two constructors 0 which takes no argument, and S which takes
one argument of type NAT. One can also define type schemes, like polymorphic lists:

Fml < Inductive List a = nil | cons a (List a).
type List is defined:
a == inductive
nil | cons a ( List a)
Fml < Print nil.
nil Constr{1,List} .
Fml < let rec interval = [n](if n=0 then nil else (cons n (interval (n-1)))).
interval is defined:
REC [n](if n=0 then nil else (cons n (interval (n-1))))

The essential point is of course pattern matching:
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Fml < let tl = [1] match 1 with
Fml < nil -> nil
Fml < | (cons a 1’) -> 1’
Fml < end match.
tl is defined:
[1Jmatch 1 with
nil -> nil
| (cons a 1?) -> 1?
end match

It is also possible to define type abbreviations:

Fml < ari == nat -> nat.
type ari is defined:
== nat -> nat

The command Types. prints the list of the currently defined types.

2.4.5 Extracting toward Fmi

At the beginning of a session, the Fml context contains the code extracted from the prelude. The
command Reset resets it to that original state. The main command is Extract, which extracts all
the Coq environment except the prelude (which should be already translated) to the Fml environ-
ment.

Fml < Extract.

Fml < Env.
False_rec = #Exit
pair = [Vari][Var2]Constr{1l,prod}<Vari,Var2>

It is also possible to extract only parts of the context. This is useful when combined with the
semantical attachment facilities (see section 2.4.9). The commands are:

e Extract Until followed by the name of the last Coq object to be extracted.
e Extract From followed by the name of the last Coq object not to be extracted.

e Extract From ... To ... . which translates the part of the Coq context between the two
parameters.

While developing his program on the Coq toplevel, the user may want to see the extracted terms
corresponding to his proofs. He can do so using the following commands (which is available at the
Coq and not at the Fml level):

e Extraction : prints the whole extracted context in his F, form; i.e. the typed counterpart
of the Fml program.
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o Extraction name : just prints the F, program extracted from the term name.

In some cases, one may want to empty completely the environment and get rid of the code
corresponding to the Prelude.v file:

Fml < Reset All.

Fml < Env.

If one wants to extract from the entire Coq environment (after a Reset All), the command is
Extract All.

2.4.6 Saving Fml files

It is possible to save the Fmlenvironment in a file by the command Save name, which will produce
. a file of name name suffixed by .£. The saved environment is restored by Load name.

2.4.7 Generating executable lazy ML

The system has a pretty-printing facility, allowing the user to write the contents of the environment
in a given file with lazy ML syntax. This file can be compiled afterwards by the appropriate
compiler. A system flag enables the user to generate either LML or GAML code. LML is chosen
by default. The Fml commands to switch the flag are :

Fml < Lml.
Fml < Gaml.

To generate a compilable file, the Fml command is Write File followed by the term which has to
be evaluated in the generated program. For example: '

Fml < Write File 1.

will produce an ML program always returning 1.
The file is generated in the current directory. Its default name is extract.m (resp. extract.gl
for GAML). One can also give a precise name, for example:

Write dummy File 1.

which will change the file name to dummy.m (resp. dummy.gl).

Last but not least, it is possible to optimize the obtained code by a certain amount of partial
evaluation. The Fml command is Optimize ; it tries to evaluate the definitions present in the
current environement and possibly expands and deletes the non-strict functions. For “reasonable”
programs, this gives shorter, faster and more readable code. The execution time should not be too
long. Yet for certain very complex proofs (e.g. Higman’s lemma), the optimization may take too
much time and memory to be performed.

2.4.8 Generating CAML code

Since CAML is a strict language, the extracted code has to be optimized. So the optimization
routine will be called each time the user wants to generate CAML programs. CAML being strict
and interactive, it is not necessary to choose the term to be evaluated at code generation time. The
Fml command is Write CAML File followed by the name given to the CAML file to be produced.
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2.4.9 Realizing axioms

We saw in the first chapter, that it was possible to assume some axioms while developing a proof.
Since these axioms can be any kind of proposition or object type, they may perfectly well have
some computational content, but of course the system cannot guess the program which realizes
them. Therefore, it is possible to tell the system what Fml term or type corresponds to a given Coq
variable.

For type variables, the command is Attach followed by the name of the variable and the Fml
type. For example:

Fml < Attach A Int.

will associate the type of built-in integers to A. If the user tries to extract from a portion of the
Coq context containing a type variable which has not been instantiated, the extraction fails.

For term variables, the command is Realize followed by the name of the variable and the
corresponding Fml term.

These semantical attachments have to be done before typing the Extract command. A variable
which has not been realized will be translated by the Fml #Error term, corresponding to fail in
CAML, or the lazy exception in LML or GAML.

Let us try to illustrate this feature by an example: The Heapsort program contained in the
library is defined for lists of elements of some type variable A of type Set:

Variable A : Set. (in List.v)

The specification proof also assumes that there is an order relation inf over that type (which has
no computational content), and that this relation is total and decidable:

Variable inf : A -> A -> Prop.
Hypothesis inf_total : (x,y:A){(inf x y)}+{(inf y x)}. (in Heap.v)

Now suppose we want to use this specification proof to obtain a sorting program for lists of ML
integers; this means A has to be instantiated by the Fml type Int, and the axiom inf total will be
realized using the < operator of Fml. Here is how to proceed once the proof is loaded:

Fml < Reset.

Fml < Attach A Int.

Fml < Realize inf_total [x,y]if x<y then left else right.
Fml < Extract.

It is possible to list the Coq variables having computational content with the Fml Free Vars.
command. For a better understanding of these features, we advise the reader to take a look at the
different examples given later on.

2.4.10 Programs that are not ML-typable

The formal extraction algorithm mapping Coq proofs to F'* programs, the extracted code is not
g g w g
proved to be ML-typable. There are in fact two cases which can be problematic:

o If some part of the program is “very” polymorphic, there may be no ML type for it. In
that case the extraction to Fml works all right but the generated code may be refused by the
ML type-checker. A very well known example is the “distr_pair” function: let dp (a,b) £
= (£ a,f b) which cannot be used with its full power in the ML type-system.
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e Some definitions of inductive types of Fi% may have no counterpart in ML. This happens
when there is a quantification over types inside the type of a constructor; for example:
Inductive Set anything = dummy : (A:Set)A->anything.
which corresponds to the definition of ML dynamics.

The first case is not too problematic; it is still possible to run the programs by switching off |
the type-checker during compilation. Unless you misused the semantical attachment facilities you
should never get any messages like “segmentation fault” for which the extracted code would be to
blame. To switch off the type-checker of the LML compiler, use the option -t. To swich off the
CAML Light type checker, use the function obj__magic which gives the type ’a to any object; but
this implies changing a little of the extracted code by hand.
The second case is fatal. If some inductive type cannot be translated to Fml one has to change
the proof (or possibly to “cheat” by some low-level manipulations we would not describe here).
We have to say, though, that in most “realistic” programs, these problems do not occur. For
example all the programs of the library are accepted by ML type-checkers except Higman.v ¥.

2.5 Some examples

2.5.1 Euclidean Division

The file Euclid.v contains proofs of some simple results about the primitive operations on natural
numbers, and ends up with the proof of Euclidean division. The natural numbers defined in
the example files are unary integers defined by two constructors 0 and S. The corresponding Fml
definition would be:

Inductive nat = 0 | S nat.
To use the file, we begin by loading it into the Coq environment:

Coq < AddPath "$COQTH/PROGRAMS".
Coq < Require Euclid_proof.

Once this is done, we can play with the extracted program:

Coq < Fml.

Fml < Extract.
Fml < Print eucl_dev.

eucl_dev = [b][a](gt_wf_ind a
[n]
(o]
(sumbool_rec
(diveucl_rec (minus n b) b [q][r](divex n b (S q) 1)
(HO (minus n b)))

9Should you obtain a not ML-typable program out of a self developed example, we would be interested in seeing
it; so please mail us the example: cog@margaux.inria.fr
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(divex n b 0 n)
(le_gt_dec b n)))

Fml < Types.

diveucl == ( ( prod nat) nat)

The function eucl_dev will take two unary numbers as arguments, and return a pair containing
the quotient and the rest. We can toy a little in Fml to translate the unary numbers into built-in
integers and conversely. This allows us to use integers in decimal notation.

Fml < let rec to_int = [n]

Fml < match n with

Fml < 0->0

Fml < | (Sm) -> 1+(to_int m)

Fml < end match.

Fml < let rec to_nat = [N]

Fml < (if N=0 then 0 else (S (to_nat (N-1)))).
Fml < let eucl_int = [N,M]

Fml < (match (eucl_dev (to_nat N) (to_nat M)) with
Frml < (pair q r) -> (pair (to_int q)(to_int r))
Fml < end match).

Fml < Write CAML File euclid.

Fml < Drop.

Coq < Quit.

To run the CAML program, we can use the camllight compiler.

unix> camllight
> Caml Light version 0.5

#include "euclid";;
#eucl_int 3 3;;

- : (int, int) prod
#eucl_int 150 32131;
- : (int, int) prod

pair_C (1, 0)

pair_C (214, 31)

2.5.2 Heapsort

The file (Heap_proof.v) contains the proof of an efficient list sorting algorithm described by
Bjerner. It is an adaptation of the well-known heapsort algorithm to functional languages.
We start with loading the files:
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Coq < AddPath "$COQTH/LISTS".
Coq < Require List.

Coq < AddPath "$COQTH/PROGRAMS".
Coq < Require Heap_proof.

As we saw in 2.4.9, we have to instantiate or realize by hand some of the Coq variables.

Coq < Fml.
Fml < Free Vars.

x¥*% [False_rec :(P:Data)P]

*xx [eq_rec :(A:Data)A->(P:Data)P->A->P]

*xxk [Acc_rec :(A:Data)(P:Data)(A->(A->P)=->P)->A->P]
*x*x [A :Data]

**x*x [inf_total :A->A->sumbool]

*xx [carac :A->A->nat]

Note that the sort Set is mapped to the sort Data in the world of realizers.

The variables False_rec, eq.rec and Acc_rec come from the prelude and are automatically realized
by the system during the extraction. So we have to worry about A and inf_total. caracis not relevant
for the computation and it is not necessary to realize it, yet for rigorous readers we give a possible
instantiation. '

Fml < Attach A Int.
Fml < Realize inf_total [x,y] if x<y then left else right.
Fml < Realize carac [x,y] if x=y then 0 else (S 0).

Fml < Extract.

If we want to test the program directly, we can define the list of the first n integers in reverse order:

Fml < let rec inter = [n](if n=0 then nil else (cons n (inter (n-1)))).

Fml < Write CAML File heap.
Now, with CAML Light for instance, we can test our program.

#include "heap";;
#heapsort (inter 3000);;
cons_C (1, cons_C (2, cons_C (3, cons_C (4,(cons_C (50,

This shows the program is quite efficient for CAML code.
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2.5.3 Mergesort

This program is very similar to heapsort, yet the mergesort algorithm used here is slightly better
adapted to functional languages. The idea is quite simple:

e One breaks the list to be sorted into a list of lists, each containing just one element. For
example

[153; 65 2;4; 9]+ [[1]; [3]; [6); [2]; [4]; (9]

e The elements of this list of lists are merged together, two by two, until one gets a single sorted
list. Here:

[[1] 5 (3] ; [6]; [2] 5[4]5[9]) = [[1;3);[2:6];[4;9]]
[[1;3]; [2;6]; [4;9]] = [[1;2;3;6);(4:9])
[[1;2;3:6]; [4;9]] = [[12:3;4;6;9]]

One can see that the kind of recursion used over lists is not exactly structural recursion, but rather
well-founded recursion over the length of the list. Rather than proving this recursion scheme using
structural recursion, we here choose to axiomatize it, and realize it afterwards using the construct
let rec .. ..

The user may look at the file Wf.v to see how this is formalized at the logical level. The
computational axiom is:

Axiom Acc_rec : (A:Set)
(R:A->A->Prop)
(P:A->Set)
((x:4)
((y:A)(R y x)->(Acc A R y))->
((y:A)(R y x)->(P y))->(P x))
->(a:A)(Acc A R a)->(P a).

We see the corresponding F,, type is:

(A:Data) (P:Data)A->(A->(A->P)->P)->P.

This axiom is preloaded in the environment and realized by the Fml program:
[f,x]1(let rec F = [yJ(f y F) in (F x)).

So Mergesort.v will be used exactly as Heap.v. The computational behavior of the resulting
program is quite satisfactory and can be compared with hand-written code:

#mergesort (inter 3000);;
(cons_C
(1,
(cons_C
(29
(cons_C
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(3,
(cons_C
(4)
(cons_C

2.5.4 Higman’s lemma

Originally this proof was not meant to be used as a program. It is an A-translated version of
the classical proof of this well-known combinatorial result. The resulting program is deliberately
“monstrous”. Details about how it can be used are given in the file Higman_extractor.ml. We
just mention this example, as it is an interesting example of a program which is proven correct,
and yet the underlying algorithm has not been exactly understood!
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Chapter 3

Examples

¢ The files Prelude.v and Specif.v contain the basic definitions of logical connectors and equality.
¢ The file Peano.v contains a basic axiomatization of natural numbers.

e The file Wf.v concerns well-founded induction. These files are automatically loaded in the initial
state of the system.



(#t#t##@##t‘###ttt***#*###**#***#‘*t*“**t******t*****#********tt*t‘**t******#)

(= Projet Formel - Calculus of Inductive Constructions V5.8 *)
(3**‘#&3#*$*ﬁ##t#‘tt*#‘#“t‘#*tttt*“***#*‘i*tt‘ttt***#********‘t‘#““*******)
(* *)
(= Prelude : Logical connectives, quantifiers, equality *)
(= *)

(tl*ttt‘$$03#*##*t#t#ttt#t“t“ttt#“#‘#t#*t*ttt######*tt“‘t*i.i‘t‘.‘.tttt##*)
Chapter Prelude.

Section Logic.

Inductive Definition True : Prop = I : True.

Section Negation.

(* Absurdity *)

Inductive Definition False : Prop = .

(* Negation »)

Definition not [A:ProplA->False.
Syntax not "7 _".

End Negation.

Section Conjunction.

(* Pairing / Introduction *)
Syntax and "_/\\_".

Syntax conj "<_,_>{_,_}".
Inductive Definition and [A,B:Propl : Prop = conj : A->B->(A/\B).

Section Projections.

Variables A,B : Prop.

Theorem proji.

Statement (A/\B)->A.

Proof (and_ind A B A [y:A]1(z:Bly).
Theorem proj2.

Statement (A/\B)->B.

Proof (and_ind A B B [y:A][z:B)z).

End Projections.

Syntax projl "<_,_>Fst{_}".
Syntax proj2 "<_,_>Snd{_}".

End Conjunction.
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Section Disjunction.
Syntax or "_\\/_".
Inductive Definition or [A,B:Prop] : Prop
= or_introl : A -> (A\/B) | or_intror : B -> (A\/B).
End Disjunction.

(» Equivalence *)

Definition iff = [P,Q:Prop](P -> Q) /\ (Q -> P).
Syntax iff "_ <-> _",

Definition IF = [P,Q,R:Propl(P /\ Q) \/ ("P /\ R).
Syntax IF "if _ then _ else _".

(* First-order quantifiers #)

Definition all.
Body [A:Set][P:A->Prop]l (x:4)(P x).
Syntax all "<_>A11(_)".

Syntax ex "<_>Ex(_)".
Inductive Definition ex [A:Set;P:A->Prop] : Prop
= ex_intro : (x:A4) (P x)->(<A>Ex(P)).

Syntax ex2 "<_>Ex2(_,_)".
Inductive Definition ex2 [A:Set;P,Q:A->Prop] : Prop
= ex_intro2 : (x:A) (P x)->(Q x)->(<A>Ex2(P,Q)).

(* Equality *)

Syntax eq "<_>_=_".

Inductive Definition eq [A:Set;x:A] : A->Prop
= refl_equal : <A>x=x.

End Logic.

(***“#‘*************************#***********tt*###ttt*#***#**#******tt‘**##**)

(* *)
(* Basic programming with Set *)
(= *)

(€ s R e T PR TY)
(kkrknkedokkrkkk ke kkokkkkk)

(* Programming Language *)

(ki kR kk Aok RAR)

(* Basic sets *)

Inductive Set unit = tt : unit.

Inductive Set bool = true : bool | false : bool.
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Inductive Set nat = 0 : nat | S : nat->nat.
(* Disjoint sum of two sets %)

Syntax sum "_+_".
Inductive Set sum [A,B:Set]
= inl : A -> (A+B) | inr : B -> (A+B).

(* Product of Sets *)

Syntax prod '"f_=®_".
Syntax pair "<_,_>(_,.)".
Inductive Set prod [A,B:Set] = pair : A->B->(A#*B).

Section programming.
Variables A,B:Set.
Theorem fst.
Statement (A*B)->A.
Proof [u:A#*B](<A>Match u with (* y,z *) [y:A][z:Bly).

Theorem snd.

Statement (A*B)->B.

Proof [u:A+B](<B>Match u with (* y,z *) [y:4][z:Blz).
End programming.

Syntax fst "<_,_>Fst(_)".
Syntax snd "<_,_>Snd(_)".

Section Prelude_lemmas.

Theorem absurd : (A:Prop)(C:Prop)A->("A)->C.
Goal.

Unfold not; Intros A C hl h2.

(* h2 : A->False

hl : A
C : Prop
A : Prop

subgoal C *)
Elim (h2 hi).
Save.

Section equality.
Variable A,B : Set.
Variable f : A->B.
Variable x,y,z : A.

Theorem sym_equal : (<A>x=y) -> <A>y=x.
Goal.
Intros h; Elim h.
(= h : <A>x=y
subgoal <A>Xx=x *)
Apply refl_equal.
Save.

Theorem trans_equal : (<A>x=y) => (KA>y=z) -> <A>x=z.
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Goal.
Intros h1 h2; Elim h2; Apply hil.
Save.

Theorem f_equal : (<A>x=y)-><B>(f x)=(f y).
Goal.
Intros h; Elim h.
(* h : <A>x=y
subgoal <B>(f x)=(f x) *)
Apply refl_equal.
Save.

End equality.

Section Properties_of_Relations.
Variable A : Set.
Variable R : A->A->Prop.

Definition refl.

Body (x:A)(R x x).

Definition trans.

Body (x,y,z:A)(Rx y) -> (Ry z) ->(R x z).
Definition sym.

Body (x,y:A)(Rx y) -> (Ry x).

Definition equiv.

Body refl /\ trans /\ sym.

End Properties_of_Relations.
End Prelude_lemmas. -

End Prelude.

Hint I conj or_introl or_intror pair inl inr refl_equal.
Immediate sym_equal.

Provide Prelude.
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(t##tﬂ**#**##tt*#“**#tt##‘*ttt**************t*‘#*t*******#***t#lt‘t#*t***t*t*)

(* Projet Formel - Calculus of Inductive Constructions V5.8 *)
(‘#***“####.#‘*#‘*#‘##tt“tt#l##t#*##tttttt“*‘***t**######tt#.#..tt#t**#**#*)
(= *)
(= Basic specifications : Sets containing logical information *)
(= *)

(**#*#‘#*#ti*t‘t#*##tttt#‘###‘**ttt#t‘t‘###**‘*t‘**t#****‘*##‘t#.t‘#t###‘*t#tt)

€ e e e T S T P P T TR e )
(* Basic specifications : Sets containing logical information *)
T T s e L L e )]

Inductive Set sig [A:Set;P:A->Prop]
= exist : (x:A)(P x) => {x:A | (P x)}.

Inductive Set sig2 [A:Set;P,Q:A->Prop]
= exist2 : (x:A)(P x) -> (@ x) => {x:A | (Px) & (Q x)}.

Inductive Set sigS [A:Set;P:A->Set]
= existS : (x:A)(P x) -> {x:A & (P x)}.

Inductive Set sigS2 [A:Set;P,Q:A->Set]
= existS2 : (x:A)(P x) -> (@ x) -> {x:A & (P x) & (Q x)}.

Syntax sumbool "{_}+{_}".
Inductive Set sumbool [A,B:Prop]
= left : A ->({A}+{B}) | right : B->({A}+{B}).

Syntax sumor "_+{_}".
Inductive Set sumor [A:Set;B:Propl
= inleft : A -> (A+{B}) | inright : B -> (A+{B}).

[€ITTTTITITITY)
(* Choice *)
(CIIIITTITITY)

Lemma Choice : (S,S’:Set)(R:S->S’->Prop) ((x:8){y:S’|(R x y)})
=> {£:5->S"1(z:S)(Rz (f z))}.

Goal.

Intros S S’ R H.

Exists [z:S](<S’>Match (H z) with [y:S’1[h:(R z y)1y).

Intro z; Elim (H z); Trivial.

Save.

Lemma Choice2 : (S,S’:Set)(R:S->S’->Set) ((x:S){y:S’ & (R x y)})
=> {£:5->S’ & (z:8)(R z (f z))}.

Goal.

Intros S S’ R H.

Exists [z:8](<S’>Match (H z) with [y:S’]1[h:(R z y)]y).

Intro z; Elim (H z); Trivial.

Save.

Lemma bool_choice : (S:Set)(R1,R2:S->Prop) ((x:S){(R1 x)}+{(R2 x)}) ->
{£:S->bool| (x:8) ( (<bool>(f x)=true /\ (R1 x))
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\/ (<bool>(f x)=false /\ (R2 x)))}.
Goal.
Intros S R1 R2 H.
Exists [z:5])(<bool>Match (H z) with [r:(R1 z)]true [r:(R2 z)]false).
Intro z; Elim (H z); Auto.
Save.

(€I T T T T T PSR TEE)

(* Self realizing propositions *)
(ERKERRKRERERAAR AR ERRERRKRRK )

Axiom False_rec : (P:Set)False->P.
Definition except = False_rec. (* for compatibility with previous versions #*)

Theorem absurd_set : (A:Prop)(C:Set)A->("4)->C.
Goal.

Intros A C hl h2.

(= h2 : ~A

hi : A
C : Prop
A : Prop

subgoal C *)
Apply False_rec.
Apply (h2 h1).
Save.

Theorem and_rec : (A,B:Prop)(C:Set) (A->B->C)->(A/\B)->C.

Goal.

Intros A B C F AB; Apply F; Elim AB; Auto.

Save.

Axiom eq_rec : (A:Set)(a:A) (P:A->Set) (P a)->(b:A) (<A>a=b)->(P b).

(* For compatibility with previous versions *)

Definition eq_spec = [A:Set][a,b:A][H:<A>a=b] [P:A->Set][H’: (P a)])
(eq_.rec A a P H’ b H).

Hint left right inleft inright.

Provide Specif.
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(***t**********i******#‘*#***********t****#*#******#*####***#**t*‘t##***t*ttt#)

(= Projet Formel - Calculus of Inductive Constructions V5.8 *)
T T T T T R T T T YT P T TT T T PR MRS
(= *)
(* Natural numbers *)
(* Peano Axioms *)
(* *)

(*************#***#t*#*t‘*t#ttttt#*‘*“********#***#******#***#ttt##‘##*******)

Theorem eq_S : (n,m:nat)(<nat>n=m)-><nat>(S n)=(S m).
Goal.

Intros n m H ; Apply (f_equal nat) ; Auto.

Save.

Hint eq_S.

(* The predecessor function *)

Definition pred : nat->nat
= [n:nat] (<nat>Match n with (* 0 *) 0
(* S u *) [u,v:nat]u).

Theorem pred_Sn : (m:nat)<nat>m=(pred (S m)).
Goal.
Auto.
Save.

Theorem eq_add_S : (n,m:nat)(<nat>(S n)=(S m))-><nat>n=m.
Goal.

Intros n m H ; Change <nat>(pred (S n))=(pred (S m)).

(*+ <nat>(pred (S n))=(pred (S m))

H : <nat>(S n)=(8 m)
m : nat
n : nat *)
Apply (f_equal nat) ; Auto.
Save.
Immediate eq_add_S.

(* A consequence of the previous axioms *)

Theorem not_eq_S : (n,m:nat)("<nat>n=m)->"<nat>(S n)=(S m).
Goal.

Red; Intros n m Hi H2 ; Apply H1; Auto.

Save.

Hint not_eq_S.

Definition IsSucc : nat->Prop
= [n:nat] (<Prop>Match n with (* 0 *) False
(* S p *) [p:nat][P:Prop]True).

Theorem 0_S : (n:nat) (<nat>0=(S n)).
Goal.

Red ; Intros n H.

(x False
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H : <nat>0=(S n)

n : nat *)
Change (IsSucc 0) ; Rewrite H ; Simpl ; Auto.
Save.
Hint 0O_S.

Theorem n_Sn : (n:nat)~<nat>n=(S n).
Goal.

Induction n ; Auto.

Save.

Hint n_Sn.

(tiookiokk ok ok kR R Rk R AR KRR kR R Rk )
(* Addition *)
(koo sk ok ok bk R R )

Definition plus = [n,m:nat](<nat>Match n with
(*0*)m
(* S p x) [p,plus_p_m:nat](S plus_p_m)).

Lemma plus_n_0 : (n:nat)<nat>n=(plus n 0).
Goal.

Induction n ; Simpl ; Auto.

Save.

Hint plus_n_0O.

Lemma plus_n_Sm : {(n,m:nat) <nat>(S (plus n m))=(plus n (S m)).
Goal.

Intros m n; Elim m; Simpl; Auto.

Save.

Hint plus_n_Sm.

(8000 0 oo oo o o o o o o A o o oK o o o o o ok )

(» Multiplication *)
T

Definition mult =
[n,m:nat] (<nat> Match n with (* 0 *) 0
(* S p *) [p:nat](plus m)).

Goal (n:nat)<nat>0=(mult n 0).
Induction n; Simpl; Auto.
Save mult_n_0.

Goal (n,m:nat)<nat>(plus (mult n m) n)=(mult n (S m)).
Intros; Elim n; Simpl; Auto.

Intros p H; Rewrite H; Elim plus_n_Sm; Apply eq_S.
Pattern 1 3 m; Elim m; Simpl; Auto.

Save mult_n_Sm.

(st o ook e ok ok ok ok kK K A R R o K kKRR R R ok ok kK R Rk kR Rk )
(* Definition of the usual orders, the basic properties of le and 1t *)
(* can be found in files Le and Lt *)
(Rrxkarhkrkk Rk kR R Rk Rk kR Rk Rk kR Rk kR kR kR kk )
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(* An inductive definition to define the order *)

Inductive Definition le [n:nat] : nat -> Prop
= le_n : (le n n)
| le_S : (m:nat)(le n m)->(Qle n (S m)).

Hint le_n le_S.

Definition 1t [n,m:nat}(le (S n) m).
Hint Unfold 1t.

Definition ge [n,m:nat](le m n).
Hint Unfold ge.

Definition gt [n,m:nat]J(1t m n).
Hint Unfold gt.

(REXFRBseaREEEERREEERRRRRRRERRERKERRRRERRR AR KRR RR R RRRRRRRK)

(= Pattern--Matching on natural numbers *)
(*******‘*t***##******‘*t##t*#***#**#***‘****##***********)

Theorem nat_case : (n:nat)(P:nat->Prop) (P 0)->((m:nat)(P (S m)))->(P n).
Goal.

Intros n P H HO ; Elim n ; Auto.

Save.

(t#**t**t!t**#t#*#********#*‘ttt*#***#*******##tt“#*t*#***#)

(* Principle of double induction *)
L

Theorem nat_double_ind : (R:nat->nat->Prop)
((n:nat)(R 0 n)) -> ((n:nat)(R (S n) 0))
=> ((n,m:nat)(Rn m)->(R (S n) (S m)))
-> (n,m:nat)(R n m).

Goal.

Induction n; Trivial.

Induction m; Auto.

Save.

Provide Peano.
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(*#*tt#************************************************************#********#*)

(* Projet Formel - Calculus of Inductive Constructions V5.8 *)
(et ook ook o oo s o o o oo o oo bl o ook s oo ok sk ok ok ok o ook ok Ak ok ko ook ok ook )
(* *)
(* Well-founded recursion *)
(* : *)
L e T T T I,
(* " Definitions and lemmas concerning well-founded induction *)

(*************************#**************************************#*##*********)
Chapter Well_founded.

Variable A : Set.

(* The accessibility predicate is defined to be non-informative *)

Inductive Definition Acc [R:A->A->Prop] : A -> Prop
= Acc_intro : (x:4)((y:A)(Ry x)->(Acc R y))->(Acc R x).

(* the informative elimination :
to be realised by a fixpoint
let Acc_rec F = let rec wf x = F x wf in wf *)

Axiom Acc_rec : (R:A->A->Prop)
(P:A->Set)
(xR (DR y x)->(hcc R y))->((y: DR y x)->(P y))->(P x))
->(a:A) (Acc R a)->(P a).

(* A relation is well-founded if every element is accessible *)
Definition well_founded = [R:A->A->Propl(a:A)(Acc R a).
(* well-founded induction *)
Goal (R:A->A->Prop)(well_founded R)->
(P:A->Set) ((x:A) ((y:A) (R y x)->(P y))->(P x))->(a:A) (P a).
Intros; Apply (Acc_rec R); Auto.
Apply H.
Save well_founded_induction.

End Well_founded.

Provide Wf.
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